Bachelor of Technology (Civil Engineering), KUK
Semester – III (w.e.f. session 2016-17)

SCHEME OF STUDIES/EXAMINATIONS

<table>
<thead>
<tr>
<th>S. No</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Allotment of Marks</th>
<th>Dur. of Exam (Hrs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>AS-201N</td>
<td>Mathematics-III</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>CE-201N</td>
<td>Structural Analysis-I</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>CE-203N</td>
<td>Building Construction, Materials & Drawing</td>
<td>4</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>CE-205N</td>
<td>Fluid Mechanics-I</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>CE-207N</td>
<td>Surveying-I</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>CE-209N</td>
<td>Engineering Geology</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>CE-211N</td>
<td>Structural Mechanics-I Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>CE-213N</td>
<td>Fluid Mechanics-I Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>CE-215N</td>
<td>Surveying-I Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>MPC-201N</td>
<td>Environmental Studies*</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total

450 270 180 900

*MPC-201N is a mandatory course and student has to get passing marks in order to qualify for the award of degree but its marks will not be added in the grand total.

Bachelor of Technology (Civil Engineering), KUK
Semester – IV (w.e.f. session 2016-17)

SCHEME OF STUDIES/EXAMINATIONS

<table>
<thead>
<tr>
<th>S. No</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Allotment of Marks</th>
<th>Dur. of Exam (Hrs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>HS-201N</td>
<td>Fundamentals of Management</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>CE-202N</td>
<td>Structural Analysis-II</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>CE-204N</td>
<td>Design of Steel Structures-I</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>CE-206N</td>
<td>Fluid Mechanics-II</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>CE-208N</td>
<td>Soil Mechanics</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>CE-210N</td>
<td>Surveying-II</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>CE-212N</td>
<td>Fluid Mechanics-II Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>CE-214N</td>
<td>Soil Mechanics Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>CE-216N</td>
<td>Surveying-II Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>MPC-202N</td>
<td>Energy Studies*</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total

450 270 180 900

*MPC-202N is a mandatory course and student has to get passing marks in order to qualify for the award of Degree but its marks will not be added in the grand total.

Note: All the students have to undergo six weeks industrial training after IV sem and it will be evaluated in V sem.
Purpose: To provide the conceptual knowledge of Engineering mathematics

Course Outcomes

CO 1: To study various fundamental concepts of Fourier series and Fourier Transformation.

CO 2: To study and understand the functions of a complex variables.

CO 3: To study the Probability Distributions.

CO 4: To study the linear programming problem formulation.

UNIT – I

Fourier Series: Euler’s Formulae, Conditions for Fourier expansions, Fourier expansion of functions having points of discontinuity, change of interval, Odd & even functions, Half-range series.

Fourier Transforms: Fourier integrals, Fourier transforms, Fourier cosine and sine transforms.

Properties of Fourier transforms, Convolution theorem, Parseval’s identity, Relation between Fourier and Laplace transforms, Fourier transforms of the derivatives of a function, Application to boundary value problems.

UNIT – II

Functions of a Complex Variables: Functions of a complex variable, Exponential function, Trigonometric, Hyperbolic and Logarithmic functions, limit and continuity of a function, Differentiability and analyticity.

Cauchy-Riemann equations, Necessary and sufficient conditions for a function to be analytic, Polar form of the Cauchy-Riemann equations, Harmonic functions, Application to flow problems, Conformal transformation, Standard transformations (Translation, Magnification & rotation, inversion & reflection, Bilinear).

UNIT – III

Probability Distributions: Probability, Baye’s theorem, Discrete & Continuous probability distributions, Moment generating function, Probability generating function, Properties and applications of Binomial, Poisson and normal distributions.

UNIT – IV

Linear Programming: Linear programming problems formulation, Solution of Linear Programming Problem using Graphical method, Simplex Method, Dual-Simplex Method.

Paper Setter’s Note: 8 questions of 15 marks each distributed in four sections are to be set taking two from each unit. The candidate is required to attempt five questions in all, taking at least one from each of the four sections.

Text Book

Reference Book
4. Probability and Statistics for Engineer: Johnson. PHI.
CE-201N: STRUCTURAL ANALYSIS-I

L T P/D Total
3 1-4
Theory: 75
Sessional: 25
Duration: 3 hrs.

UNIT-I

Analysis of stresses and strains:
Analysis of simple states of stresses and strains, elastic constraints, bending stresses, theory of simple bending, flexure formula, combined stresses in beams, shear stresses, Mohr's circle, Principle stresses and strains, torsion in shafts and closed thin walled sections, stresses and strains in cylindrical shells and spheres under internal pressure.

Theory of Columns:
Slenderness ratio, end connections, short columns, Euler's critical buckling loads, eccentrically loaded short columns, cylinder columns subjected to axial and eccentric loading.

UNIT-II

Bending moment and shear force in determinate beams and frames:
Definitions and sign conventions, axial force, shear force and bending moment diagrams.

Three hinged arches:
Horizontal thrust, shear force and bending moment diagrams.

UNIT-III

Deflections in beams:

UNIT-IV

Analysis of statically determinate trusses:
Introduction, various types, stability, analysis of plane trusses by method of joints and method of sections, analysis of space trusses using tension coefficient method.

Paper Setter's Note: 8 questions of 15 marks each distributed in four sections are to be set taking two from each unit. The candidate is required to attempt five questions in all, taking at least one from each of the four sections.

Text Books
2) Strength of Materials, Dr. Sadhu Singh, Khanna Publishers

Reference Books
3) Elementary Structural Analysis, Jain, A. K., Nem Chand & Bros, Roorkee.
UNIT-I

Masonry Construction:
Introduction, various terms used, stone masonry-Dressing of stones, Classifications of stone masonry, safe permissible loads, Brick masonry-bonds in brick work, laying brick work, structural brick work-cavity and hollow walls, reinforced brick work, Defects in brick masonry, composite stone and brick masonry, glass block masonry.

Cavity and Partition Walls:
Advantages, position of cavity, types of non-bearing partitions, constructional details and precautions, construction of masonry cavity wall.

Foundation:
Functions, types of shallow foundations, sub-surface investigations, geophysical methods, general feature of shallow foundation, foundations in water logged areas, design of masonry wall foundation, introduction to deep foundations i.e. pile and pier foundations.

UNIT-II

Damp-Proofing and Water-Proofing:
Defects and causes of dampness, prevention of dampness, materials used, damp-proofing treatment in buildings, water proofing treatment of roofs including pitched roofs.

Roofs and Floors:
Types of roofs, various terms used, roof trusses-king post truss, queen post truss etc. Floor structures, ground, basement and upper floors, various types of floorings.

Doors and Windows:
Locations, sizes, types of doors and windows, fixtures and fastners for doors and windows.

UNIT-III

Brick and Tiles:
Classification of bricks, constituents of good brick earth, harmful ingredients, manufacturing of bricks, testing of bricks.

Tiles: Terra-cotta, manufacturing of tiles and terra-cotta, types of terra-cotta, uses of terra-cotta.

Limes, Cement and Mortars:
Classification of lime, manufacturing, artificial hydraulic lime, pozzolona, testing of lime, storage of lime, cements composition, types of cement, manufacturing of ordinary Portland cement, testing of cement, special types of cement, storage of cement.

Mortars: Definition, proportions of lime and cement mortars, mortars for masonry and plastering.

UNIT-IV

Stones:
Classification, requirements of good structural stone, quarrying, blasting and sorting out of stones, dressing, sawing and polishing, prevention and seasoning of stone.

Timber:
Classification of timber, structure of timber, seasoning of timber, defects in timber, fire proofing of timber, plywood, fiberboard, masonite and its manufacturing, important Indian timbers.

Paints and Varnishes:
Basic constituents of paints, types of paints, painting of wood, constituents of varnishes, characteristics and types of varnishes.

DRAWINGS (For Practice Purpose only)

Typical drawings of:
Cavity Wall
Bonds in brick work
Grillage foundation

Preparation of building drawing mentioning its salient features including the following details:
Ground floor plan
Two Sectional Elevations
Front and Side Elevations
Plan and Sectional Elevation of stair case, doors/ windows/ ventilators, floor and roof.

Paper Setter’s Note: 8 questions of 15 marks each distributed in four sections are to be set taking two from each unit. The candidate is required to attempt five questions in all, taking at least one from each of the four sections.

Text Books
1. Building Construction and Material, Gurcharan Singh, Standard Book House
2. Building Construction, Dr. B.C. Punmia, Luxmi Publication

Reference Books
1. Building Material, Rangawala
2. Construction Engineering, Y.S. Sane
UNIT-I

Introduction:
Fluid properties, mass density, specific weight, specific volume and specific volume and specific gravity, surface tension, capillarity, pressure inside a droplet and bubble due to surface tension, compressibility viscosity, Newtonian and Non-Newtonian fluids, real and ideal fluids.

Kinematics of Fluid Flow:
Steady & unsteady, uniform and non-uniform, laminar & turbulent flows, one, two & three dimensional. flows, stream lines, streak lines and path lines, continuity equation in differential form, rotation and circulation, elementary explanation of stream function and velocity potential, rotational and irrotational flows, graphical and experimental methods of drawing flownets.

UNIT-II

Fluid Statics:
Pressure-density-height relationship, gauge and absolute pressure, simple differential and sensitive manometers, two liquid manometers, pressure on plane and curved surfaces, center of pressure, Buoyancy, stability of immersed and floating bodies, determination of metacentric height, fluid masses subjected to uniform acceleration, free and forced vortex.

UNIT-III

Dynamic of Fluid Flow:
Euler's equation of motion along a streamline and its integration, limitation of Bernoulli's equation, Pitot tubes, venturimeter, Orificemeter, flow through orifices & mouth pieces, sharp crested weirs and notches, aeration of nappe.

UNIT-IV

Boundary layer analysis:
Boundary layer thickness, boundary layer over a flat plate, laminar boundary layer, turbulent boundary layer, laminar sub-layer, smooth and rough boundaries, local and average friction coefficient, separation and its control.

Dimensional Analysis and Hydraulic Similitude:
Dimensional analysis, Buckingham theorem, important dimensionless numbers and their significance, geometric, kinematic and dynamic similarity, model studies, physical modeling, similar and distorted models.

Paper Setter's Note: 8 questions of 15 marks each distributed in four sections are to be set taking two from each unit. The candidate is required to attempt five questions in all, taking at least one from each of the four sections.

Text Books
1) Hydraulic and Fluid Mechanics by P.N.Modi&S.M.Seth
2) Fluid Mechanics and Hydraulic Machines, Dr. R.K.Bansal, Luxmi Publication

Reference Books
1) Introduction to Fluid Mechanics by Robert W.Fox & Alan T.McDonald
2) Fluid Mechanics Through Problems by R.J.Garde
3) Engineering Fluid Mechanics by R.J.Garde & A.G.Mirajgaoker
UNIT-I

Fundamental Principles of Surveying:
Definition, objects, classification, fundamental principles, methods of fixing stations.

Measurement of distances:
Direct measurement, instruments for measuring distance, instruments for making stations, chaining of line, errors in chaining, tape corrections examples.

Compass and Chain Traversing:
Methods of traversing, instruments for measurement of angles-prismatic and surveyor's compass, bearing of lines, local attraction, examples.

UNIT-II

Leveling:
Definition of terms used in leveling, types of levels and staff, temporary adjustment of levels, principles of leveling, reduction of levels, booking of staff readings, examples

Contours:
Definition, representation of reliefs, horizontal equivalent, contour interval, characteristics of contours, methods of contouring, contour gradient, uses of contours maps.

Plane Table Surveying:
Plane table, methods of plane table surveying, radiation, intersection, traversing and resection, two point and three point problems.

UNIT-III

Theodolite and Theodolite Traversing:
Theodolites, temporary adjustment of theodolite, measurement of angles, repetition and reiteration method, traverse surveying with theodolite, checks in traversing, adjustment of closed traverse, examples.

Tacheometry:
Uses of tacheometry, principle of tacheometric surveying, instruments used in tacheometry, systems of tacheometric surveying-stadia system fixed hair method, determination of tacheometric constants, tangential systems, examples.

UNIT-IV

Curves:
Classification of curves, elements of simple circular curve, location of tangent points-chain and tape methods, instrumental methods, examples of simple curves. Transition Curves-Length and types of transition curves, length of combined curve, examples. Vertical Curves: Necessity and types of vertical curves.

Paper Setter’s Note: 8 questions of 15 marks each distributed in four sections are to be set taking two from each unit. The candidate is required to attempt five questions in all, taking at least one from each of the four sections.

Text Books
1. Surveying Vol.I & II by B.C.Punmia

Reference Books
1. Surveying Vol.I by T.P.Kanitkar
CE-209N: ENGINEERING GEOLOGY

L T P/D Total
3 1 - 4

Theory: 75
Sessional: 25
Duration: 3 hrs.

UNIT-I

Introduction:
Definition, object, scope and sub division of geology. The interior of the earth, crust, mantle and core. Importance of geology in Civil Engineering projects. Different branches of geology.

Physical Geology:

UNIT-II

Mineralogy and Petrology:

Structural Geology and general stratigraphy of India:
Elementary idea about outcrop, dip and strike, bedding plane, fold, fault, joint and unconformity. General principles of stratigraphy of India and their characteristics.

UNIT-III

Geological Investigations:
Preliminary geological investigations- Use of geological maps and interpretation of data, geological reports, hydrogeology, water table, springs and artesian well, ground water in engineering projects, artificial recharge of ground water. Elementary ideas of geological investigation, Remote sensing techniques for geological and hydrological survey and investigation.

Geological conditions and stability of foundation sites and abutments:
Geological condition and their influence on the selection, location, type and design of dams, reservoirs, tunnels, highways, bridges. Geological definitions and aspects of landslides and Hill-slope stability.

UNIT-IV

Improvement of foundation rocks:
Precaution and treatment against faults, joints and ground water (electrical and seismic methods). Retaining walls and other treatments.

Geology and environment of earth.
Engineering geology and its case study, water table, geology as a subject, flood plane deposits, deltas, waterfalls, lakes etc. Earth environment, global warming and effect.

Note: The physical study of rock samples and minerals may be performed in the tutorials.

Paper Setter’s Note: 8 questions of 15 marks each distributed in four sections are to be set taking two from each unit. The candidate is required to attempt five questions in all, taking at least one from each of the four sections.

Text Books
1. Engineering and General Geology by Prabin Singh
2. General & Engineering Geology by Dr. D.S.Arora

Reference Books
1. A Text Book of Geology by P.K. Mukherjee
2. Physical and General Geology by S.K.Garg
3. Introduction of Physical Geology by A.Holmes.
LIST OF EXPERIMENTS

1. Verification of reciprocal theorem of deflection using a simply supported beam.
2. Verification of moment area theorem for slopes and deflections of the beam.
3. Deflections of a truss- horizontal deflection & vertical deflection of various joints of a pin- jointed truss.
4. Elastic displacements (vertical & horizontal) of curved members.
5. Experimental and analytical study of 3 hinged arch and influence line for horizontal thrust.
6. Experimental and analytical study of behavior of struts with various end conditions.
7. To determine elastic properties of a beam.
8. Uniaxial tension test for steel (plain & deformed bars)
9. Uniaxial compression test on concrete & bricks specimens.
LIST OF EXPERIMENTS

1 To determine metacentric height of the ship model.
2 To verify the Bernoulli's theorem.
3 To determine coefficient of discharge for an Orificemeter.
4 To determine coefficient of discharge of a venturimeter.
5 To determine the various hydraulic coefficients of an Orifice (Cd, Cc, Cv).
6 To determine coefficient of discharge for an Orifice under variable head.
7 To calibrate a given notch.
8 To determine coefficient of discharge for a mouth piece.
9 Drawing of a flownet by Viscous Analogy Model and Sand Box Model.
10 To study development of boundary layer over a flat plate.
11 To study velocity distribution in a rectangular open channel.
12 Velocity measurements by current meter, float, and double float (demonstration only)
13 Experiment on Vortex formation (demonstration only).
LIST OF EXPERIMENTS

1. To plot a traverse of a given area by chain surveying & also locate offsets
2. To plot a traverse of a given area with the help of a compass and a chain.
3. To work out relative elevations of various points on the grounds by performing profile or by fly leveling
4. To plot a longitudinal section and cross section of given alignment.
5. To determine the difference in elevations of two points by reciprocal leveling.
6. To plot a contour map of given area.
7. To determine the position of station occupied by plane table using three point problem.
8. To determine the position of station occupied by plane table using two point problem.
9. Use of a tangent clinometer with plane table.
UNIT I
The multidisciplinary nature of environmental studies. Definition, Scope and Importance. Need for public awareness.
Natural Resources: Renewable and Non-Renewable Resources: Natural resources and associated problems.
(a) Forest Resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forests and tribal people.
(b) Water Resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.
(c) Mineral Resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.
(d) Food Resources: World Food Problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
(e) Energy Resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources, case studies.
(f) Land Resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification.
Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyle.

UNIT II
Ecosystem - Concept of an ecosystem, Structure and function of an ecosystem, Producers, consumers and decomposers, Energy flow in the ecosystem. Ecological succession, Food Chains, food webs and ecological pyramids. Introduction, types, characteristic features, structure and function of the following ecosystem.
a. Forest Ecosystem
b. Grassland Ecosystem
c. Desert Ecosystem
d. Aquatic Ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)
Field Work: Visit to a local area to document Environment assets - river/forest/grassland/hill/mountain. Visit to a local polluted site - Urban/Rural/Industrial/Agricultural. Study of common plants, insects and birds. Study of simple ecosystems - pond, river, hill, slopes etc. (Field work equal to 5 lecture hours).

UNIT III
Environmental Pollution: Definition, Cause, effects and control measures of: (a) Air Pollution (b) Water Pollution (c) Soil Pollution (d) Marine Pollution (e) Noise Pollution (f) Thermal Pollution (g) Nuclear Hazards
Solid waste management- cause, effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution. Pollution case studies. Disaster management: floods, earthquake, cyclone and landslides.

UNIT IV
Social Issues and the Environment, From unsustainable to sustainable development, Urban problems related to energy, Water conservation, rain water harvesting, watershed management.
Suggested Text Books & References:
Purpose: To make the students conversant with the basics concepts in management thereby leading to nurturing their managerial skills

COURSE OUTCOMES

CO1: An overview about management as a discipline and its evolution
CO2: Understand the concept and importance of planning and organizing in an organization
CO3: Enabling the students to know about the importance of hiring and guiding the workforce by understanding the concept of leadership and communication in detail
CO4: To understand the concept and techniques of controlling and new trends in management

UNIT-I
Introduction to Management: Meaning, Definition, nature, importance & Functions, Management as Art, Science & Profession-Management as social System, Concepts of management-Administration

UNIT-II
Planning: nature, purpose and functions, types of plans, planning process, Strategies and Policies: Concept of Corporate Strategy, formulation of strategy, Types of strategies, Management by objectives (MBO), SWOT analysis, Types of policies, principles of formulation of policies
Organizing: nature, importance, process, organization structure: Line and Staff organization, Delegation of Authority and responsibility, Centralization and Decentralization, Decision Making Process, Decision Making Models, Departmentalization: Concept and Types (Project and Matrix), formal & informal organizations

UNIT-III
Staffing: concept, process, features; manpower planning; Job Analysis: concept and process; Recruitment and selection: concept, process, sources of recruitment; performance appraisal, training and development Directing: Communication-nature, process, formal and informal, barriers to Effective Communication, Theories of motivation-Maslow, Herzberg, McGregor; Leadership—concept and theories, Managerial Grid, Situational Leadership. Transactional and Transformational Leadership

UNIT-IV
Controlling: concept, process, types, barriers to controlling, controlling Techniques: budgetary control, Return on investment, Management information system-MIS, TQM-Total Quality Management, Network Analysis-PERT and CPM. Recent Trends in Management:-Social Responsibility of Corporate Social Responsibility (CSR) and business ethics. Functional aspects of business: Conceptual framework of functional areas of management-Finance; Marketing and Human Resources

Text books
1. Management Concepts -Robbins, S.P; Pearson Education India

Recommended books
2. Management and OB – Mullins; Pearson Education
4. Management Theory and Practice – Gupta, C.B; Sultan Chand and Sons, new Delhi
7. Organizational behavior – Roberts Stephen P; PHI.

NOTE: Eight questions are to be set in all by the examiner taking two questions from each unit. Students will be required to attempt five questions in all, selecting at least one question from each unit.
UNIT-I

Statically Indeterminate Structures:
Introduction, Static and Kinematic Indeterminacies, Castigliano's theorems, Strain energy method, Analysis of frames with one or two redundant members using Castigliano's 2nd theorem.

UNIT-II

Slope deflection and moment Distribution Methods:
Analysis of continuous beams & portal frames, Portal frames with inclined members.

UNIT-III

Column Analogy Method:
Elastic centre, Properties of analogous column, Applications to beam & frames.
Analysis of Two hinged Arches:
Parabolic and circular Arches, Bending Moment Diagram for various loadings, Temperature effects, Rib shortening, Axial thrust and Radial Shear force diagrams.

UNIT-IV

Unsymmetrical Bending
Introduction Centroidal principal axes of sections, Bending stresses in beam subjected to unsymmetrical bending, shear centre, shear centre for channel, Angles and Z sections.
Cable and suspension Bridges:
Introduction, uniformly loaded cables, Temperature stresses, three hinged stiffening Girder and two hinged stiffening Girder.

Paper Setter's Note: 8 questions of 15 marks each distributed in four sections are to be set taking two from each unit. The candidate is required to attempt five questions in all, taking at least one from each of the four sections.

Text Books
5) Theory of Structures, S.Ramamrutham, DPR publishing Company
6) Theory of Structures, B.C.Punmia, Luxmi Publication

Reference Books
CE-204N: DESIGN OF STEEL STRUCTURES-I

Theory: 75
Duration: 3 hours

UNIT-I

Introduction:
Loads, structural steels and their specifications, structural elements, steel vs. concrete and timber, design specifications as per IS: 800, structural layout, strength and stiffness considerations, efficiency of cross-section, safety and serviceability considerations.

Riveted/Bolted Connections:
Riveting and bolting, their types, failure of riveted joint, efficiency of a joint, design of riveted joint, concentric riveted joints, advantages and disadvantages of bolted connections, stresses in bolts.

Welded Connections:
Types of welded joints, design of welded joint subjected to axial loads, welded joints subjected to eccentric loads, simple, semi-rigid and rigid connections.

Design of Tension Members:
Introduction, types of tension members, net sectional areas, design of tension members, lug angles and splices.

UNIT-II

Design of Compression Members:
Introduction, effective length and slenderness ratio, various types of sections used for columns, built up columns, necessity, design of built up columns, laced and battened columns including the design of lacing and battens, design of eccentrically loaded compression members.

Column Bases and Footings:
Introduction, types of column bases, design of slab base and gussested base, design of gussested base subjected to eccentrically loading, design of grillage foundations.

UNIT-III

Design of Beams:
Introduction, types of sections, general design criteria for beams, design of laterally supported and unsupported beams, design of built up beams, web buckling, web crippling and diagonal buckling.

UNIT-IV

Gantry Girders:
Introduction, various loads, specifications, design of gantry girder.

Plate Girder:
Introduction, elements of plate girder, design steps of a plate girder, necessity of stiffeners in plate girder, various types of stiffeners, web and flange splices (brief introduction), Curtailment of flange plates, design beam to column connections: Introduction, design of framed and seat connection.

DRAWINGS (For Practice Purpose only)
1. Structural drawings of various types of welded connections (simple and eccentric)
2. Beam to column connections (framed & seat connections)
3. Column bases- slab base, gussested base and grillage foundation.
4. Plate girder.
5. Roof truss.

Paper Setter’s Note: 8 questions of 15 marks each distributed in four sections are to be set taking two from each unit. The candidate is required to attempt five questions in all, taking at least one from each of the four sections.

Text Books
2) Design of steel structures, Dr.B.C.Punmia, Luxmi Publication
3) Design of steel structures-I, Dr. Ram Chandra, Scientific Publisher, Jodhpur

Reference Books
UNIT-I

Laminar Flow:
Navier-Stoke's equation, Laminar flow between parallel plates, Couette flow, laminar flow through pipes-Hagen Poiseuille law, laminar flow around a sphere-Stokes' law.
Flow through pipes:
Types of flows-Reynold's experiment, shear stress on turbulent flow, boundary layer in pipes-Establishment of flow, velocity distribution for turbulent flow in smooth and rough pipes, resistance to flow of fluid in smooth and rough pipes, Stanton and Moody's diagram. Darcy's weisbach equation, other energy losses in pipes, loss due to sudden expansion, hydraulic gradient and total energy lines, pipes in series and in parallel, equivalent pipe, branched pipe, pipe networks, Hardy Cross method, water hammer.

UNIT-II

Drag and Lift:
Types of drag, drag on a sphere, flat plate, cylinder and airfoil, development of lift on immersed bodies like circular cylinder and airfoil.
Open Channel Flow:
Type of flow in open channels, geometric parameters of channel section, uniform flow, most economical section (rectangular and trapezoidal), specific energy and critical depth, momentum in open channel, specific force, critical flow in rectangular channel, applications of specific energy and discharge diagrams to channel transition, metering flumes, hydraulic jump in rectangular channel, surges in open channels, positive and negative surges, gradually varied flow equation and its integration, surface profiles.

UNIT-III

Compressible flow:
Basic relationship of thermodynamics continuity, momentum and energy equations, propagation of elastic waves due to compression of fluid, Mach number and its significance, subsonic and supersonic flows, propagation of elastic wave due to disturbance in fluid mach cone, stagnation pressure.

UNIT-IV

Pumps and Turbines:
Reciprocating pumps, their types, work done by single and double acting pumps. Centrifugal pumps, components and parts and working, types, heads of a pump-statics and manometric heads,. Force executed by fluid jet on stationary and moving flat vanes, Turbines-classifications of turbines based on head and specific speed, component and working of Pelton wheel and Francis turbines, cavitation and setting of turbines.

Paper Setter's Note: 8 questions of 15 marks each distributed in four sections are to be set taking two from each unit. The candidate is required to attempt five questions in all, taking at least one from each of the four sections.

Text Books
2. Fluid Mechanics and Hydraulic Machines,Dr. R.K.Bansal, Luxmi Publication

Reference Books
1. Flow in Open Channels by S.Subraminayam
2. Introduction to Fluid Mechanics by Robert N.Fox& Alan T.Macnold
CE-208N: SOIL MECHANICS

L T P/D Total: Theory: 75
Sessionals: 25 Duration: 3 hours

UNIT-I

Soil Formation and Composition
Introduction, soil and rock, Soil Mechanics and Foundation Engineering, origin of soils, weathering, soil formation, major soil deposits of India, particle size, particle shape, interparticle forces, soil structure, principal clay minerals.

Basic Soil Properties
Introduction, three phase system, weight-volume relationships, soil grain properties, soil aggregate properties, grain size analysis, sieve analysis, sedimentation analysis, grain size distribution curves, consistency of soils, consistency limits and their determination, activity of clays, relative density of sands.

Classification of Soils
Purpose of classification, classification on the basis of grain size, classification on the basis of plasticity, plasticity chart, Indian Standard Classification System.

Permeability of Soils
Introduction, Darcy's law and its validity, discharge velocity and seepage velocity, factors affecting permeability, laboratory determination of coefficient of permeability, determination of field permeability, permeability of stratified deposits.

UNIT-II

Effective Stress Concept
Principle of effective stress, effective stress under hydrostatic conditions, capillary rise in soils, effective stress in the zone of capillary rise, effective stress under steady state hydrodynamic conditions, seepage force, quick condition, critical hydraulic gradient, two dimensional flow, Laplace's equation, properties and utilities of flownet, graphical method of construction of flownets, piping, protective filter.

Compaction
Introduction, role of moisture and compactive effect in compaction, laboratory determination of optimum moisture content, moisture density relationship, compaction in field, compaction of cohesionless soils, moderately cohesive soils and clays, field control of compaction.

UNIT-III

Vertical Stress below Applied Loads
Introduction, Boussinesq's equation, vertical stress distribution diagrams, vertical stress beneath loaded areas, Newmark's influence chart, approximate stress distribution methods for loaded areas, Westergaard's analysis, contact pressure.

Compressibility and Consolidation
Introduction, components of total settlement, consolidation process, one-dimensional consolidation test, typical void ratio-pressure relationships for sands and clays, normally consolidated and over consolidated clays, Casagrande's graphical method of estimating pre-consolidation pressure, Terzaghi's theory of one-dimensional primary consolidation, determination of coefficients of consolidation, consolidation settlement, Construction period settlement, secondary consolidation.

UNIT-IV

Shear Strength
Introduction, Mohr stress circle, Mohr-Coulomb failure-criterion, relationship between principal stresses at failure, shear tests, direct shear test, unconfined compression test, triaxial compression tests, drainage conditions and strength parameters, Vane shear test, shear strength characteristics of sands, normally consolidated clays, over-consolidated clays and partially saturated soils, sensitivity and thixotropy.

Earth Pressure
Introduction, earth pressure at rest, Rankine's active & passive states of plastic equilibrium, Rankine's earth pressure theory, Coulomb's earth pressure theory, Culmann's graphical construction, Rebhann's construction.

Paper Setter's Note: 8 questions of 15 marks each distributed in four sections are to be set taking two from each unit. The candidate is required to attempt five questions in all, taking at least one from each of the four sections.

Text Books
1. Soil Mechanics and Foundation Engineering by Dr. K.R.Arora
2. Soil Mechanics and Foundations, Dr.B.C.Punmia, Luxmi Publication

Reference Books
CE-210N: SURVEYING -II

L T P/D Total
3 1 - 4 Theory: 75
Sessionals: 25 Duration: 3 hours

UNIT-I
Trigonometrical Levelling:
Introduction, height and distances-base of the object accessible, base of object inaccessible, geodetical observation, refraction and curvature, axis signal correction, difference in elevation between two points.

Triangulation:
Triangulation systems, classification, strength of figure, selection of triangulation stations, grade of triangulation, field work of triangulation, triangulation computations, introduction to E.D.M. instruments.

UNIT-II
Survey Adjustment and Treatment of Observations:
Types of errors, definition of weight pf an observation, most probable values, law of accidental errors, law of weights, determination of probable error (different cases with examples) principle of least squares, adjustment of triangulation figures by method of least squares.

UNIT-III
Astronomy:
Definitions of astronomical terms, star at elongation, star at prime vertical star at horizon, star at culmination, celestial coordinate systems, Napier's rule of circular parts, various time systems: sidereal, apparent, solar and mean solar time, equation of time-its cause.

Total station:
Working principle and survey with total station.

UNIT-IV
Elements of Photogrammetry:
Introduction: types of photographs, types of aerial photographs, aerial camera and height displacements in vertical photographs, stereoscopic vision and stereoscopies, height determination from parallax measurement, flight planning, Introduction of remote sensing and its systems:
Concept of G.I.S and G.P.S. -Basic Components, data input, storage & output.

Paper Setter's Note: 8 questions of 15 marks each distributed in four sections are to be set taking two from each unit. The candidate is required to attempt five questions in all, taking at least one from each of the four sections.

Text Books
1. Surveying Vol.II by B.C.Punmia
2. Surveying Vol. II by S.K.Duggal, TMH Publication

Reference Books
4. Higher Surveying by A M Chandra
1 To determine the coefficient of drag by Stoke’s law for spherical bodies.
2 To study the phenomenon of cavitation in pipe flow.
3 To determine the critical Reynold’s number for flow through commercial pipes.
4 To determine the coefficient of discharge for flow over a broad crested weir.
5 To study the characteristics of a hydraulic jump on a horizontal floor and sloping glacis including friction blocks.
6 To study the scouring phenomenon around a bridge pier model.
7 To study the scouring phenomenon for flow past a spur.
8 To determine the characteristics of a centrifugal pump.
9 To study the momentum characteristics of a given jet.
10 To determine head loss due to various pipe fittings.
1. Visual Soil Classification and water content determination.
2. Determination of specific gravity of soil solids.
3. Grain size analysis-sieve analysis.
4. Liquid limit and plastic limit determination.
5. Field density by:
 - Sand replacement method
 - Core cutter method
6. Proctor's compaction test.
7. Coefficient of permeability of soils.
8. Unconfined compressive strength test.
9. Direct shear test on granular soil sample.
10. Unconsolidated undrained (UU) triaxial shear test of fine grained soil sample.
1. To study the functions of various parts of theodolite.
2. To carry out permanent adjustments of a transit theodolite.
3. To measure horizontal and vertical angles using a theodolite.
4. To determine the constants of a given tacheometer.
5. To determine the horizontal distance & elevations of a given traverse with the help of a tacheometer.
6. To set out simple curves by offsets from tangents.
7. To set out curves by offsets from chords produced.
8. To set out simple curves by offsets from long chords.
9. To set out simple curves by Rankine’s method of tangential deflection angles.
10. To measure the length of base line in triangulation survey.
11. Triangulation with total station.
UNIT-I

Introduction: Types of energy, Conversion of various forms of energy, Conventional and Nonconventional sources, Need for Non-Conventional Energy based power generation.

Energy Audit & Tariffs: Need, Types, Methodology and Approach.

UNIT-II

Conventional Energy sources: Selection of site, working of Thermal, Hydro, Nuclear and Diesel power plants and their schematic diagrams & their comparative advantages- disadvantages.

UNIT-III

Non Conventional Energy sources: Basic principle, site selection and power plant layout of Solar energy, photovoltaic technologies, PV Systems and their components, power plant layout of Wind energy, layout of Bio energy plants, Geothermal energy plants and tidal energy plants.

UNIT-IV

Energy Scenario: Lay out of power system, Role of Energy in Economic development, energy demand, availability and consumption, Commercial and Non-commercial energy, Indian energy scenario, long term energy scenario, energy pricing, energy sector reforms in India, energy strategy for the future.

Paper Setter’s Note: 8 questions of 15 marks each distributed in four sections are to be set taking two from each unit. The candidate is required to attempt five questions in all, taking at least one from each of the four sections.

Suggested Text Books & References:

1. Energy Studies-Wiley and Dream tech India
3. NEDCAP: Non Conventional Energy Guide Lines
4. G.D. Roy: Non conventional energy sources