SPECIAL TOPICS IN POWER SYSTEMS
MTEE-215

Unit-1
Transmission Open Access, Transmission Pricing, Impact of Congestion and Congestion Management, ATC and Factor affecting ATC, Determination of ATC.

Unit-2
Power System Computation and Computer Application: OPF and its Formulation, Solution Techniques NLP Methods, LPOPf Interior Point Method, AI Techniques, GA and Particle Swarm Optimization (PSO).

Unit-3
SCADA & Distribution Automation: Energy management systems, Power system communication, PICC Digital Communication, Microwave communication, Utility communication architecture, Java and Web based technologies. Software Agents.

Unit-4

Text/Reference:

Note: The theory question paper will have 5 sections containing a total of 9 questions. Section-1 will have one compulsory question from whole syllabus. The remaining 8 questions will be divided into 4 sections (2 questions per unit per section) and the student will have to attempt 5 questions i.e. exactly one question from each of the sections.
KURUKSHETRA UNIVERSITY, KURUKSHETRA
M.TECH. (ELECTRICAL ENGINEERING)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>Ext.</th>
<th>Int.</th>
<th>Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>60</td>
<td>40</td>
<td>4</td>
</tr>
</tbody>
</table>

INTELLIGENT CONTROL
MTEE -205

Unit-1

ANN Models & Architecture:
Biological foundations, ANN models, Types of activation function, introduction to network architecture, multilayer feed forward network (MLFFN), Kohonen self organizing map, radial basis, Function network (RBFN), recurring neural network.

Unit-2

Learning Processes:
Supervised and unsupervised learning, error-correction learning, Hebbian learning, Boltzman learning, single layer and multilayer perception model, least mean square algorithm, back propagation algorithm, Application in forecasting and pattern recognition and other power engineering problems.

Unit-3

Fuzzy Sets and Theory:
Fuzzy sets, fuzzy set operations, properties, membership functions, fuzzy to crisp conversion, measures of fuzziness, fuzzification and defuzzification methods, application in engineering problems.

Unit-4

Fuzzy Control System:
Introduction, simple fuzzy logic controllers with examples, special forms of fuzzy logic models, classical fuzzy control problems.

Text/References:

Note: The theory question paper will have 5 sections containing a total of 9 questions. Section-1 will have one compulsory question from whole syllabus. The remaining 8 questions will be divided into 4 sections (2 questions per unit per section) and the student will have to attempt 5 questions i.e. exactly one question from each of the sections.
Note: The theory question paper will have 5 sections containing a total of 9 questions. Section-1 will have one compulsory question from whole syllabus. The remaining 8 questions will be divided into 4 sections (2 questions per unit per section) and the student will have to attempt 5 questions i.e. exactly one question from each of the sections.
KURUKSHETRA UNIVERSITY, KURUKSHETRA
M.TECH. (ELECTRICAL ENGINEERING)

L T Ext. Int. Cr.
3 1 60 40 4

POWER SYSTEM PLANNING
MTEE-207

Unit-1
Introduction: Power System planning, objective, stages in planning & design, Key indices of power system reliability and their calculations, Linkage between reliability and capacity planning.

Unit-2
Generating System capability Planning: Probabilistic models of generating units, growth rate, Rate of generation capacity, Outage performance and system evaluation of loss of load and loss of energy indices, Power supply availability assessment

Unit-3
Interconnected Systems: Multi area reliability analysis, Power pool operation and power exchange energy contracts, quantification of economic and reliability benefits of pool operation
Demand/ Energy forecasting: Electricity consumption pattern, Peak demand and energy forecasting by trend and economic projection methods,

Unit-4
Power System expansion planning: Formulation of least cost optimization problem involving capital, operation and maintenance costs of candidate units of different types.
Investment Planning Models: Traditional generation expansion planning models, integrated resource planning models, production cost simulation models.

Text/Reference:
4. Billinton R., Power System Reliability Calculation, MIT Press, USA

Note: The theory question paper will have 5 sections containing a total of 9 questions. Section-1 will have one compulsory question from whole syllabus. The remaining 8 questions will be divided into 4 sections (2 questions per unit per section) and the student will have to attempt 5 questions i.e. exactly one question from each of the sections.
LOAD AND ENERGY MANAGEMENT
MTEE-213

Unit-1
Load Forecasting: Classification and characterization of loads, Approaches to load forecasting, Forecasting methodology, Energy forecasting, Peak demand forecasting, Non-weather sensitive forecast and Weather sensitive forecast, Total forecast, Annual and monthly peak demand forecasts. Applications of state estimation to load forecasting.

Unit-2

Unit-3
Energy Demand Forecasting: Static and dynamic analysis of energy demand, elements of energy demand forecasting, methodologies and models for energy demand forecasting, techno-economic approach in energy demand forecasting.

Unit-4
Trends and Case Studies: Energy management strategy, symbiotic relation between information, energy models and decision making, case studies like industrial energy forecasting, transportation energy forecasting, residential, commercial and agricultural energy forecasting

Text/Reference:

Note: The theory question paper will have 5 sections containing a total of 9 questions. Section-1 will have one compulsory question from whole syllabus. The remaining 8 questions will be divided into 4 sections (2 questions per unit per section) and the student will have to attempt 5 questions i.e. exactly one question from each of the sections.
RELIABILITY ENGINEERING
MTEE-211

Unit-1
Review of basic concepts in Reliability Engg., Reliability function, different reliability models, etc., Reliability evaluation techniques for complex systems; Tie set and cutest approaches, different reliability measures, Reliability allocation/apportionment, reliability improvement, redundancy optimization techniques.

Unit-2
Fault tree analysis: fault tree construction, simplification and evaluation, importance measures, modularization, applications, advantages and disadvantages of fault tree techniques.

Unit-3
Maintainability Analysis: measures of system performance, types of maintenance, reliability centered maintenance, reliability and availability, evaluation of engineering systems using Markov models.

Unit-4

References:
2. KB Mishra, “Reliability Analysis & Prediction”.
5. K.K. Aggarwal, “Reliability Engineering”.
6. Roy & Billington-“Reliability Engineering”.

Note: The theory question paper will have 5 sections containing a total of 9 questions. Section-1 will have one compulsory question from whole syllabus. The remaining 8 questions will be divided into 4 sections (2 questions per unit per section) and the student will have to attempt 5 questions i.e. exactly one question from each of the sections.
ADVANCED MICROPROCESSORS
MTEE -209

UNIT-1
Architecture of 8086 microprocessor, Memory Addressing, Bus Timings for MN/MX mode, interrupt structure. Memory Interfacing and Address decoding techniques for 8086 microprocessor

UNIT-2

UNIT-3
Introduction to microcontrollers, Architecture of 8051 microcontroller, basic Instruction set, programming, serial data communication, interfacing with D/A and A/D converters.

UNIT-4

References:
1. Advanced Microprocessors, PHI, D.V.Hall
2. The Intel Processors, Pearson Education, B. Brey

Note: The theory question paper will have 5 sections containing a total of 9 questions. Section-1 will have one compulsory question from whole syllabus. The remaining 8 questions will be divided into 4 sections (2 questions per unit per section) and the student will have to attempt 5 questions i.e. exactly one question from each of the sections.
KURUKSHETRA UNIVERSITY, KURUKSHETRA
M.TECH. (ELECTRICAL ENGINEERING)

L T Ext. Int. Cr.
3 1 60 40 4

COMPUTATIONAL METHODS FOR ELECTROMAGNETICS
MTEE-219

Unit-1
Fundamental Concepts:
Review of Maxwell’s equations & boundary, conditions, integral equations versus differential equations, radiation and edge, conditions, modal representation of fields in bounded and unbounded media.

Unit-2
Green’s Functions:
Green’s function technique for the solution of partial differential equations, classification of Green’s functions, various methods for the determination of Green’s functions including Fourier transform technique and Ohm-Rayleigh technique, dyadic Green’s functions, determination of Green’s functions for free space, transmission lines, waveguides, and microstrips.

Unit-3
Integral Equations:
Formulation of typical problems in terms of integral equations: wire antennas, scattering, apertures in conducting screens and waveguides, discontinuities in waveguides and microstriplines; Solution of Integral equations: General Method of Moments (MoM) for the solution of integro-differential equations, choice of expansion and weighting functions, application of MoM to typical electromagnetic problems.

Unit-4
Finite Element Method:
Typical finite elements, Solution of two-dimensional Laplace and Poisson’s equations, solution of scalar Helmholtz equation.

Finite-difference Time-domain Method:
Finite differences, finite difference representation of Maxwell’s equations and wave equation, numerical dispersion, Yee’s finite difference algorithm, stability conditions, programming aspects, absorbing boundary conditions.

Suggested Books:

Note: The theory question paper will have 5 sections containing a total of 9 questions. Section-1 will have one compulsory question from whole syllabus. The remaining 8 questions will be divided into 4 sections (2 questions per unit per section) and the student will have to attempt 5 questions i.e. exactly one question from each of the sections.