Kurukshetra University, Kurukshetra

(Established by the State Legislature Act XII of 1956) ('A+' Grade, NAAC Accredited)

> ।। योगस्थः कुरु कर्माणि।। समबुद्धि व योग युक्त होकर कर्म करो

(Perform Actions while Steadfasting in the State of Yoga)

DEPARTMENT OF INSTRUMENTATION (DOI)

LOCF/OBE/NBA CURRICULUM (2020 -2021) Program Name: M. Tech. - Electrical and Instrumentation Engineering (For the Batches from 2020-2021 in phased manner) (UTD Only)

LOCF/OBE/NBA CURRICULUM (2020 - 2021)

Program Name: M. Tech. - Electrical and Instrumentation Engineering

(For the Batches admitted from 2020-2021 in phased manner)

VISION

Be globally acknowledged as a distinguished centre of academic excellence.

MISSION

To prepare a class of proficient scholars and professionals with ingrained human values and commitment to expand the frontiers of knowledge for the advancement of society.

DEPARTMENT VISION AND MISSION

VISION

• To become a model department as a Centre of quality education, research with innovation and recognition at National and International level for serving society.

MISSION

- M1: To provide quality education to aspiring young minds for improving their skills, inculcating values, creating leadership qualities and enhance research with innovative methods.
- M2: To produce young engineers capable to be utilized in the areas of New Technological Design, Environment, ethics and sustainable technologies.
- M3: To develop Teaching-Learning methods which can produce socially committed good professional human being who can contribute effectively in Nation building and represent Country Internationally.

Mapping of University Vision and Mission to Department Vision and Mission

Acclaimed as modal Centre of Learning and Research by

University Vision and Mission	Department Vision and Mission
High quality knowledge delivery through state of art	Yes
infrastructure and ethical values to the students	1 es
Students excellence will make them professionals and	Yes
innovators emerging as global leaders	Ies
Research and development will help in furtherance of	Vag
Faculty knowledge	Yes

Programme Educational Objectives (PEOs):

The Department of Instrumentation in consultation with various stakeholders have formulated the Programme Educational Objectives (PEO's) that are broad statements that describe the career and professional accomplishments that the program is preparing its Post Graduate to achieve in few years, subsequent to receiving the degree. The PEO's of the M. Tech. programme in Electrical and Instrumentation Engineering are as follows:

- **PEO1:** The Post Graduate will become competent by applying their technical and managerial skills.
- **PEO2:** The Post Graduate will be able to adapt to any environment and succeed in higher positions in contemporary rapidly evolving technologies in Electrical and Instrumentation engineering field.
- **PEO3:** The Post Graduate will engage themselves in the life-long learning by pursuing higher education and participation in research and development activities to meet all challenges to transform them as responsible citizens of the nation

Program Specific Outcomes (PSO's):

- **PSO1:** Clearly understand the fundamental concepts of Electrical and Instrumentation Engineering
- **PSO2:** Post Graduate will be able to formulate and solve real life problems in the area of Electrical and Instrumentation Engineering
- **PSO3:** Post Graduate will possess the skills to communicate effectively in both oral and written forms, demonstrating the practice of professional ethics, and responsive to societal and environmental needs.

PEO's	MISSION OF THE DEPARTMENT							
LO S	M1	M2	M3					
PEO1	3	3	1					
PEO2	2	3	2					
PEO3	2	2	3					

PEOs to Mission statement mapping

Program Outcomes (PO) with Post Graduate Attributes

Programme Outcomes are attributes of the Post Graduate from the programme that are indicative of the Post Graduate' ability and competence to work as an engineering professional upon graduation. Program Outcomes are statements that describe what students are expected to know or do by the time of graduation, they must relate to knowledge and skills that the students acquire from the programme. The achievement of all outcomes indicates that the student is well prepared to achieve the program educational

objectives down the road. The Department of Instrumentation engineering has following twelve PO's. The course syllabi and the overall curriculum are designed to achieve these outcomes:

S. No.	Post Graduate Attributes	Program Outcomes (POs)						
PO1	Knowledge Capable of demonstrating comprehensive disciplinary knowledge gained during course of study							
PO2	Research Aptitude	Capability to ask relevant/appropriate questions for identifying, formulating and analyzing the research problems and to draw conclusion from the analysis						
PO3	Communication Ability to communicate effectively on general and Technical topics with the engineering community and with society at large							
PO4	Problem Solving Capability of applying knowledge to solve Engineering and other problems							
PO5	Individual and Team WorkCapable to learn and work effectively as an individual, and as a member or leader in diverse teams, in multidisciplinary settings.							
PO6	16 Investigation of Problems Ability of critical thinking, analytical reasoning and research knowledge including design of experiments, analysis and interprovide conclusions							
PO7	Modern Tool usage	Ability to use and learn techniques, skills and modern tools for scientific and engineering practices						
PO8	Engineering and Society	Ability to apply reasoning to assess the different issues related to society and the consequent responsibilities relevant to the professional Engineering practices						
PO9	Life-Long Learning	Aptitude to apply knowledge and skills that are necessary for participating in learning activities throughout life						
PO10	Ethics	Capability to identify and apply ethical issues related to one's work, avoid unethical behaviour such as fabrication of data, committing plagiarism and unbiased truthful actions in all aspects of work						
PO11	Project Management	Ability to demonstrate knowledge and understanding of the engineering principles and apply these to manage projects						

Mapping of PEO's with PO's

S. No.	Program Educational Objectives	P01	P02	P03	P04	P05	PO6	P07	P08	P09	P010	P011	PSO1	PSO2	PSO3
1	The Post Graduate will become competent by applying their technical and managerial skills.														
2	The Post Graduate will be able to adapt to any environment and succeed in higher positions in contemporary rapidly evolving technologies in Electrical and Instrumentation engineering field.	\checkmark		\checkmark			\checkmark		\checkmark				\checkmark	\checkmark	\checkmark
3	The Post Graduate will engage themselves in the life-long learning by pursuing higher education and participation in research and development activities to meet all challenges to transform them as responsible citizens of the nation			\checkmark			\checkmark						\checkmark	\checkmark	\checkmark

LOCF/OBE/NBA CURRICULUM (2020 - 2021)

Program Name: M. Tech. - Electrical and Instrumentation Engineering

Post Graduate Degree Program

General, Course structure & Theme & Semester-wise credit distribution

A. Definition of Credit:

1 Hour Lecture (L) per week	1 credit
1 Hour Tutorial (T) per week	1 credit
1 Hour Practical (P) per week	0.5 credits
and/or	
2 Hours Practical(Lab)/week	1 credit

B. Total credits:

Total credits for a student to be eligible to get Post Graduate degree in Engineering are 66.0 credits.

C. Structure of Undergraduate Engineering program:

S. No.	Category	Breakup of Credits
		(Total)
1.	Professional Core Courses	52
2.	Program Elective Courses relevant to the branch	09
3.	Seminars	04
4.	Research Methodology &IPR	01
	То	tal 66

D. Course code and definition:

Category of Course/	Definitions
Code	
L	Lecture
Р	Practical
С	Credit
CIE Continuous Internal Evaluation	
SEE	Semester End Examination
EI	Electrical and Instrumentation Engineering
RM	Research Methodology
PC	Professional Core Courses
PE Professional Elective courses	
PRPC/ PRPE/ PRS	Practical Professional Core/ Program Elective/Seminar
ADC	Mandatory Audit Courses

Teaching Schedule S. Category Course No. **Course Title** С Cont No Р L Т Hrs. **Professional Core Courses** PC **EI-PC-103 Biomedical Instrumentation** 1 3 3 0 0 3 2 PC **EI-PC-105** Advanced Electric Drive 3 3 0 3 0 PC 3 3 **EI-PC-107** Advance Process Control 3 0 0 3 Power Quality Monitoring and 4 PC **EI-PC-104** 3 3 0 0 3 Conditioning 5 PLC & DCS PC **EI-PC-106** 3 3 0 0 3 PC 3 3 **EI-PC-108** Embedded System Design 0 0 3 6 7 PC Advanced Power System 3 3 0 0 3 **EI-PC-110** PC **EI-PC-201** 3 3 0 3 8 Smart & Micro Sensor Design 0 Process Control Lab 0 3 9 PRPC EI-PRPC-101 1.5 0 3 PRPC EI-PRPC-103 Advanced Electric Drive Lab 1.5 0 0 3 3 10 11 PRPC Advanced Power System Lab. 1.5 0 0 3 3 EI-PRPC-102 PRPC EI-PRPC-104 Embedded Systems Lab 0 0 3 3 12 1.5 0 PRPC **Dissertation Phase-1** 0 12 12 13 EI-PRPC-203 06 PRPC 14 EI-PRPC-204 Dissertation 16 0 0 32 ___ Total 52 24 56 48 **Program Elective Courses** 1 PE **EI-PE-101 Program Elective-I** 3 3 0 0 3 Control system Design (i) (ii) Process Equipment Design (iii) Industrial Environmental Engineering (iv) Power Plant Engineering (v) Energy Auditing and methodology (vi) Energy Efficient Machines **EI-PE-102 Program Elective-II** 3 3 3 2 PE 0 0 Renewable & Non-(i) **Conventional Energy** (ii) Theory and Design of Neuro fuzzy controllers (iii) Digital Control System (iv) HVDC Transmission System

E. Details of Structure and distribution of credits to various courses:

			Total	04	0	0	08	08
	PRS	EI-PRS-201	Current Literature Report & Seminar	2	0	0	4	4
	PRS	EI-PRS-106	Seminar-II	1	0	0	2	2
1	PRS	EI-PRS-105	Seminar-I	1	0	0	2	2
			Seminars					
1	RM	EI-RM-109	Research Methodology & IPR	1	2	0	0	2
			Total	09	09	0	0	09
			(vii) Industrial Power Electronics					
			(vi) Intelligent Instrumentations					
			(v) System Theory					
			(iv) Electrical Vehicle Engineering					
			(iii) Reliability Engineering					
			(ii) Sensors and Transducers					
			(i) Digital Signal Processing					
3	PE	EI-PE-203	Program Elective-III	3	3	0	0	3
			(vii) Advance Power Electronics					
			(vi) Process Modeling and Control					
			(v) Energy Management					

Department of Instrumentation

M. Tech Electrical and Instrumentation Engineering

Course No.	Course Title	С	Teaching Schedule			Alloti	nent of	Exam Duration	
Course no.	course rice	C	L	Р	Cont. Hrs.	CIE	SEE	Total	in Hrs.
EI-PE-101	Program Elective-I	3	3	0	3	40	60	100	3 Hrs
EI-PC-103	Biomedical Instrumentation	3	3	0	3	40	60	100	3 Hrs
EI-PC-105	Advanced Electric Drive	3	3	0	3	40	60	100	3 Hrs
EI-PC-107	Advance Process Control	3	3	0	3	40	60	100	3 Hrs
EI-RM-109	Research Methodology & IPR	2	2	0	2	20	30	50	3 Hrs
EI-PRPC-101	Process Control Lab	1.5	0	3	3	20	30	50	3 Hrs
EI-PRPC-103	Advanced Electric Drive Lab.	1.5	0	3	3	20	30	50	3 Hrs
EI-PRS-105 Seminar-I		1	0	2	2	50		50	
	Total	18	14	8	22	270	330	600	

SCHEME OF EXAMINATIONS

M. Tech. 1st YEAR (SEMESTER-I) (from 2020 – 2021 in phased manner)

M. Tech. 1stYEAR (SEMESTER-II)

Course No.	Course Title	С	Teaching Schedule			Allot	ment of	Exam Duration	
Course No.	Course Title	U	L	Р	Cont. Hrs.	CIE	SEE	Total	in Hrs.
EI-PE-102	Program Elective-II	3	3	0	3	40	60	100	3 Hrs
EI-PC-104	Power Quality Monitoring and Conditioning	3	3	0	3	40	60	100	3 Hrs
EI-PC-106	PLC & DCS	3	3	0	3	40	60	100	3 Hrs
EI-PC-108	Embedded System Design	3	3	0	3	40	60	100	3 Hrs
EI-PC-110	Advanced Power System	3	3	0	3	40	60	100	3 Hrs
EI-PRPC-102	Advanced Power System Lab.	1.5	0	3	3	20	30	50	3 Hrs
EI-PRPC-104	Embedded Systems Lab	1.5	0	3	3	20	30	50	3 Hrs
EI-PRS-106	Seminar-II	1	0	2	2	50		50	
	Total	19	15	8	23	290	360	650	

	Program Elective-1		Program Elective-II
(i)	Control system Design	(i)	Renewable & Non-Conventional Energy
(ii)	Process Equipment Design	(ii)	Theory and Design of Neuro fuzzy controllers
(iii)	Industrial Environmental Engineering	(iii)	Digital Control System

(iv) Power Plant Engineering	(iv) HVDC Transmission System
(v) Energy Auditing and methodology	(v) Energy Management
(vi) Energy Efficient Machines	(vi) Process Modeling and Control

NOTE:

- i) A program may have one or two laboratory courses spread over 3 periods.
- ii) Sufficient number of electives to be offered subject to the condition that each elective should have at least five students.

Course No.				Teach Sche	0	Allot	ment of	marks	Exam Duration
Course no.	Course Title	C	L	Р	Cont. Hrs.	CIE	SEE	Total	in Hrs.
EI-PC-201	Smart & Micro Sensor Design	3	3	0	3	40	60	100	3 Hrs
EI-PE-203	Program Elective-III	3	3	0	3	40	60	100	3 Hrs
EI-PRS-201	Current Literature Report & Seminar	2	0	4	4	50		50	
EI-PRPC-203	Dissertation Phase-1	6	0	12	12	50		50	
	Total	14	6	16	22	180	120	300	

M. Tech. 2nd YEAR (SEMESTER-III)

Progra	Program Elective-III					
(i)	Digital Signal Processing					
(ii)	Sensors and Transducers					
(iii)	Reliability Engineering					
(iv)	Electrical Vehicle Engineering					
(v)	System Theory					
(vi)	Intelligent Instrumentations					
(vii)	Industrial Power Electronics					

- **NOTE:** The Preparatory Work for Dissertation Phase-I shall be evaluated by a committee comprising the following {on the basis of one mid semester seminar and one end semester seminar presented and one end semester report submitted by the candidate.
 - 1. Chairperson or faculty nominee proposed by Chairperson
 - 2. Dissertation Supervisor (and co-supervisor).
 - 3. Two senior most faculty members of the department

M. Tech. 2nd YEAR (SEMESTER-IV)

Course No.	Course Title	С	Teaching Schedule	Allotment of marks			Exam
			Р	CIE	SEE	Total	Duration in Hrs.
EI-PRPC-204	Dissertation	16	32	100	200	300	Final Viva Voce Exam

NOTE: The Dissertation shall be evaluated by a committee comprising the following through presentation cum viva-voce examination.

- 1. Chairperson or faculty nominee proposed by Chairperson.
- 2. Dissertation Supervisor (and co-supervisor).
- 3. One external expert appointed by the department.

Course Code:										
EI-PE-101	CONTROL SYSTEM DI	ESIGN (i)								
Year and	1 st Yr.	Contact hours per w	ours per week: (3Hrs)							
Semester	1 st Semester	Exam: (3 Hrs)	× /							
Pre-requisite	Control System	Evalu	Evaluation							
of course	Control System	CIE: 40		SE	E: 60)				
Course Object										
	n Specifications of control system.									
	oncept of multi-criteria optimization, norm		nals, r	orm	s of S	SISO				
	O LTI systems, state space methods for co									
	d loop convex design specifications, conve									
4. Study the o	concept of Reliability & closed loop stal	oility, regulation specif	icatio	ons,	diffe	rential				
	pecifications, robustness specifications.									
	sis and design of Compensators & contr	oller using various tech	nique	S						
	oot locus & Bode plots									
	ate variable analysis, controllability and ob	servability, state feedba	ack fo	r SIS	50					
	MIMO systems and their design									
	to design of non-linear system.									
	nes: On completion of the course, student									
	to understand the concept of multi-criter , norms of SISO LTI & MIMO LTI system									
norms	-			1		2				
CO2 Ability duality	bility to understand the concept of closed loop convex design specifications, convexity &									
	to understand the concept of Reliab cations, differential sensitivity specificatio	of Reliability & closed loop stability, regulation pecifications, robustness specifications.								
CO4 Ability	to analysis and design of Compensators&	controllers by different	t tech	nique	es.					
CO5 Ability their d	v to understand concept of state feedback esign.	for SISO system and	MIN	[O s <u>y</u>	ysten	is and				

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	INTRODUCTION: Control System Architecture, Design Specifications Functional in-equally specifications, multi-criteria optimization, norms of scalar & vector signals, norms of SISO LTI & MIMO LTI systems, state space methods for computing norms, design specifications as sets, affine & convex sets and functions, closed loop convex design specifications, convexity & duality	8	CO1, CO2
2	DESIGN SPECIFICATIONS: Reliability & closed loop stability, I/O specifications, regulation specifications, actuator effort, combined effect of disturbances & commands, differential sensitivity specifications, robustness specifications via gain bounds.	9	CO1, CO3
3	Compensators & CONTROLLERS DESIGN: Selection criteria and design of lead, lag, lead-lag and cascade type of compensators using Root locus & Bode	10	CO3 CO4 CO5

	plots, Rate feedback. Controllers – configuration and fundamentals of design, cascade and feedback compensation using various controllers.		
4	STATE VARIABLE FEED BACK DESIGN: Introduction to state variable analysis, controllability and observability, state feedback for SISO system, state feedback design of SISO system using control canonical form. State variable feedback _ steady state error analysis, Use of steady state error coefficients, design of state observers, Introduction to design of MIMO systems. Introduction to design of non-linear system and software.	10	CO4 CO5

TEXT BOOKS/REFERENCE BOOKS:

- 1. Modern Control Systems A manual of design methods by John A. Borrie (Prentice Hall International)
- 2. Control Systems Principle & Design by M. Gopal (TMH publication)
- 3. Introduction to feed back control system by Pericles E. Manuel & Edward Leff (International Student Edition)
- 4. Linear controller designs limits of performance by Stephen P. Boyd & Craig H. Barratt (Prentice Hall International).
- 5. Linear control analysis & design By John J. D'azzo & C. H. Houpis (McGraw Hill)

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course	Code:	Course Name: Program Elective I,			L	Τ	P		С
EI-PE-1	01	Process Equipment Design (ii)				-	-		3
Year an	d	1 st Yr.		Contact hour	s pe	er w	eek	: (3 Hrs))
Semeste	er	1 st Semester		Exam: (3 Hrs	.)				
Pre-req	uisite	Process Control Systems			Eva	luat	tion		
of cours	e	Process Control Systems	CIE: 40			SEE: 60			0
Course	Objectiv	es:							
1. It ai	ms to equ	uip the students with Equipment desi	ign						
2. To p	provide a	dequate knowledge about various ty	pes of e	equipment					
Course Outcomes: On completion of the course, student would be able to:									
CO1									

- **CO2** Control and optimize process equipments
- **CO3** Characterize storage equipments
- **CO4** Design heat exchange equipment

Modu le No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Valve Noise calculation and reduction: Sources of valve noise, noise control, path treatment, valve treatment, valve noise calculation. Design & construction of Globe valve: valve trends, trim design, trim flow characteristics, flow range ability, standard trim configuration, valve plug stems, Body form of single and double seated globe valve, Bonnet design of global valve. Construction and flow characteristics of butterfly valve.	8	CO1
2	Boiler control and optimization, compressor control and optimization, cooling tower control and optimization, distillation controls, evaporator controls Basics of Process Equipment Design: General design procedure, Computer design, Fabrication techniques, Equipment classification, Power of rotational motion, Drives for process equipment.	8	CO1, CO2
3	Pressure Vessels: Pressure vessel code, Operating conditions – at low temperatures, at elevated temperatures, Design considerations and stresses, fabrication, inspection and tests, unfired vessel codes, High pressure vessels: Constructional features, materials, solid walled, multi shell, vessel closures, Jacket for vessels, Examples. Storage Vessels: Storage of fluids, Non-volatile liquids, volatile liquids and gases, Design of tanks, rectangular tanks, nozzles and mounting, Large capacity storage tanks, Examples. Reaction Vessels: Materials for construction, agitation, classification of reaction vessels, heating systems.	8	CO1, CO3
4	Heat Exchangers: Types of heat exchangers, design of shell and tube heat exchangers. Evaporators and Crystallisers: Types of evaporators, entrainment separators, materials and design considerations, crystallisers, Examples. Process Hazards and Safety Measures in Equipment design. Process flow diagrams.	8	CO1 CO4

Text Books:

- 1. Instrument Computer Aided Process control by S.K. Singh PHI
- 2. Computer Based Industrial Control by Krishna Kant PHI
- 3. Instrument Engineers Handbook- Process Control by Bela G. Liiptak

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

1. Section – A is compulsory and attempt/answer all the four questions carrying 12 marks in total.

Attempt/answer two questions each out of the Section – B and Section – C. All questions will 2. carry 12 marks. _____

	Course Code: Course Name: Program Elective-I				Τ	P	С
EI-PE-1	-101 INDUSTRIAL ENVIRONMENTAL ENGINEERING (iii)			3	-	-	3
Year an	d	1 st Yr.	Contact hours per w	veek	: (31	Hrs)	
Semeste	r	1 st Semester	Exam: (3 Hrs)				
Pre-requ	uisite of	NT:1	Evalua	tion	L		
course		Nil	CIE: 40		SE	E: 60)
Course (Objectives:						
1. To in	troduce the	concept of air, water and noise pollution	monitoring				
2. To st	udy the con	cepts of emission type pollution controls	_				
3. To st	udy the vari	ous air pollution monitoring instruments	and methods for proce	ss in	dus	tries.	
4. To in	troduce the	pollution control and monitoring method	s for pulp and paper in	dust	ries.	•	
Course	Outcomes:	On completion of the course, student wou	uld be able to:				
CO1	Identify so	urces of air ,noise and water pollution and	l their effects				
CO2	Sample and	analyze air pollutants					
CO3							
CO4	Sample and analyze water borne pollutants						
CO5	Understand	I the water quality monitoring instruments	S				

Modul e No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	INTRODUCTION: Source and classification of Air Pollution, Effect of Air Pollution in Human Health, Effect of Air Pollution on Animals, Effect of Air Pollution on Plants, Economics Effects of Air Pollution, Control of Air Pollution by Equipment, Control of Air Pollution by Process Changes, Air Pollution from Major Industrial Operations, Air Pollution legislation and regulation, Environment Protection Act, Air Pollution in Indian cities, Water & Noise Pollution. & its control, Green House effects & its control.	8	CO1
2	POLLUTION CONTROL FOR SPECIFIC POLLUTANTS: Industrial Pollution Emission and Indian Standards, Analysis of Pollutants, Control of BOD, Removal of Chromium, Removal of Mercury, Removal of Ammonia / urea, Treatment of Phenolic Effects, Removal of particular matter, Removal of Sulphur Dioxide, Removal of Oxides of Nitrogen, Removal of Vapour from Efficient case, Control of CO2 and CO.	8	CO1, CO2
3	POLLUTION CONTROL IN SELECTED PROCESS INDUSTRIES: General considerations of Pollution Control in Chemical Industries, Pollution Control aspects of fertilizer industries, Pollution Control in Petroleum & Petrochemical Units.	8	CO2, CO3
4	Pollution Control in Pulp & Paper Industries, Tanning Industries, Sugar Industries, Alcohol Industries, Electroplating & Metal Finishing Industries, Radioactive Wastes, Pollution Control methods used in Power Plants.	8	CO1, CO4, CO5

REFERENCE BOOKS:

- 1. Air Pollution by H V Rao, McGraw Hill
- 2. Pollution Control in Process Industries by S P Mahayar, McGraw Hill
- 3. Encyclopedia of Environmental Pollution & Control, Vol. 1 & 2, Enviro Media, Karad, India.
- 4. Environmental Water Pollution & its control by G R Chhatwal, M.C. Mehra& Others, Anmol Publication, Delhi.
- 5. Environmental Air Pollution & its control by G.R. Chhatwal& Others, Anmol Publication, Delhi.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code	Course Code: Course Name: Program Elective-I			Т	Р	С
EI-PE-101	POWER PLANT EN	LANT ENGINEERING (iv) 3 -				
Year and	1 st Yr.	Contact hours pe	er week	: (31	Hrs)	
Semester	1 st Semester	Exam: (3 Hrs)				
Pre-requisite	Basic Science	Eva	luation			
of course	Dasic Science	CIE: 40		SE	E: 60)
Course Obje	ctives:					
1. To study	the concept of steam power plant.					
2. To study	the concept of Hydro-electric power p	lants and Nuclear power p	lants			
3. To study	the concept of gas turbine and diesel p	oower plants.				
4. To study	the combined operation of different po	ower plants.				
Course Outc	omes: On completion of the course, st	udent would be able to:				
CO1	To understand the operation of steam	power plant.				
CO2	To understand the operation of Hydro	-electric power plants and	Nuclear	r po	wer j	olants
CO3	To understand the operation of gas turbine and diesel power plants.					
CO4	To understand the combined operation of different power plants.					

Modul	COURSE SYLLABUS	Hrs	COa
e No	CONTENTS OF MODULE	nrs	COS

1	Steam generators, condensers and turbines: Classification of steam generators, selection, operation of locomotive, Babcock Wilcox, Cochran boilers, Types of condensers, effect of air in condensers, Dalton's law of partial pressure, cooling water calculations, steam nozzles, types of steam turbine efficiencies, compounding, governing and control. Steam power plant: Classification, Operation, Description of Rankin cycle, Regenerative cycle, Reheat-Regenerative Cycle, Binary Vapour Cycle, Selection of plant site and its layout, coal handling system, combustion system, Fluidised bed combustion, Ash handling, Feed pumps, Heat exchangers, Economizers, Super heaters, Reheaters, Air preheaters, Feed water heaters, Evaporators.	8	CO1
2	Hydro-electric power plants: Hydrological Cycle, Hydrograph, Flow duration curve, Selection of site, Essential features, Classification of hydro plants, Selection of water turbines for hydro power plant, Automatic and remote control of hydro-station, layout of hydro power plant. Nuclear power plants: Nuclear physics, Binding energy, Radioactive decay. Fertile material, Mass defect, Nuclear reactions type and application, Generation of nuclear energy by fission, Nuclear reactors. Site selections, safety measures, plant layout, Fusion reaction, Future of nuclear power.	8	CO2
3	Gas turbine: Elements of gas turbines, Open and closed cycles for gas turbines, Performance terms, Thermal refinement to gas turbines cycle, Plant layout, applications, gas turbines Cycle calculations. Diesel power plants: Classifications of IC Engines and their performance, Four stroke and two stroke diesel engines, combustion phenomenon; Essential components, Celane number, knocking, super charging, operation and layout of diesel power plant.	8	CO3
4	Combined operation of different power plants: Advantages of combined operation of plants, load division between power stations, coordination of different types of Power Plants. Pollution control: Pollution from thermal & nuclear plants, Particulate emission and control, electrostatic precipitator, solid waste disposal.	8	CO4

TEXT BOOKS/REFERENCE BOOKS:

- 1. Chakrabarti A., Soni, M.L. Gupta P.V. and Bhatanagar U.S., A Textbook on Power System Engineering, Dhanpat Rai & Co.
- 2. EI-Wakit M.M., Power Plant Engineering, McGraw Hill, USA
- 3. Rajput R.K., Power Plant Engineering, Luxmi Publications
- 4. Sharma P.C., Power Plant Engineering, Kataria& Sons
- 5. Skrotzki B.G.A. and Vapot W.A., Power Station Engineering and Economy, Tata McGraw-Hill

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code:	Course Name: Program Elective-I		L T P C			
EI-PE-101	ENERGY AUDITING AND MET	HODOLOGY (v)	3 3			
Year and	1 st Yr.	Contact hours per v	week: (3Hrs)			
Semester	1 st Semester	Exam: (3 Hrs)				
Pre-requisite	Electrical Measurements and	Evalu	ation			
of course	Instruments	CIE: 40	SEE: 60			
Course Object	ives:					
1. To introduc	e the concept of Energy Management and	Audit.				
2. To study the	e concepts of financial management.					
3. To study an	d analysis various type of appliance in elec	trical system.				
4. To study the	e conceptual theory and working of refriger	ration system.				
Course Outcon	nes: On completion of the course, student	would be able to:				
CO1 To un	derstand the concept of Energy Manageme	nt and Audit.				
CO2 To un	O2 To understand the concepts of financial management.					
	To familiarize with various type of appliance in electrical system.					
CO4 To un	derstand conceptual theory and working of	refrigeration system.				

Modul e No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Energy Scenario: Energy needs of growing economy, Long term energy scenario, Energy pricing, Energy sector reforms, Energy and environment: Air pollution, Climate change, Energy security, Energy conservation and its importance, Energy strategy for the future, Energy conservation Act- 2001 and its features. Energy Management and Audit: Definition, Energy audit-need, Types of energy audit, Energy management (audit) approach-understanding energy costs, Bench marking, Energy performance, Matching energy use to requirement, Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution, Energy audit instruments.	8	CO1
2	Material and Energy balance: Facility as an energy system, Methods for preparing process flow, Material and energy balance diagrams. Financial Management: Investment-need, Appraisal and criteria, Financial analysis techniques- Simple payback period, Return on investment, Net present value, Internal rate of return, Cash flows, Risk and sensitivity analysis, Financing options, Energy performance contracts and role of energy savings companies (ESCOs).	8	CO2

3	Electrical system: Electricity tariff, Load management and maximum demand control, Power factor improvement, Distribution and transformer losses. Losses in induction motors, Motor efficiency, Factors affecting motor performance, Rewinding and motor replacement issues, energy efficient motors. Light source, Choice of lighting, Luminance requirements, and Energy conservation avenues Compressed air system: Types of air compressors, Compressor efficiency, efficient compressor operation, Compressed air system components, Capacity assessment, Leakage test Factors affecting the performance and efficiency.	8	CO3
4	High Voltage Alternating Current and Refrigeration System: Vapor compression refrigeration cycle, Refrigerants, Coefficient of performance, Capacity, Factors affecting refrigeration and air conditioning system performance and savings opportunities, Vapor absorption refrigeration system: Working principle, Types and comparison with vapor compression system, Saving potential, Fans, Blowers and pumps- Types, Performance evaluation, Efficient system operation, Flow control strategies and energy conservation opportunities.	8	CO4

TEXT BOOKS/REFERENCE BOOKS:

- 1. Abbi, Y.P. and Jain, S., Handbook on Energy Audit and Environment Management, Teri Bookstore
- 2. Diwan, P., Energy Conservation, Pentagon Press (2008).
- 3. Younger, W., Handbook of Energy Audits, CRC Press (2008)
- 4. Sawhney and Maheshwari, Solar Energy and Energy Conservation, Prentice Hall (India)
- 5. Rao S. and B. B. Parulkar, Energy Technology, Khanna Publishers
- 6. Sukhatme S. P., Solar Energy, Tata McGraw Hill
- 7. David S., Hand Book of Industrial Energy Conservation, Van Nostrand Reinhold Publishing Company.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Program Name: M. Tech.-Electrical and Instrumentation Engineering

Course Code:	Course Name: Program Elective-I		L	Τ	P	С
EI-PE-101	ENERGY EFFICIENT MAC	HENES (vi)	3	-	-	3
Year and	1 st Yr.	Contact hours per w	veek	: (31	Hrs)	
Semester	1 st Semester	Exam: (3 Hrs)				
Pre-requisite of	Electrical Machines	Evalua	tion			
course	Electrical Wachines	CIE: 40		SE	E: 6)
Course Objectiv	es:					
1. To introduce	e the concept of energy management and e	energy audit system.				
2. To introduce	e the concept and Economics of Power fac	tor improvements.				
3. To study the	e concept of Energy efficient machines Energy	ergy efficient and Econ	iomi	cs o	f Ene	ergy
power gener	ration.					
4. To study the	e concept of economics of electrical energy	v distribution and electr	rical	driv	ves.	
Course Outcome	es: On completion of the course, student w	ould be able to:				
CO1 To Fami	iliarize with the concept of the concept of e	energy management and	d ene	ergy	audi	lt
system						
CO2 To unde	rstand the concept of Energy efficient mac	chines and Economics of	of Po	owei	r fact	or
improve	ements.					
CO3 To Fami	iliarize with the concept of Energy efficient	t machines and Econor	mics	of I	Energ	gy
power g	eneration.					
CO4 To unde	rstand the concept of economics of electric	cal energy distribution	and	elec	trica	1
drives.						

Modu le No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	INTRODUCTION: Need for energy efficient machines, energy cost and two part tariff, energy conservation in industries and farms -a necessity, introduction to energy management and energy audit system. Review of induction motor characteristics.	7	CO1
2	POWER FACTOR: The power factor in sinusoidal systems, power factor improvement, power factor with nonlinear loads, Harmonics and the power factor.	7	CO2
3	ENERGY EFFICIENT MOTORS: Standard motor efficiency, why more efficient motors? An energy efficient motor, efficiency determination methods, Direct Measurement method, Loss segregation method, Comparison, motor efficiency labelling, energy efficient motor standards. Motor life cycle.	8	CO3
4	INDUCTION MOTORS AND ADJUSTABLE DRIVE SYSTEMS: Energy Conservation, adjustable speed systems, Application of adjustable speed systems to fans, pumps and constant torque loads.	8	CO4

TEXT /REFERENCE BOOKS:

- 1. Andreas John C., Energy efficient electric motors, Marcel Dekker Inc. 1992.
- 2. Thuman Albert, Introduction to Efficient Electric System Design, The Fairmount Press Prentice Hall.
- 3. Tripathi S.C., Electric Energy Utilization and Conservation, Tata McGraw-Hill 1991.

4. Belove Charles, Handbook of Modem Electronics and Electrical Engineering, John Wiley & Sons.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code: EI-PC-103	Course Name: BIO-MEDICAL INST	Course Name: BIO-MEDICAL INSTRUMENTATION		Т -	P -	C 3
Year and	1 st Yr.	Contact hours per w	veek	: (31	Hrs)	
Semester	1 st Semester	Exam: (3 Hrs)				
Pre-requisite	Dhysics Desis Electrical Engineering	Evalua	tion			
of course	Physics, Basic Electrical Engineering.	CIE: 40		SE	E: 60)
Course Object	ives:	·				
1. To introduce	e the concept of Bio Instrumentation like M	Iedical Bio Potential El	lectro	odes	and	
Biomedical	Recorders.					
2. To study car	diac and Respiratory measurements system	1				
3. To study Ins	trumentation for Measuring Nervous Func	tion.				
4. To study Re	cent Trends in Biomedical Engineering.					
Course Outcon	nes: On completion of the course, student v	would be able to:				
CO1 To	Familiarize with Bio Medical Instrumenta	tion.				
СО2 То	understand cardiac and Respiratory measu	irements system.				
СОЗ То	To understand Instrumentation for Measuring Nervous Function.					
CO4 To	understand the Recent Biomedical devices	s instrumentation.				

Modu le No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Characteristics of Transducers and Electrodes for Biological Measurement: Introduction to human body; block diagram, classification, characteristics, various physiological events and suitable transducer for their recording, bioelectric potentials	5	CO1
2	Cardiac & System: Cardiac musculature, Electro cardiography, ECG recording, Phonocardiography, holter recoding ECG lead system, Heart rate meter, vector cardiography, Pacemakers, Defibrillators. Blood Pressure and Blood Flow Measurement: Invasive and non-invasive methods of Blood	7	CO1, CO2

	pressure, Characteristics of blood flow and heart sound, Cardiac output measurement, Plethysmography. Respiratatory System: Mechanics of breathing, Parameters of respiration, Respiratory system measurements, Respiratory therapy instruments		
3	Instrumentation for Measuring Nervous Function: EEG signal, frequency band classification, Lead systems, EEG recording, Clinical applications of EEG signal, X-ray CT scan, MRI, PET. Muscoskeletal systems: EMG, Clinical applications, and Muscles stimulator. Clinical Laboratory Instrumentation: Test on blood cell, Blood cell counter, Blood glucose monitors, auto analyzer, Pulse-oximeter.	7	CO3
4	Recent Trends in Biomedical Engg.: Patient care and monitoring, Non- invasive diagnostic instrumentation, Biotelemetry, Telemedicine, Prosthetic devices, Lie detector test, Application of lasers and ultrasonic in biomedical field. Troubleshooting & Electrical Safety of Biomedical Instruments: Physiological effect of current and safety measurement.	7	CO4

TEXT/REFERENCE BOOKS:

- 1. Medical instrumentation application & design, John G Webster, John wiley, 1998.
- 2. Review of medical physiology, W.F. Ganong, Medical publisher, 1977
- 3. Biomedical instrument and measurement, Cromwell, PHI, 2000
- 4. Handbook of biomedical instrument, R S Khandpur, TMH

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code: EI-PC-105	Course Name: ADVACED ELECTRIC DRIVE			Т -	P -	C 3	
Year and	1 st Yr.Contact hours per we			Hrs))		
Semester	1 st Semester Exam: (3 Hrs)						
Pre-requisite	site Electrical Machines, Power Evaluation						
of course	of course Electronics CIE: 40		SEE: 60				
Course Objectives:							
1. To introduce the concept of types of Electric Drives.							

2. To in	troduce the DC Motor Drives.					
	troduce the AC Motor Drives.					
4. To st	udy the Motor power rating.					
	nplement Traction Drives.					
	Dutcomes: On completion of the course, student would be able to:					
CO1	To Familiarize with Dynamics and Control of Electric Drives.					
CO2	To understand efficient speed control techniques in DC Motor Drives.					
CO3	Fo understand efficient speed control techniques in AC Motor Drives.					
CO4	To understand the significance and selection of power rating.					
CO5	To familiarization of Load and choice of traction for suitable load.					
Module	COURSE SYLLABUS		00			
No	CONTENTS OF MODULE	Hrs	COs			
1	Electric Drive: Concept, classification, parts and advantages of electrical dives. Types of Loads, Components of load toques, Fundamental torque equations, Equivalent value of drive parameters for loads with rotational and translational motion. Determination of moment of inertia, Steady state stability, Transient stability. Multiquadrant operation of drives. Load equalization.	8	CO1			
2	Motor power rating: Thermal model of motor for heating and cooling, classes of motor duty, determination ofmotor rating for continuous, short time and intermittent duty, equivalent current, torque and power methods of determination of rating for fluctuating and intermittent loads. Effect of load inertia & environmental factors. Starting of Electric Drives: Effect of starting on Power supply, motor and load. Methods of stating of electric motors. Acceleration time Energy relation during stating, methods to reduce the Energy loss during starting. Braking of Electric Drives: Types of braking, braking of DC motor, Induction motor and Synchronous motor, Energy loss during braking.	8	CO1, CO2,			
3	DC motor drives: Modeling of DC motors, State space modeling, block diagram & Transfer function, Single phase, three phases fully controlled and half controlled DC drives. Dual converter control of DC drives. Power factor, supply harmonics and ripple in motor current chopper controlled DC motor drives. Induction motor drives: Stator voltage variation by three phase controllers, Speed control using chopper resistance in the rotor circuit, slip power recovery scheme. Pulse width modulated inverter fed and current source inverter fed induction motor drive. Volts/Hertz Control, Vector or Field oriented control.	8	CO2, CO3			
4	Synchronous motor drives: Variable frequency control, Self-Control, Voltage source inverter fed synchronous motor drive, Vector control. Introduction to Solar and Battery Powered Drive, Stepper motor, Switched Reluctance motor drive. Industrial application: Drive consideration for Textile mills, Steel rolling mills, Cement mills, Paper mills, Machine tools. Cranes & hoist drives.	8	CO4, CO5			

TEXT/REFERENCE BOOKS:

1. Fundamental of Electrical Drives, G.K. Dubey, New Age International Publication.

- 2. Electric Drives, Vedam Subrahmanyam, TMH
- 3. A first course on Electrical Drives, S.K. Pillai, , New Age International Publication.
- 4. Electric motor drives, R. Krishnan, PHI
- 5. Modern Power Electronics & Ac drives, B.K. Bose, Pearson Education.
- 6. Electric Motor & Drives. Austin Hughes, Newnes.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Coo EI-PC-107	L'ourse Name, ADVANCE PROCESS CONTROL			L 3	T -	P -	C 3		
Year and		1 st Yr.	Contact hours per w	per week: (3Hrs)					
Semester		1 st Semester	Exam: (3 Hrs)						
Pre-requisi	te of	Control System	Evalu	ation					
course		Control System	CIE: 40		SE	E: 60	0		
Course Ob	jective	s:							
1. Study th	e techr	niques used for PID controller tuning							
2. Develop	ment	and synthesis the feedback controllers for	or specified close loop	respor	ise				
3. Concept	and St	tudy of FC and FO type control valve an	nd their applications with	th exa	mple	es, G	ain of		
valve an	d conc	ept of control valve sizing for liquid, Ga	as, vapour and steam. (S	Specia	ıl ref	feren	ce to		
		Fisher Equation) and study control va							
4. Study a	nd dev	elopment of advance control technique	s for process control ar	nd aut	oma	tion			
5. Develop	ment o	of control techniques for safe design of	of process control and a	utoma	tion				
6. Study a	nd dev	elopment of Predictive control, Statistic	cal control, Adaptive a	nd Inf	eren	tial			
control s	system	-	_						
Course Out	tcomes	: On completion of the course, student	would be able to:						
CO1 Ab	le to A	nalyze the effect of P, PI, PD and PID of	controllers on a control	syster	n an	d de	esign		
sui	table c	ontroller for a typical process		-			-		
CO2 Ab	le to u	nderstand FC and FO type control valve	and Able to learn and	analyz	ze th	e va	rious		
pri	nciples	& concepts involved in valve sizing fo	r liquid, Gas, vapor and	d ste	am a	and c	ontrol		
val	ve cav	itation and flashing phenomenon	-						
CO3 Ab	ility to	understand analysis and development	of advance control tec	hniqu	es f	or pr	ocess		
сог	ntrol ar	nd automation		-		-			

CO4 Ability to understand analysis and development of Predictive control, Statistical control, Adaptive and Inferential control system techniques for process control and automation

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	PID controller tuning procedures: Close loop oscillation based tuning, Ziegler-Nichol close-loop method. Tuning rules for first order + dead time processes: step testing quarter decay ratio response, Ziegler-Nichol open loop method, Cohen-Coon parameters. Synthesis of feedback controllers: Development of the controller synthesis formula, specifications of close loop response, direct synthesis for minimum and non-minimum phase processes, controller modes and tuning parameters derivative mode for dead time process. Dead Time Compensation (Algorithms for Smith Predictor), & effect of process modeling error.	10	CO1
2	Control Valve Design: Control valve flow characteristics, Valve & process characteristics, range availability of control valve, control valve sizing for gas, liquid, vapors and steam, Control valve cavitation and flashing, flow control cavitation index, vibration curve cavitation index, calculation of flash fraction, Control valve gain, sequencing of control valve . Valve application, selection, valve capacity testing.	8	CO2
3	Additional control techniques: Cascade control, Selective control & Split range control, Cascade control for various processes, dynamic characteristics of Cascade control system and its tuning. Override and Auctioneering control system for various processes, Feedforward control system, Feedforward control of various processes. Design of Feedforward controllers, Feedforward –Feedback control & their relative advantages & disadvantages.	10	CO3
4	Ratio control system, Predictive control, Statistical control Adaptive and Inferential control system: Programmed Adaptive control, gain scheduling Adaptive control, Self tuning regulator (STR), MRAC, Multivariable Process Control.	9	CO4

TEXT BOOKS/REFERENCE BOOKS:

- 1. Principles and Practice of Automatic Process Control by Carlos A Smith, John wiley& sons
- 2. Computer Aided Process control by S.K. Singh PHI
- 3. Process Control Modeling, Design, and Simulation by B.WayaneBequette PHI
- 4. Chemical Process control by Stephanopolous PHI

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Program Name: M. Tech.-Electrical and Instrumentation Engineering

Course C EI-RM-1	Course Name: Research Methodology and IPR							
Year and	1	1 st Yr.	Contact hours per w	t hours per week: (2Hrs)				
Semester	•	1 st Semester	Exam: (3 Hrs)	xam: (3 Hrs)				
Pre-requ	isite	Nil	Evaluation					
of course		111	CIE: 20	SEE:	30			
Course C	0							
	2	deas of research methods.						
		t statistical analysis and sampling.						
		t regression and correlation analysis.						
	~	t edition, tabulation and testing of hypoth	eses.					
Course C								
CO1		nulate a route map for a particular probler						
CO2		test and validate the data through statistic	4					
CO3	To implement the suitable methods of sampling for individual problems							
CO4	To compare and evaluate the results with others							
CO5	To present the results with more informative details COURSE SYLLABUS							
Module		Hrs	COs					
No		1115	005					
		and objective of the research: Methods of			CO1			
1		tive and experimental. Alternative approa			CO1,			
		h problem and problem formulation. Form	• 1		CO5			
		lity, preparation and presentation of properties of the properties		on c				
		al, Poisson, exponential and normal	1 •					
2		tions. Sampling: Primary and secondary	·		CO2			
2		ion, methods of sampling, stratified			CO3			
		atic sampling.	random sampning,					
		sion and correlation analysis: Tests of sign	ificance based on norm	nal				
	0	thi square distributions, analysis of vari		of	CO2			
3		of experiments, completely randomize	1	X	CO3			
	designs	1 · · · ·		~~n	CO4			
	Ŭ	, tabulation, & testing of hypotheses,	Interpolation of resu	ılts.				
4		ation, styles for figures, tables, text, c		and	CO4			
4		raphy. Use of software for statistical analy			CO5			
	-	ab, Report writing, preparation of thesis.	,					

TEXT BOOKS/REFERENCE BOOKS:

- 1. Research Methodology by C.R Kothari, Vishwa Prakashan
- 2. Research Methodology by P.G. Tripathi
- 3. Research Methodology in Social Science by Sadhu Singh, Himalya Publishers
- 4. Business Research Methods, Donald cooper, Tata McGraw Hill
- 5. Statistical analysis for Engineers & Scientists, J. W. Barnes, McGraw Hill

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code EI-PRPC-10	Course Code:Course Name: Process Control LabEI-PRPC-101Course Name: Process Control Lab				P 3	C 1.5		
Year and	1 st Year	Contact hours per w	veek: (3Hrs)					
Semester	1 st Semester	Exam: (3hrs.)						
Pre-requisite	Pre-requisite Evaluation							
of course	Control Engineering Lab.	CIE: 20		SE	E: 3	;0		
Course Obje	ectives:							
1. To Familia	arization of PLC Ladder Programming Instruc	ctions Set						
2. To compil	2. To compile and execute programs in Ladder Programming							
3. To study t	he PC and PLC based control systems							
4. To study a	and write PLC program for the multiple proce	ess control systems						
5. To study a	and write PLC program for different strategies	of control system such	as f	eedt	ack,	feed		
forward, c	ascade, ratio control etc.							
6. To write P	PLC programs to solve the different control	problems						
Course Outco	omes: On completion of the course, student w	ould be able to:						
CO1 .	Ability to understand PC and PLC based cont	rol system and their im	plem	enta	tion			
CO2 .	Ability to develop PLC Ladder Programming	g skill						
CO3	Analyse and implement PLC Ladder Program	ming for different type	of p	roce	ss co	ontrol		
	system.		_					
CO4	Ability to design and develop PLC program for	or different strategies of	f con	trol	syste	em		
	such as feedback, feed forward, cascade, ratio							

Expt. No	COURSE SYLLABUS CONTENTS OF MODULE	COs
1	Familiarization of PLC Ladder Programming Instructions Set	CO1,

2	To Study PC Based Traffic Light Control :- • Basic Traffic Light Sequence	C C
	PLC Based Traffic Light Control:	C
	PLC Connection Details	
2	Dual Traffic Light Sequence Traffic Counting	
3	• Traffic Counting	
	Green Time Alteration According to Traffic Flow	
	The Pedestrian Crossing	
	Complete System Control	_
4	To Study Process Control – Ratio, feedback control flow & level	_
	To Study Rotary Transfer Unit :-	
	Movement of Rotary Table	
	Initialization	
5	Station Counting	
	• Dispensing	
	A Production Line System	
	• Follow a Set Routine	
6	To Study Industrial Control Trainer	1
-	To Study Multi-process Control Trainer : Feedback, feedforward cascade and ration	
7	Control system for flow, temperature and level control	
	To study of Pressure Control Unit :-Proportional Control : Run a loop experiments	_
	using 'proportional only control' with the following sets of SP and PG values.	
8	Record the eventual 'steady state' rate values in the table below, once the initial	
U	oscillations have decayed.	
	Proportional and Integral Control	
	To design, Level Control PC :-	
	Proportional Control	
9	 Proportional and Integral Control 	
	To Study .Flow control PC & PLC :-	
	Proportional Control	
	Proportional and Integral Control	
10	• Saturation and Integral Windup	
10	Three Term or PID Control	
	 Zeigler / Nichols Tuning 	
	• Zeigiei / Iviciois Tuning	
	To Study The System Rig :-	
	Proportional Control	
	Proportional and Integral Control	
	 Saturation and Integral Windup 	
11	 Three Term or PID Control 	
11		
	• Ziegler / Nichols Tuning	
	Temperature Control	
	Batch Volume Control	
	Fluid Level Control	1

	Open Loop Control
	Bode Plots
	Flow Loop Model using Caldwell's Method
	Flo Loop Model using Sundaresan's Method
	Design of Controller for PCU Flow Loop
	PRT Signal Conditioning
	Flowmeter Signal Conditioning
	Process Control Experiment :-
	Proportional Control
	Proportional and Integral Control
	Saturation and Integral Windup
	Three Term or PID Control
12	Ziegler / Nichols Tuning
	Temperature Control
	Batch Volume Control
	Fluid Level Control
	Open Loop Control
	Bode Plots

EI-PE-102Renewable & Non-Conventional Energy (i)30-Year and Semester1st year 2nd SemesterContact hours per week: (3Hrs) Exam: (3hrs.)Pre-requisite of courseBasic Electrical Engineering and Engineering ScienceEvaluationCourse Objectives:It is energy scenario and the consequent growth of the power generation for renewable energy and non-conventional energy sources.SEE: 602. To study the basic engineering science of renewable and non-conventional energies sources.It is sources.3. To study the wind and solar energy conversion systems for electrical system.It is sources.4. To study the energy conversion techniques for nonconventional sources and applications.Course Outcomes: On completion of the course, student would be able to:Course Outcomes: On completion of the energy scenario and the consequent growth of the power generation for the energy conversion systems for electrical system.	P C						
Semester2nd SemesterExam: (3hrs.)Pre-requisite of courseBasic Electrical Engineering and Engineering ScienceEvaluationCourse Objectives:Image: Course Objectives:Image: Course Objectives:1. To familiarize the energy scenario and the consequent growth of the power generation for renewable energy and non-conventional energy sources.Image: Course Objective Science of renewable and non-conventional energies sources.2. To study the basic engineering science of renewable and non-conventional energies sources.Image: Course Outcomest on techniques for nonconventional sources and applications.4. To study the energy conversion techniques for nonconventional sources and applications.Image: Course Outcomest on the course, student would be able to:	LTPCConventional Energy (i)30-3						
Pre-requisite of course Basic Electrical Engineering and Engineering Science Evaluation Course Objectives: I. To familiarize the energy scenario and the consequent growth of the power generation for renewable energy and non-conventional energy sources. I. To study the basic engineering science of renewable and non-conventional energies sources. 3. To study the wind and solar energy conversion systems for electrical system. I. To study the energy conversion techniques for nonconventional sources and applications. Course Outcomes: On completion of the course, student would be able to:)						
course Engineering Science CIE: 40 SEE: 60 Course Objectives: I. To familiarize the energy scenario and the consequent growth of the power generation freenewable energy and non-conventional energy sources. 2. To study the basic engineering science of renewable and non-conventional energies sources. 3. To study the wind and solar energy conversion systems for electrical system. 4. To study the energy conversion techniques for nonconventional sources and applications. Course Outcomes: On completion of the course, student would be able to:							
 Course Objectives: 1. To familiarize the energy scenario and the consequent growth of the power generation for renewable energy and non-conventional energy sources. 2. To study the basic engineering science of renewable and non-conventional energies sources. 3. To study the wind and solar energy conversion systems for electrical system. 4. To study the energy conversion techniques for nonconventional sources and applications. Course Outcomes: On completion of the course, student would be able to: 							
 To familiarize the energy scenario and the consequent growth of the power generation for renewable energy and non-conventional energy sources. To study the basic engineering science of renewable and non-conventional energies sources. To study the wind and solar energy conversion systems for electrical system. To study the energy conversion techniques for nonconventional sources and applications. Course Outcomes: On completion of the course, student would be able to: 	: 60						
 renewable energy and non-conventional energy sources. 2. To study the basic engineering science of renewable and non-conventional energies sources. 3. To study the wind and solar energy conversion systems for electrical system. 4. To study the energy conversion techniques for nonconventional sources and applications. Course Outcomes: On completion of the course, student would be able to: 							
 To study the basic engineering science of renewable and non-conventional energies sources. To study the wind and solar energy conversion systems for electrical system. To study the energy conversion techniques for nonconventional sources and applications. Course Outcomes: On completion of the course, student would be able to: 	ation from						
 To study the wind and solar energy conversion systems for electrical system. To study the energy conversion techniques for nonconventional sources and applications. Course Outcomes: On completion of the course, student would be able to: 	renewable energy and non-conventional energy sources.						
4. To study the energy conversion techniques for nonconventional sources and applications. Course Outcomes: On completion of the course, student would be able to:	es.						
Course Outcomes: On completion of the course, student would be able to:							
CO1 Understand the energy scenario and the consequent growth of the power generation fr							
	ation from						
renewable energy and non-conventional energy sources.	renewable energy and non-conventional energy sources.						
CO2 Understand the basic engineering science of renewable and non-conventional energy	Understand the basic engineering science of renewable and non-conventional energies						
sources.	sources.						
CO3 Understand the wind and solar energy conversion systems for electrical power system.	stem.						
CO4 To understand the energy conversion techniques for nonconventional sources	urces and						
applications.							

Modu	COURSE SYLLABUS	Urc	COa	1
le No	CONTENTS OF MODULE	nrs	COs	

1	Introduction to Energy sources: Renewable and non-renewable energy sources, energy consumption as a measure of Nation's development; strategy for meeting the future energy requirements Global and National scenarios, Prospects of renewable energy sources. Impact of renewable energy generation on environment, Kyoto Protocol.	7	CO1
2	Solar Energy: Solar radiation - beam and diffuse radiation, solar constant, earth sun angles, attenuation and measurement of solar radiation, local solar time, derived solar angles, sunrise, sunset and day length. flat plate collectors, concentrating collectors, Solar air heaters-types, solar driers, storage of solar energy-thermal storage, solar pond, solar water heaters, solar distillation, solar still, solar cooker, solar heating & cooling of buildings, photo voltaic - solar cells, different types of PV Cells, Mono-poly Crystalline and amorphous Silicon solar cells. Design of PV array. Efficiency and cost of PV systems & its applications. PV hybrid systems.	8	CO2, CO3
3	Wind Energy: Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations.	7	CO2, CO3
4	 Energy from Biomass: Biomass conversion technologies, Biogas generation plants, classification, advantages and disadvantages, constructional details, site selection, digester design consideration, filling a digester for starting, maintaining biogas production, Fuel properties of bio gas, utilization of biogas. Hydrogen Energy and Fuel cell: Introduction, Hydrogen Production methods, Hydrogen storage, hydrogen transportation, utilization of hydrogen gas, hydrogen as alternative fuel for vehicles. Introduction, Design principle and operation of fuel cell, Types of fuel cells, conversion efficiency of fuel cell, and application of fuel cells. 	9	CO2, CO4

Reference Books:

- 1. G.D. Rai, "Non-conventional Energy sources", Khanna Publishers.
- 2. Bansal Keemann and Meliss, "Renewable energy sources and conversion technology", Tata Mc-Graw Hill.
- 3. Ashok V. Desai, "Non conventional Energy", New Age International Publishers Ltd.
- **4.** D.P. Kothari, "Renewable energy resources and emerging technologies", Prentice Hall of India Pvt. Ltd.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course	Code:	Course Name: Program Elective-II		L	Т	Р	С	
EI-PE-1	.02	THEORY AND DESIGN OF NE	URO – FUZZY	3	0	-	3	
		CONTROLLERS (ii)					
Year an	Year and1st YearContact hours per week: (3Hrs)							
Semeste	r	2 nd Semester	Exam: (3hrs.)					
Pre-req	uisite of	Basic Engineering Mathematics	Evalua	tion				
course			CIE: 40		SE	E: 6	0	
Course	Course Objectives:							
1. To st	1. To study and acquire the basic knowledge of neural network and fuzzy logic.							
2. To st	udy the ba	sic architecture and modeling of neural ne	etwork control and Fuzz	zy lo	gic (cont	rol.	
3. To st	udy variou	is types of fuzzy logic and neural network	controllers.					
4. To ic	lentify, for	mulate and solve the neuro fuzzy logic bas	sed problems.					
Course	Outcomes	: On completion of the course, student wo	ould be able to:					
CO1	To under	stand basic concept and working of neural	network and fuzzy log	ic sy	sten	n.		
CO2	To under	stand the basic architecture and modeling	of neural network contr	ol a	nd F	uzz	y logic	
	control.							
CO3	Able to n	eural network and fuzzy logic techniques in	n different field, which i	nvo	lve p	oerco	eption,	
		and learning.					_ `	
CO4	Analyze	and design a real world problem for imp	lementation and under	stan	d th	e dy	mamic	
		of a system.						

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	NEURAL NETWORK THEORY: Introduction, Biological neurons and their artificial models, Learning, adaptation and neural networks learning rules types of neural networks, Single layer, multiplayer, Feed forward, feedback networks; back propagation, Learning and training, Hop field network.	8	CO1, CO2
2	NEURAL NETWORKS BASED CONTROL: Neural network for non- linear systems, Schemes of neuro control, System identification forward model and inverse model, Indirect learning neural network control applications, Case studies.	8	CO2, CO3, CO4
3	FUZZY LOGIC THEORY : Fuzzy sets ,Fuzzy operation , Fuzzy arithmetic, Fuzzy relations ,Fuzzy relational equations, Fuzzy measure, Fuzzy functions , Approximate reasoning ,Fuzzy propositions ,Fuzzy quantifiers , If-then rules.	8	CO1

4	FUZZY LOGICBASED CONTROL: Structure of fuzzy logic controller, Fuzzification models, Database, Rule base Inference engine, defuzzification, Module ,Non-linear fuzzy control, PID like FLC, Sliding mode FLC, Sugeno FLC, Adaptive fuzzy control , Fuzzy control applications case studies.		CO2, CO3, CO4
---	---	--	---------------------

REFERENCE BOOKS

- 1. Jacek. M. Zurada, "Introduction to Artificial Neural Systems", Jaico Publishing House, 1999.
- 2. Kosko, B. "Neural Networks and Fuzzy Systems", Prentice Hall of India Pvt. Ltd., 1994.
- 3. Klir G.J. & Folger T.A. "Fuzzy sets, uncertainty and information", Prentice Hall of India Pvt. Ltd., 1993.
- 4. Zimmerman H.J., "Fuzzy set theory and its application" Kluwer Academic Publishers, 1994. 5. Driankov, Hellendroon, "Introduction to Fuzzy Control", Narosa Publishers.
- 5. FarinWah S.S., Filev, D. Langari, R. "Fuzzy control synthesis and analysis", John Wiley and Sons, 2000.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Program Name: M. Tech.-Electrical and Instrumentation Engineering

Course Code:	Course Code: Course Name: Program Elective-II		L T P C			
EI-PE-102	8		3 3			
Year and 1 st Yr. Contact hours per we		veek: (3Hrs)				
Semester	2 nd Semester	Exam: (3 Hrs)				
Pre-requisite	Control System	Evaluation				
of course	Control System	CIE: 40	SEE: 60			
Course Objectives:						
1. Study the dig	gital control system details: Signal flow gr	aph, Time domain anal	ysis, correlation			
between time response & root location in S & Z transform and stability in Z-plane						
2. Study the digital control system design by various methods in Z-plane						
3. Study of techniques for analysis of nonlinear system, concept of local, global, asymptotic and						
total stability of nonlinear system, Liapunov's stability criterion.						
4. Study of Tuning procedure for PID controllers and Design considerations for Robust control.						
5. Study the concept, analysis and design of Adaptive and Learning system.						
Course Outcomes: On completion of the course, student would be able to:						

CO1	Ability to understand the concept, analyze the Digital control system and their
	stability
CO2	Ability to understand the digital control system design by various methods in Z-plane
CO3	Ability to understand the techniques for analysis of nonlinear system and their
	stability criterion
CO4	Ability to understand and skill of the Tuning procedure for PID controllers and
	Designing of Robust control.
CO5	Ability to understand the concept, analysis and design of Adaptive and Learning
	system

Modu le No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	DIGITAL CONTROL: Introduction to digital control, sampling, Data reconstruction principles, Pulse transfer functions, Block diagram & signal flow graph, Digital Control Techniques-PID, Deadbeat. Time domain analysis, correlation between time response & root location in S & Z transform, effect of pole-zero configuration in Z-plane on maximum overshoot & peak time transient response, Stability in Z-plane using modified Rouths criteria, Jury's criteria.	10	CO1
2	Digital control system design : Design by Emulation, Direct design by root locus in z-plane, Frequency response method, Direct design method by Ragazzini. NON LINEAR CONTROL SYSTEM: Introduction to nonlinear feedback control system, special features of linear system; limit cycle, jump response, sub harmonics etc., describing function and phase plane techniques for analysis of nonlinear system, concept of local, global, asymptotic and total stability of nonlinear system, Liapunov's stability criterion.	11	CO2 CO3
3	PID CONTROL AND ROBUST CONTROL: Tuning procedure for PID controllers, modification of PID control schemes, two degrees of freedom control. Design considerations for Robust control.	8	CO4
4	ADAPTIVE AND LEARNING CONTROL SYSTEMS: Basic Principles of Adaptive and Learning Control Systems, Model Reference Adaptive Control, Types of Learning-Supervised and Unsupervised Learning Control Systems, On-line and Off-line Learning Control Systems.	8	CO5

TEXT BOOKS/ REFERENCE BOOKS:

- 1. Digital control system By B. C. Kuo (PHI)
- 2. Modern control engineering By Ogata (PHI)
- 3. Control System Engineering By Nagrath& Gopal (Wiley Eastern)
- 4. Control System Engineering By Phillips and Nagle (PHI Publications)
- 5. Control System Engineering by Norman S Nise, Wile
- 6. Modern Control System by R C Dorf, R H Bishop, Addision Wesley
- 7. Systems, Modeling & Analysis by I J Nagrath, M Gopal, TMH
- 8. Digital Control & State Variable Methods by M Gopal, TMH

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course	Code: Course Name: Program Elective-II	Course Name: Program Elective-II		Τ	Р	C
EI-PE-102 HVDC TRANSMISSION SYSTEM (iv)		3	0	I	3	
Year an	d 1 st year	Contact hours per	er week: (3Hrs)			
Semeste	r 2 nd Semester	Exam: (3hrs.)				
Pre-req	uisite Power Electronics and Power System	n Evalu	ation	l I		
of cours	e Engineering	CIE: 40	SEE: 60			
Course	Objectives:					
1. To s	udy the basic concept, working theory and const	uctional detail of Direct (Currei	nt (D	C) po	ower
trans	mission line.					
2. To s	tudy the power converter interface and analysis i	HVDC transmission line	e.			
3. To s	3. To study the power converter controller in HVDC transmission line					
4. To study the effect of reactor and protection of DC line.						
Course Outcomes: On completion of the course, student would be able to:						
CO1	CO1 To understand the basic concept, working theory and constructional detail of Direct Current					rrent
	(DC) power transmission line.					
CO2	D2 To impart technical knowledge of power converter interface and analysis in HVDC					
	transmission line.					
CO3	To apprise with power converter control system in HVDC transmission line					
CO4	To understand the effect of reactor and protection of DC line.					

Modu le No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Direct Current (DC) power transmission technology: Introduction, comparison of Alternating Current (AC) and Direct Current (DC) transmission, application of DC transmission, application of DC transmission, description of DC transmission system, Configurations, planning for High Voltage Direct Current (HVDC) transmission, modern trends in DC transmission. Introduction to Device: Thyristor valve, valve tests, recent trends.	6	CO1
2	Analysis of High Voltage Direct Current (HVDC) converters: Pulse number, choice of converter configuration, simplified analysis of Graetz	8	CO1, CO2

	circuit, converter bridge characteristics, and characteristics of a twelve-pulse converter, detailed analysis of converters with and without overlap.		
3	Converter and HVDC system control: General, principles of DC link control, converter control characteristics, system control hierarchy, firing angle control, current and extinction angle control, starting and stopping of DC link, power control, higher level controllers, telecommunication requirements. Converter faults and protection: Introduction, converter faults, protection against over-currents, over-voltages in a converter station, surge arresters, protection against over-voltages.	8	CO2, CO3
4	Smoothing reactor and DC line: Introduction, smoothing reactors, DC line, transient over voltages in DC line, protection of DC line, DC breakers, Mono-polar operation, effects of proximity of AC and DC transmission lines.	6	CO4

RECOMMENDED BOOKS:

- 1. E.W. Kimbark, "High Voltage DC Transmission", Wiley-Interscience.
- 2. V. Kamaraju and M.S. Naidu, "High Voltage Engineering", Tata McGraw-Hill Education.
- 3. R.S.Jha,"High Voltage Engineering", Dhanpat Rai sons.
- 4. E. Kuffel and M. Abdullah, "High Voltage Engineering", Pergamon Press.
- 5. C. L. Wadhwa, "High Voltage Engineering", New Age Publications.
- 6. K.R. Padiyar, "HVDC Power Transmission Systems: Technology and System Interactions", New Age International Publications.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code: EI-PE-102	8			T -	P -	C 3
Year and	1 st Yr.	Contact hours per week: (3Hrs)				
Semester	2 nd Semester	Exam: (3 Hrs)				
Pre-requisite of	Electrical Machine, Electrical	trical Machine, Electrical Evaluation				
course	course Measurements and Instruments CIE: 40		SEE: 60			
Course Objectives:						
1. To introduce the various energy systems.						
2. To study the basics theory, and operation of renewable system.						
3. To study the concept of energy conservation and management.						

4 55 (1 1 1 0 1 1 0				
4. To study various techniques for energy conservationand its management.					
Course Outcomes: On completion of the course, student would be able to:					
CO1	To familiarize with the various energy systems.				
CO2	To understand the basics theory, operation renewable system.				
CO3	To impart basic technical knowledge theenergy conservation system and ma	anagen	nent.		
CO4	To learn the role of various techniques used for energy conservations	ystem	and its		
	management.				
Module	COURSE SYLLABUS	TT	CO-		
No	CONTENTS OF MODULE	Hrs	COs		
	INTRODUCTION: Various Sources of Energy, Conventional and non-				
1	Conventional energy, Concept and Classification of Renewable energy,	-	CO1		
1	Concept of Energy Conservation and Energy Management, Present Energy	7			
	Scenario in India (Conventional and non- Conventional energy).				
	RENEWABLE ENERGY SOURCES: Potential and Utilization status of				
	Renewable Energy in India, Solar Energy: Solar Water Heater Systems,				
	Solar Air dryer Systems, Solar Photo-voltaic Systems, Solar Cookers and				
2	Solar ponds, Wind Energy: Selection Criteria for Wind farms, Wind Mills,	8	CO2		
	Bio Gas Plants-Construction and Operation, Bio Mass Gasification, Bio				
	Mass Briquetting; Mini and Micro Hydel Power Plants, Geo-Thermal				
	Energy, Ocean Energy.				
	ENERGY CONSERVATION AND MANAGEMENT: Actual energy				
	requirement assessment techniques of any industry and energy consumption				
3	status, possibility of reduction of energy consumption by using various	7	CO3		
	energy conservation techniques or equipments e.g. variable speed drives,				
	constant voltage transformers, electronic chokes, CFLs etc.				
	ENERGY CONSERVATION INSTRUMENTATION: Importance of				
	instrumentation and control techniques in the energy conservation and				
4	management, SCADA systems, Instruments required to carry out energy	7	CO4		
	audit exercise, optimal mixing of renewable energy sources and load				
	rationalization for reducing load on conventional energy sources.				

TEXT/REFERENCE BOOKS:

- 1. Hand Book of Industrial Energy Conservation by S David; Van Nostrand Reinhold Publishing Company.
- 2. Energy Technology by S Rao & B. B. Parulkar; Khanna Publishers
- 3. Solar Energy by S. P. Sukhatme; TMH publications
- 4. Solar Energy & Energy Conservation by Sawhney&Maheshwari; PHI publication.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course C		Course Name: Program Elective-II	L T P C			
EI-PE-10)2	PROCESS MODELLING ANI	ROCESS MODELLING AND CONTROL (vi)3-3			
Year and	l	1 st Yr.	Contact hours per w	eek: (3 Hrs)		
Semester	•	2 nd Semester	Exam: (3 Hrs)			
Pre-requ	isite of	Mathematica Control System	Evalu	ation		
course		Mathematics, Control System	CIE: 40	SEE: 60		
Course C) bjectives	5:				
1. Study	the Math	ematical Modelling, Process dynamic of	of various type of proce	esses.		
2. Simul	ation and	Modelling of different process control	system			
3. Study	of vario	us control system Models and Design of	f cross controllers and	selection of loop		
using	RGA.			_		
4. Study	the conce	ept, analysis and design of Adaptive and	d Learning system.			
5. Study	the conce	ept, analysis and design of Real time co	ntrol system			
6. Study	of Distril	buted computing systems, Software Pro	cess models			
Course C	Outcomes	: On completion of the course, student	would be able to:			
CO1	Ability to	understand and to derive Modelling, Pr	ocess dynamic of vario	ous type of processes.		
	•	understand the various control system	•	** *		
	•	of loop using RGA.	U			
		understand concept, analysis and desig	n of Adaptive and Lear	ming system.		
CO4	Ability to	understand concept, analysis and desig	n of Real time control s	system		
CO5	Ability to	implement new and emerging technolo	gies to analyze, design	, maintain reliable,		
	•	cost effective solution for industry prob		·		

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Simulation and Modelling: Importance of Simulation, Mathematical Modelling, Process dynamic of fluid flow and heat transfer system, Mass transfer dynamics and distillation column, Reaction kinetics of chemical processes. Process control aim and objectives classification of process control system, techniques for process control. Modelling and simulation for plant Automation-case studies.	8	CO1
2	Predictive control system: Model based control system (Internal mode control, Model Predictive control and Process Model based control), Plant wide Control, Inferential control, Multiple-loop (Multivariable) control system. Interaction and Decoupling of control loops. Design of cross controllers and selection of loop using RGA. Prosperities and application of RGA.	10	CO2
3	ADAPTIVE AND LEARNING CONTROL SYSTEM: Basic principles of Adaptive and learning systems, MRAC & STAC, Adaptive control	10	CO3 CO5

	techniques, Types of Learning- Supervised and Unsupervised Learning control system, On-line and Off-line Learning control system.		
4	Real time control system: Characteristics and classes of real time systems, program classification: Sequential, multitasking real time, concurrency and synchronization. Design strategies, Reability, fault detection, fault tolerance real time operating system, Distributed computing systems, Software Process models (Build and mix model, waterfall, rapid prototyping, Incremental and Spiral model) Design techniques and tools	10	CO4 CO5

TEXT BOOKS: REFERENCE BOOKS:

- 1. Techniques of Process Modelling, Simulation and Control for Engineer by Astrom, Luyben, McGraw Hill.
- 2. Computer Controlled System by Astrom, K.J and B. Wittenmark PHI
- 3. Chemical Process Control by Stephanopolous PHI
- 4. Process Control Modeling ,Design and Simulation by B.WayaneBequette, PHI

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

·

Course Code:	Course Name: Power Quality Monitoring and			Т	P	С
EI-PC-104			3	-	-	3
Year and	1 st Year.	Contact hours	per v	veek	x: (3	BHrs)
Semester	2 nd Semester	Exam: (3 Hrs)				
Pre-requisite	Derver Sustern Flactuical Machines	E	valua	tion	l	
of course	Power System, Electrical Machines	CIE: 40		S	EE:	60
Course Objecti	ves:					
1. To familiari	ze the students about different power qualit	y issues to be reso	lved.			
2. To understan	nd the convention codes /guidelines issues	by bodies like IEE	E, IE	C et	c rel	ated to
voltage, free	uency and harmonics.					
3. To mentor the	he students about methods of power quality	assessment.				
4. To monitor the power quality in the power system.						
5. To model a system for power quality enhancement.						
	nes: On completion of the course, student v	vould be able to:				

CO1	Have the knowledge of various power quality issues in power system.		
CO2	Work with international standards/guidelines related to power quality issu	ies.	
CO3	Quantitative analysis of power quality in system.		
CO4	Monitor the power quality through measurement of various system param	eters.	
CO5	Decide the compensators and filters to keep the power quality indice	es with	nin the
	standards.		
Module	COURSE SYLLABUS	Hrs	Cos
No	CONTENTS OF MODULE	1115	CUS
1	UNIT I - POWER QUALITY - AN OVERVIEW: Power Quality definition, PQ characterization: Transients, short duration and long duration voltage variations, Voltage imbalance, waveform distortion, Voltage fluctuations, Power frequency variation–Power acceptability curves: CBEMA, ITIC – Sources for Electric Power Quality problem in power system: poor load power factor, Nonlinear and unbalanced loads, DC offset in loads, Notching in load voltage, Disturbance in supply voltage – Power quality standards and Guidelines.	6	CO1
2	VOLTAGE VARIATIONS: Voltage Sags - Magnitude & duration-Types- Sources of sags - Estimation of Voltage sag performance: Transmission system and Utility distribution system, Effect of sag on AC Motor Drives, Single-Phase Domestic and Office Loads, Monitoring and mitigation of voltage sag. Origin of Long & Short interruption -influence on various equipment.	7	CO2
3	POWER QUALITY ANALYSIS: Measurements of Voltage, Current, Power, Energy, power factor- Time domain methods and Frequency domain methods: Laplace's, Fourier and Hartley transform – The Walsh Transform – Wavelet Transform. Harmonic Distortion, Voltage versus Current Distortion, Harmonics versus Transients, Harmonic Indexes, Harmonic Sources from Commercial Loads, Harmonic Sources from Industrial Loads.	7	CO3
4	POWER QUALITY MONITORING: Monitoring considerations: Power line disturbance analyser, power quality measurement equipment, harmonic / spectrum analyser, flicker meters, disturbance analyser. Analysis of power outages, Analysis of unbalance: Symmetrical components of phasor quantities, Instantaneous symmetrical components, Instantaneous real and reactive powers, Analysis of distortion: On–line extraction of fundamental sequence components from measured samples	8	CO4
5	POWER QUALITY ENHANCEMENT: Harmonic filters: passive, Active and hybrid filters – Custom power devices: Load compensation using DSTATCOM, Voltage regulation using DSTATCOM, protecting sensitive loads using DVR, UPQC –control strategies: P-Q theory, Synchronous detection method – Custom power park.	8	CO5

- 1. Understanding Power Quality Problems-Voltage sag & Interruptions, Math Bollen H.J., IEEE Press, 2000.
- 2. Power Quality Enhancement Using Custom Power Devices, Arindam Ghosh, G. Ledwick, Kluwer Academic Publishers, 2002.

- 3. Electrical Power Systems Roger.C.Dugan, Mark.F.McGranagham, Surya Santoso, H.WayneBeaty, Quality", McGraw Hill, 2003.
- 4. HVDC and FACTS Controllers: Applications of Static Converters in Power Systems, Vijay K Sood, Springer
- 5. Facts Controllers in Power Transmission and Distribution, K R Padiyar, Tunbridge Wells : Anshan, ©2009.

Reference Books:

- 1. Electric Power Quality, Heydt G.T., Stars in a Circle Publications, 1994(2nd edition).
- 2. Handbook of Power Quality, Angelo Baggini '- Wiley

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Program Names M. Tash Float	ical and Instrumentation Engineering
Trogram Maine, Mr. Teen,-Electr	ical and moti unicitiation Engineering

	ourse Code: -PC-106	Course Name: PLC & DCS	Name: PLC & DCS			
Ye	ar and	1 st Yr.	Contact hours per	week: (3 Hrs)		
Sei	mester	2 nd Semester	Exam: (3 Hrs)			
Pro	e-requisite	Control System	Evalu	ation		
of	course	Control System	CIE: 40	SEE: 60		
Co	ourse Objec	tives:	· · ·			
1.	Study the	concept of Direct Digital Control				
2.	Study and	development of position and velocity control	ol algorithm and their a	applications in		
3.		ontrol schemes	-			
4.	Study the	characteristic function of PLC, its Architect	ure and various PLC p	rogramming		
	languages	and Demonstrate various PLC programmin	g skill for industrial ap	plications.		
5.	Detail stud	y and applications of Distributed process c	ontrol system and Unc	lerstanding of		
	various au	omotive standards and Protocols used in Pl	C network and DCS	-		
6.	Study DCS	supervisory control techniques & consider	rations(Algorithms), C	oncept of field		
	buses and	heir applications				
7.	Detail stud	y and applications of Supervisory control a	and Data Acquisition s	ystem(SCADA)		
Co	ourse Outco	mes: On completion of the course, student	would be able to:			
CC	D1 Abi	ity to understand the concept of Direct digi	tal control and able to	development		
	posi	tion and velocity control algorithm and thei	r applications in differ	rent control		
	schemes					

CO2	Able to learn the various PLC programming languages and Demonstrate various PLC
	programming skill for industrial applications.
CO3	Able to learn and analyze the various principles & concepts of Distributed process
	control system and Understanding of various automotive standards and Protocols used
	in PLC network and DCS
CO4	Acquire the knowledge of DCS supervisory control techniques, the concept of field buses
	and their Industrial applications.
CO5	To implement new and emerging technologies to analyze, design, maintain reliable, safe,
	and cost effective solution for industry problems.

Modul e No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Direct Digital Control – Structure and Software: The position algorithm (simplifying PID control equation, deriving position algorithm); the velocity algorithm (velocity algorithm, deriving the velocity algorithm); Multi variable control (Cascade control using velocity algorithm, radio control using velocity algorithm).	8	CO1
2	Discrete State Process Control System: Development and analysis of ladder diagram, logic diagram from ladder diagram, Function description of PLC, Programming fundamentals, hardware and system sizing and selection, PLC peripherals, programming, PLC networking, PLC programmable languages, ladder diagrams language, Boolean mnemonics language, functional block language, PLCs.	10	CO2 CO3
3	Distributed Process Control System: Functional requirement of DPCS, DCS configurations/ architecture, data highway cables, field buses, protocols used in DCS, Software configuration: controller function configuration, multiplexer and party line system.	10	CO3 CO4 CO5
4	Supervisory control and Data Acquisition system (Functions of SCADA, channel scanning, conversion to engineering units, data processing, distributed SCADA system, Remote terminal unit). DCS supervisory computer and configurations: supervisory computer function, supervisory control techniques and consideration, Supervisory control algorithm, DCS system integration with PLC and computer. Fiber optic local area networks – map and top. Popular Distributed Control Systems: CP 80 system.	9	CO3 CO4 CO5

TEXT BOOKS/REFERENCE BOOKS:

- 1. Computer Aided Process control by S.K. Singh PHI
- 2. Computer Based Industrial Control by Krishna Kant PHI
- 3. Instrument Engineers Handbook- Process Control by Bela G. Liiptak
- 4. Microprocessor in Process control by C.D. Johnson
- 5. Principles and Practice of Automatic Process Control by Carlos& A Smith

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.

3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course EI-PC-1		Course Name: Embedded System Design		L T P C 3 3		
Year and1st Yr.Contact hours per week: (3 Hrs			veek: (3 Hrs)			
Semeste	er	2 nd Semester	Exam: (3 Hrs)			
Pre-requisite of course		Microprocessor and Microcontrollors	Evalu	ation		
		Microprocessor and Microcontrollers	CIE: 40	SEE: 60		
Course	Objectiv	ves:				
1. To p	rovide a	n overview of Design Principles of Embed	dded System.			
2. To p	rovide c	lear understanding about the role of firmw	vare, operating systems	s in correlation with		
hard	ware sys	stems.				
Course	Outcom	es: On completion of the course, student	would be able to:			
CO1	Expected to understand the selection procedure of Processors in the Embedded domain.					
CO2	Design Procedure for Embedded Firmware.					
CO3	Expected to visualize the role of Real time Operating Systems in Embedded Systems					
CO4	Expecte	ed to evaluate the Correlation between tas	k synchronization and	latency issues		

Modu le No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Introduction to Embedded Systems : Definition of Embedded System, Embedded Systems Vs General Computing Systems, History of Embedded Systems, Classification, Major Application Areas, Purpose of Embedded Systems, Characteristics and Quality Attributes of Embedded Systems.	7	CO1
2	Typical Embedded System: Core of the Embedded System: General Purpose and Domain Specific Processors, ASICs, PLDs, Commercial Off-The-Shelf Components (COTS), Memory: ROM, RAM, Memory according to the type of Interface, Memory Shadowing, Memory selection for Embedded Systems, Sensors and Actuators, Communication Interface: Onboard and External Communication Interfaces.	8	CO1 CO2
3	Embedded Firmware : Reset Circuit, Brown-out Protection Circuit, Oscillator Unit, Real Time Clock, Watchdog Timer, Embedded Firmware Design Approaches and Development Languages.	7	CO2 CO3
4	RTOS Based Embedded System Design: Operating System Basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task Scheduling.	6	CO3
5	Task Communication:Shared Memory, Message Passing, RemoteProcedure Call and Sockets, Task Synchronization:Task Communication/	8	CO3 CO4

TEXT BOOKS:

- 1. Introduction to Embedded Systems Shibu K.V, Mc Graw Hill. **REFERENCE BOOKS:**
- 1. Embedded Systems Raj Kamal, TMH.
- 2. Embedded System Design Frank Vahid, Tony Givargis, John Wiley.
- 3. Embedded Systems Lyla, Pearson, 2013
- 4. An Embedded Software Primer David E. Simon, Pearson Education.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course	Code:	Course Name: ADVACED POWE	R SYSTEM	L	Т	P	С
EI-PC-	110			3	0	-	3
Year ar	nd	1 st year	Contact hours per v	veek: ((3Hr	s)	
Semest	er	2 nd Semester	Exam: (3hrs.)				
Pre-req	Pre-requisite of Basics of Power System Evaluation						
course			CIE: 40		SE	EE: 60	
Course	Objective	s:					
1. To s	study basic	s PU theory and modelling of electrica	l networks.				
2. To s	study work	ing of theory of load flow parameters	and its methods.				
3. To s	study the tr	ansient phenomena and type of faults	in power system.				
4. To i	ntroduce th	ne concept of transient stability theory	and its method.				
Course	Outcomes	s: On completion of the course, studen	t would be able to:				
CO1	To unders	stand the basic concept of PU system f	for electrical circuits ar	nd its n	node	llings	
CO2	To impar	t basic technical knowledge of load flo	w studies and its iterat	ion sol	lutio	n met	hods.
CO3	To unders	stand and analyze various types of faul	lts for different electric	al equi	ipme	ents.	
CO4	To impar	t a technical knowledge of transient s	tability in electrical sys	stem a	nd s	olutio	n of its
	stability e	equations.					
Module	e	COURSE SYLLA	BUS			Uma	COs
No		CONTENTS OF MO					COS
1		CM MODELLING: System modelling rmers, loads etc, per unit system, sin	č			8	CO1

	networks, single phase impedance diagrams. Formulation of impedance and admittance matrices for the electrical networks.		
2	LOAD FLOW STUDIES: Data for the load flow studies, Swing Bus, Formulation of simultaneous equations, Iterative solutions by the Gauss- Seidal method and Newton Raphson Method.	8	CO2
3	FAULT ANALYSIS: Transients on transmission line, short circuit of synchronous machine, selection of circuit breakers, Algorithm for short circuit studies, Symmetrical Component transformation, and construction of sequence networks of power systems. Symmetrical Analysis of Unsymmetrical Line-to-ground (LG), Line-to line (LL), double line to ground (LLG) faults using symmetrical components.	8	CO3
4	POWER SYSTEM STABILITY: Steady state stability, Dynamics of a synchronous machine, Power angle equations, Transient stability, equal area criterion, Numerical solution of swing equation, factors effecting transient stability.	8	CO4

REFRENCE BOOKS RECOMMENDED:

- 1. O.I.Elgerd, "Electric Energy Systems Theory", Tata McGraw Hill
- 2. I.J Nagrath, D.P. Kolthari, "Modern Power System Analysis", Tata McGraw Hill
- 3. W.D.Stevenson, "Elements of Power System Analysis", McGraw Hill
- 4. I.J. Nagrath and D.P, Kothari, "Power System Engineering", Tata McGraw Hill
- 5. J. Arrillaga and C.P. Arnold, "Computer Analysis of Power Systems", John Wiley & Sons
- 6. W. Stagg Glenn and H. Ei-Abiad Ahmed "Computer Methods in Power System Analysis", Tata McGraw Hill
- 7. G.L. Kusic, "Computer Aided Power System analysis", Prentice Hall, India

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code: EI-PRPC -102	Course Name: Advanced Power System Lab			T 0	P 3	C 1.5
Year and	1 st Year Contact hours per wee			(3 H	[rs)	
Semester	2 nd Semester Exam: (3hrs.)					
	Basic of Power SystemEvaluation					

Pre-requ	iisite of	CIE: 20	SEE:30					
course		CIE. 20	SEE.SU					
Course (Course Objectives:							
1. To stu	1. To study the various parameters of power system like ABCD, Y-Bus, Z-Bus.							
2. To lea	arn different methods for load flow analys	is.						
3. To lea	arn fault analysis methods							
4. To lea	arn transient stability methods							
Course O	utcomes: On completion of the course, stu	dent would be able to:						
CO1	To apprise with the various parameters of	of power system like ABCD,	Y-Bus, Z-Bus.					
CO2	CO2 To develop a technical skill to analyze the load flow in power system							
CO3	CO3 To develop a technical skill to analyze the transient stability of electrical system.							
CO4	To analyze the performance of the transn	nission line system.						

Expt.	COURSE SYLLABUS	COs
No	CONTENTS OF MODULE	COS
1	To compute ABCD parameters and Regulation of a $3-\Phi$ transmission line model.	
2	To study Formation of Admittance Matrices (Y-BUS).	
3	To study Formation of Impedance Matrices (Z-BUS).	
4	To study Load Flow Analysis using GAUSS SEIDAL Method.	
5	To study Load Flow Analysis using NEWTON-RAPHSON Method.	
6	To perform Short circuit analysis of $3-\Phi$ synchronous machine.	CO1
7	To study Power circle diagrams of a $3-\Phi$ transmission line model.	CO2
8	To perform Transient Stability Analysis for Single Machine connected to Infinite	CO3
0	Bus by Point by Point method.	CO4
9	To study Load – Frequency Dynamics of Single Area Power Systems.	
10	To study Load – Frequency Dynamics of Two Area Power Systems.	

	Course Code:Course Name: Embedded Systems LabEI-PRPC-104-		L -	Т -	P 3	C 1.5	
Year and	1	st Yr.	Contact hours per we	ek: (3 Hr	s)	
Semester	2	nd Semester	Exam: (3 Hrs)				
Pre-requis	site of	Microprocessor and	Evalua	tion			
course		Microcontrollers	CIE: 20		SE	E: 30)
Course Ob	jectives:						
1. To prov	vide an ove	erview of Design Principles of Embed	dded System.				
2. To prov	vide clear u	understanding about the role of firmw	vare, operating systems in	n cor	relat	ion v	with
hardwa	re systems	8.					
Course Ou	itcomes: (On completion of the course, student	would be able to:				
CO1 E	xpected to	understand the selection procedure o	f Processors in the Embe	ddec	l dor	nain	
CO2 D	Design Procedure for Embedded Firmware.						
CO3 E	Expected to visualize the role of Real time Operating Systems in Embedded Systems						
CO4 E	xpected to	evaluate the Correlation between task	k synchronization and lat	ency	issu	ıes	

Expt.	COURSE SYLLABUS	COa
No	CONTENTS OF MODULE	COs
1	Functional Testing Of Devices: Flashing the OS on to the device into a stable	
1	functional state by porting desktop environment with necessary packages.	
2	Exporting Display On To Other Systems: Making use of available laptop/desktop	
Z	displays as a display for the device using SSH client & X11 display server.	
	GPIO Programming: Programming of available GPIO pins of the corresponding	CO1
3	device using native programming language. Interfacing of I/O devices like	CO2
	LED/Switch etc., and testing the functionality.	CO3
	Interfacing Chronos eZ430: Chronos device is a programmable texas instruments	CO4
4	watch which can be used for multiple purposes like PPT control, Mouse operations	
	etc., Exploit the features of the device by interfacing with devices.	
	ON/OFF Control Based On Light Intensity: Using the light sensors, monitor the	
5	surrounding light intensity & automatically turn ON/OFF the high intensity LED's	
	by taking some pre-defined threshold light intensity value.	
	Battery Voltage Range Indicator: Monitor the voltage level of the battery and	
6	indicating the same using multiple LED's (for ex: for 3V battery and 3 LED's, turn	
	on 3 LED's for 2-3V, 2 LED's for 1-2V, 1 led for 0.1-1V & turn off all for 0V)	
	Dice Game Simulation: Instead of using the conventional dice, generate a random	
7	value similar to dice value and display the same using a 16X2 LCD. A possible	
/	extension could be to provide the user with option of selecting single or double dice	
	game.	
8	Displaying RSS News Feed On Display Interface: Displaying the RSS news feed	
	headlines on a LCD display connected to device. This can be adapted to other	
U	websites like twitter or other information websites. Python can be used to acquire	
	data from the internet.	
	Porting Openwrt To the Device: Attempt to use the device while connecting to a	
9	wifi network using a USB dongle and at the same time providing a wireless access	
	point to the dongle.	
10	Hosting a website on Board: Building and hosting a simple website	
10	(static/dynamic) on the device and make it accessible online. There is a need to	
	install server (eg: Apache) and thereby host the website.	
11	Webcam Server: Interfacing the regular usb webcam with the device and turn it	
	into fully functional IP webcam & test the functionality.	
12	FM Transmission: Transforming the device into a regular fm transmitter capable	
	of transmitting audio at desired frequency (generally 88-108 Mhz)	
	Note: Devices mentioned in the above lists include Arduino, Raspbery Pi,	
	Beaglebone	
1	Cycle 1: Programming in 8051	
1	Study of 8051 Evaluation Board Trainer kit and Keil IDE Software Tool.	
2	Serial Data Transmission	
3	Interface switches and LEDs	
4	Interface LCD	
5	Interface 4*4 matrix keyboard	
6	Interface stepper motor	
7	Interface 7 Segment Display using I2C	
8	ADC, DAC Interface	

	Cycle 2: Programming in PIC Processor				
9	Configure and Control General Purpose I/O Pins				
10	Interfacing LED & Switch Interface				
11	2*16 LCD Display				
12	Serial Communication				
13	I2C Interface & EEPROM Interface				
14	Buzzer Interface				
15	SD-MMC Card Interface				
Note:	Note: all the experiments are to be carried out independently by each student with different				
specifi	specifications. At least 12 experiments are to be carried out.				

- 1. Use the IDE tool effectively for developing and executing the programs using 8051.
- 2. Comprehend the usage of on-chip timers and serial communication of 8051 and their interrupts using programs
- 3. Interface devices like ADC, DAC, LCD, and Stepper Motor to 8051 and develop real time projects.
- 4. Use the keil software for the development of logic, proteus software for hardware simulation and flash magic for downloading the code on to the target system.
- Develop the logic to interface devices like temp sensor, stepper motor, Buzzer to ARM microcontroller and analyse the working of GPIO, on-chip peripherals of ARM

Course Code: EI-PC-201 Co		Course Name: Smart & Micro Sensor	r Design	L 3	T -	P -	C 3	
Year an	d	2 nd Yr.	Contact hours per we	ek: (3 Hi	:s)		
Semeste	er	3 rd Semester	Exam: (3 Hrs)					
Pre-req	uisite of	VI SI Design	Evalua	Evaluation				
course		VLSI Design	CIE: 40		E: 60	•		
Course	Objectives	5:						
3. It ai	ms to equi	p the students with MEMS fabrication						
4. To j	provide ade	equate knowledge about tools at an inter	rmediate to advanced lev	vel.				
5. To j	provide exp	posure to students towards advanced lev	vel of sensors					
Course	Outcomes	: On completion of the course, student	would be able to:					
CO1	Understand of MEMS fabrication							
CO2	2 Apply various fabrication procedures							
CO3	Analyze the design of sensors							
CO4	Design an	d develop smart and intelligent systems	8		Design and develop smart and intelligent systems			

Modu le No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	MEMS: Introduction, principle of MEMS, Example of Mems, small and large scaling, fabrication technology, micromachining: photolithography, thin film deposition and doping, wet chemical etching, waferbonding, plasma etching, surface micromachining.	8	CO1, CO2

2	Mechanics of Membrane and beams: dynamics, string, beams, diaphragms and membrane Transduction of Deformation: Metal strain gauges, Semiconductor Strain Gauges, Capacitive Transducers, Force and Pressure sensors: Force Sensors, Pressure sensors, Thermocouples Semi conducting Thermo resistors, Fiber Optical sensors, concept of smart and intelligent sensor, bio sensors.	8	CO3, CO4
3	Acceleration Sensors: introduction, Bulk Michromachined Accelerometers, surface Michromachined accelerometers, force feedback, angular rate sensors, Flow Sensors: The laminar boundary layer, Heat Transport in the limit of very small Reynolds Numbers, Thermal Flow Sensors, Skin Friction Sensors, Dry fluid Flow Sensors, wet fluid flow sensors, Resonant Sensors: Basic principle and physics.		
4	Definition of intelligence and of intelligent instrumentation system: Features characterizing intelligence and Features intelligent instrumentation, component of intelligent instrumentation. Design of intelligent instrumentation systems. Smart and Intelligent transmitters, smart features standard for smart sensing, setting standards for smart sensors and system, IEEE 1451.1, IEEE 1451.2, STIM, IEEE P1451.3, IEEEP 1451.4, Field buses systems.	8	CO4

- 1. E.O. Doeblin Measurement System Application and Design, McGraw Hill
- 2. Beeweth and Buck- Mechanical Measurement, Nares Puti
- 3. Nortan- Hand Book of transducers, PHI
- 4. Conside-Process and industrial instrumentation, McGraw Hill
- 5. Mechanical Microsensors, M.Elwenspoek, R. Wiegerink, Springer

Note for Examiner(s): Question paper will comprise three sections,

- **4.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 5. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 6. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 3. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **4.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code:	Course Name: Program Elective-III	L	Τ	P	С
EI-PE-203	DIGITAL SIGNAL PROCESSING (i)	3	0	-	3

Year an	nd	2 nd year	Contact hours per w	veek: (3Hrs)			
Semeste	er	3 rd Semester	Exam: (3hrs.)				
Pre-req	uisite of	Basic Engineering Mathematics	Evaluation				
course			CIE: 40 SEE: 60				
Course	Objectives	5:					
1. To s	tudy the dis	screte linear Time Invariant systems in 1	Z domain and in freque	ency domain.			
2. To s	tudy the ba	sic of Discrete-Fourier Transform (DF	Γ), Fast Fourier Transfe	orm (FFT) algorithms			
and	its applicat	ion.					
3. To s	study differ	ent structure realization of Finite Imp	oulse Response system	s and Finite Impulse			
Resp	oonse syste	ms.					
4. To s	tudy the dig	gital filters for filtering applications.					
5. To s	tudy the M	ulti-rate digital Signal Processing techn	iques and its application	ons			
Course	Outcomes	: On completion of the course, student	would be able to:				
CO1	To analyz	e the Discrete linear Time Invariant sys	stems in Z domain and	in frequency domain.			
CO2	To unders	tand the different structure realization of	f Finite Impulse Respor	nse systems and Finite			
	Impulse R	Response systems.					
CO3	To learn	the basic of Discrete-Fourier Transfe	orm (DFT), Fast Four	ier Transform (FFT)			
	algorithm	s and its applications.					
CO4	To Design	n digital filters for filtering applications	S				
CO5	To apprise	e with Multi-rate Signal Processing tech	nniques.				

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	 Introduction of Discrete Time Signals and Systems: Discrete time systems, Analysis of discrete time linear time-invariant systems, Discrete time systems described by difference equations, Implementation of discrete system, Correlation of discrete time signals, Z-transform and properties of Z- transform, Rational Z-transformation, Inverse Z-transform, Analysis of linear time invariant systems in Z-domain. Frequency Analysis of Signals and Systems: Frequency analysis of continuous time signals, Frequency analysis of discrete time signals, Properties of Fourier Transform for discrete time signals, Frequency domain characteristics of linear time invariant systems, linear invariant systems as frequency selective filters. 	8	CO1
2	 The Discrete Fourier Transform: Frequency domain sampling, Properties of Discrete Fourier Transform (DFT), discrete Frequency analysis of signals using the DFT.FFT algorithm : Decimation-in-time (DIT) algorithm and Decimation-in-frequency(DIF) algorithm, Linear filtering methods based on DFT. Realization of digital systems: Structure realizations methods of FIR and IIR system. 	8	CO2, CO3
3	Design of Digital Filters: Generalized characteristics of discrete filters, Design of Finite Impulse Response (FIR) filters, FIR digital filter design using Fourier series method, window design techniques. Optimal equi-ripple design techniques, frequency sampling design techniques. Design of Infinite Impulse Response (IIR) filters from analog filters, Comparison of IIR and FIR filters.	8	CO4

4	Multirate Digital Signal Processing: Introduction, decimation by a factor D, Interpolation by a factor I, sampling rate conversion by a rational factor I/D, implementation of sampling rate conversion, multistage implementation of sampling rate conversion, sampling rate conversion of Band pass signals, sampling rate conversion by an arbitrary factor, applications of multi rate signal processing.		CO5
---	---	--	-----

Suggested Text / Reference Books:

- 1. John G. Proakisand Dimitris G. Manolakis, "Digital Signal Processing", PHI Pub.
- 2. Allan Y. Oppenhein& Ronald W. Schater, "Digital Signal Processing", PHI, 2004.
- 3. J. R. Jhohnson, "Intorduction to Digital Signal Processing", PHI, 2000.
- 4. B. Somanthan Nair, "Digital Signal Processing: Theory, Analysis & Digital Filter Design", PHI, 2004
- 5. Sanjit K. Mitra, "DSP a Computer based approach", TMH, 2nd Ed., 2001.
- 6. S. Salivahanan, C. Gnanapriya, "Digital Signal Processing", McGraw Hill.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.
- -----

Course Code:	Course Name: Program Elective-	III	L	Т	Р	С
EI-PE-203	Reliability Engineer	ing (iii)	3	0	-	3
Year and	2 nd Year	Contact hours per v	veek	: (3	Hrs)
Semester	3 rd Semester	Exam: (3 hrs.)				
Pre-requisite	Basic Engineering Mathematics	Eva	alua	tion		
of course		CIE: 40			SEI	E: 60
Course Objectiv	ves:	· · · · · ·				
1. To study the	basic concept of reliability, maintain	ability and availability	eng	ginee	ring	.
2. To study the	evaluation techniques of engineering	g models and reliability	/ imj	prov	eme	nt methods.
3. To study the	concept of fault tree analysis and opt	timization techniques.				
4. To study eva	luation model for reliability, maintai	nability, availability te	sting	g.		
5. To study the applications of fuzzy theory and neural networks to reliability engineering,						
Course Outcomes: On completion of the course, student would be able to:						
CO1 To understand the basic concept of reliability, maintainability and availability engineering.				ngineering.		

CO2	To understand the evaluation techniques of engineering models and reliability in	mnroy	ement
02	methods.	mprov	ement
CO3	To learn the fault tree analysis and optimization techniques.		
CO4	Ability to do testing and evaluate the reliability, maintainability, availability of	engine	ering
	models.	-	-
CO5	To study the applications of fuzzy theory and neural networks to reliability engi	ineerin	g,
Modu	COURSE SYLLABUS	TT	CO
le No	CONTENTS OF MODULE	Hrs	COs
1	Review of basic concepts in reliability engineering, reliability function, different reliability models etc., and reliability evaluation techniques for complex system: Non path set and cutest approaches, path set and cut set approaches, different reliability measures and performance indices, modeling and reliability evaluation of system subjected to common cause failures.	7	CO1
2	Reliability improvement, Reliability allocation/apportionment and redundancy optimization techniques, Fault tree analysis.	7	CO2, CO3
3	Maintainability Analysis: measure of system performance, types of maintenance, reliability centered maintenance, reliability and availability evaluation of engineering systems using Markov models. Reliability testing, Design for reliability and maintainability.	7	CO1, CO4
4	Applications of fuzzy theory and neural networks to reliability engineering, Typical reliability case studies.	7	CO5

Suggested Text / Reference Books:

- 1. M.L Shooman, "Probabilistic reliability- an engineering approach" RE Krieger Pub, 1990.
- 2. K.K Aggarwal, "Reliability Engineering" Springer Pub, 1993.
- 3. E. Balaguruswamy, "Reliability Engineering" McGraw hill, 2002.
- 4. R. Ramakumar, "Engineering Reliability" Prentice, NJ, 1993.

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.
 - · ------

Course Code:	Course Name: Program Elective-III,		L	Τ	Р	С
EI-PE-203	Electrical Vehicle Engineering (iv)		3	0	-	3
Year and	2nd Year Contact hours per week: (3Hrs)					
Semester	3 rd Semester	Exam: (3hrs.)				

Pre-requ	site Electrical Machines, Power	Eva	aluation		
of course	Electronics, Basic Science	CIE: 40	SEE: 60		
	Engineering				
Course O	bjectives:				
	introduce the upcoming technology of electric				
	study the basics theory, operation and modelin		system.		
	study different topologies of electric Hybrid s				
	study electric propulsion system in electric hy				
Course O	utcomes: On completion of the course, studen	t would be able to:			
CO1	To familiarize with upcoming technology of e	lectric and hybrid sys	stem		
CO2	To understand the basics theory, operation and				
CO3	To understand and analyze different drive tra	in topologies electric	of Hybrid sy	stem.	
CO4	To learn the role of electric propulsion system	n in electric hybrid sy	stem andits a	applica	tion.
CO5	To impart basic technical knowledge of el-	ectric hybrid vehicle	system and	apply	y it to
	technological fields.				
Module	COURSE SYLLA	BUS		Hrs	COs
No	CONTENTS OF MO			1115	COS
	Introduction: Introduction to hybrid electric				
	electric vehicles, social and environmental in				
1	vehicles, impact of modern drive-trains on energy supplies. Conventional				CO1,
1	vehicles: basics of vehicle performance, vehicle	-		7	CO2
	transmission characteristics, and mathematic	cal models to descri	be vehicle		
	performance.				
1	Hybrid Electric Drive: Hybrid electric drive				
2	traction, introduction to various hybrid driv		ower flow	7	CO3
	control in hybrid drive-train topologies, fuel e				
	Electric Propulsion Unit: Introduction to ele	1	•		
	and electric vehicles, configuration and				
3	configuration and control of induction motor	e e		7	CO4
	of permanent magnet motor drives, configuration and control of switch				
	reluctance motor drives, drive system efficien	•			
4	Case Studies: Design of a hybrid electric vel	hicle (HEV), design of	of a battery	5	CO5
I	electric vehicle (BEV).			5	000

Suggested Text / Reference Books:

- 1. Iqbal Hussein, "Electric and Hybrid Vehicles, Design Fundamentals", CRC Press, 2003.
- 2. MehrdadEhsani, YimiGao, E Sebastian Gay, Ali Emadi, "Modern Electric, Hybrid Electric and Fuel Cell VehiclesFundamentals", Theory and Design, CRC Press, 2004.
- 3. James Larminie, John Lowry, "Electric Vehicle Technology Explained", Wiley, 2003.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code:	Course Code: Course Name: Program Elective III				
EI-PE-203	System Theory (System Theory (v) 3 -			
Year and	2 nd Yr.	Contact hours per we	eek: (3 Hrs)		
Semester	3 rd Semester	Exam: (3 Hrs)			
Pre-requisite of	Control Systems	Evalua	ation		
course	Control Systems	CIE: 40	SEE: 60		
Course Objectiv	es:				
1. It aims to equ	ip the students with advanced concepts c	f control			
2. To provide ad	lequate knowledge about tools at an inter	mediate to advanced lev	vel.		
3. To provide st	udents to serve them well towards tacklin	ng more advanced level	of control systems		
problems.					
4. To provide ki	nowledge about different aspects like stat	oility, controllability and	l observability.		
Course Outcom	es: On completion of the course, student	would be able to:			
CO1 Develop					
CO2 Evaluate	CO2 Evaluate controllability of the systems				
CO3 Evaluate	e observabilty of the systems				
CO4 Evaluate	e stability of the systems				
CO5 Develop					

Module No	CONTENTS OF MODULE		COs
1	Controllability & Observability: Introduction, general concept of controllability, general concept of observability, controllability tests for continuous time systems, observability tests for continuous time systems, observability for discrete time systems, controllability & observability for discrete time systems, controllability & observability of state model in Jordan canonical form, loss of controllability & observability due to sampling, controllability & observability canonical forms of state model.	8	CO1, CO2, CO3
2	State variables and input output descriptions: introduction, input output maps from state models, LTI continuous time systems, LTI discrete time systems, linear time varying systems, output controllability, reducibility, state model from input output maps realization of scalar transfer functions, phase variable canonical forms, realization of transfer function matrices, realization of pulse transfer functions.	8	CO1, CO5
3	Stability: Introduction, equilibrium points, stability concepts and definitions, stability of linear time invariant systems, equilibrium stability of non-linear continuous time autonomous systems, direct method of Lyapunov and the linear continuous time autonomous systems, aids to find Lyapunov functions for non-linear continuous time autonomous systems, use of Lyapunov	8	CO1, CO4

	functions to estimate transients, the direct method of Lyapunov and discrete time autonomous systems.		
4	Model control: Introduction, controllable and observable companion forms for single input/single output systems & multi-input/multi-output systems, the effect of state feedback on controllability & observability, pole placement by state feedback, full order observers, the separation principle, reduced order observers, deadbeat control by state feedback, deadbeat observers.	8	CO1, CO5

- **1.** Modern control system theory by M. Gopal (New age international)
- **2.** Modern control systems a manual of design methods by John A Borrie (Prentice hall international)
- **3.** Digital control and state variable methods by M. Gopal (Tata McGraw Hill)

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.
 - -----

Course Code:	Course Name: Program Elec	Course Name: Program Elective-III			
EI-PC-203	Intelligent Inst	rumentation (vi)	3 3		
Year a	nd 2 nd Year.	Contact hours pe	er week: (3Hrs)		
Semester	3 rd Semester	Exam: (3 Hrs)			
Pre-requisite	of Measurements and	Evaluation			
course	Instrumentations	CIE: 40	SEE: 60		
Course Object	ives:				
1. Study the con	ncept of intelligent instrumentation	system			
2. Study of inte	lligent instrumentation components				
3. Study the cha	aracteristic function of Smart Sense	ors			
4. Detail study	4. Detail study of Standards for smart sensors				
5. Study and d	5. Study and development of data acquisition system for smart sensor system				
6. Detail study	6. Detail study and applications of Microelectro-mechanical systems				
Course Outcon	Course Outcomes: On completion of the course, student would be able to:				
CO1 Ability	to understand the concept of intelligent instrumentation system				
CO2 Able	Able to learn characteristic function of Smart Sensors				

CO3	Acquire the knowledge of Standards for smart sensors and their Industrial applications.
CO4	Able to learn and analyze the various principles & concepts of data acquisition system for
	smart sensor system.
CO5	To implement new and emerging technologies to analyze, design, maintain reliable, safe, and
	cost effective solution Smart sensors development including Microelectro-mechanical systems

Module No	COURSE SYLLABUS CONTENTS OF MODULE		COs
1	Definition of intelligence and of an intelligent instrumentation system; features characterizing intelligence and features of intelligent instrumentation; components of intelligent instrumentation; Block diagram of an intelligent instrumentation system.		CO1 CO2
2	Smart Sensors: Primary sensors; Excitation; Amplification; Filters; Converters; Compensation (Nonlinearty: look up table method, polygon interpolation, polynomial interpolation, cubic spline interpolation, Approximation & regression; Noise & interference; Response time; Drift; Cross-sensitivity); Information Coding/ Processing; Data Communication; Standards for smart sensor interface; The automation.		CO2 CO3
3	Interfacing Instruments & Computers: Basic issues of interfacing; Address decoding; Data transfer control; A/D converter; D/A converter; Other interface considerations.		CO4
4	Software Filters (Digital Filters) : Description of Spike Filter, Low pass filter, High pass filter etc. Recent Trends in Sensor Technologies: Introduction; Film sensors (Thick film sensors, Thin film sensors); Semiconductor IC technology –standard methods; Microelectro-mechanical systems (Micro-machining, some application examples); Nano-sensors.		CO4 CO5

TEXT BOOKS: REFERENCE BOOKS:

- 1. Alan S. Morris, 'Principles of measurement & Instrumentation', PHI.
- 2. Wai-Kai Chen, 'Passive and Active Filters: Theory and Implementations', John Willey & Sons (Asia) Ptr. Ltd., New Delhi.
- 3. D. Patranabis, 'Sensors & Transducers', PHI, 2003.
- 4. Roman Kuc, 'Introduction to Digital Signal Processing', Mc Graw Hill Introduction Edition N.York.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code:		Course Name: Program Elective-II	II,	L	Τ	Р	С		
EI-PE-203		INDUSTRIAL POWER ELECTRONICS (vii) 3		-	-	3			
Year and		2 nd Yr.	Contact hours per week: (3 Hr						
Semester		3 rd Semester	Exam: (3 Hrs)						
Pre-requisite		Power Electronics Evaluation							
of course			CIE: 40	SE	SEE: 60				
Course Objectives:									
	. To study the basic working theory of different power electrons devices.								
		control of DC drive with the help of p		s.					
3. To s	tudy dif	ferent industrial application of power e	lectronic devices.						
4. To s	tudy the	control of AC electric drive with the h	elp of power electron	s devices.					
Course	Outcon	nes: On completion of the course, stude	ent would be able to:						
CO1	CO1 To apprise with the basic working theory of different power electrons devices.								
CO2		To understand the control of DC drive				es.			
CO3	3 To understand different industrial application of power electronic devices.								
CO4	To understand the control of AC electric drive with the help of power electrons devices.								
Modu		COURSE SYLLABUS					COs		
le No		CONTENTS OF MO	ODULE		ш	Hrs COs			
		DUCTION: Review of semiconducto	1	,					
	Power Transistors, MOSFETS, IGBT, SCR, GTO, MCT, DIAC, TRAIC, PUT,						CO1, CO2		
	SUS, SCS), Review of choppers, converters, inverters, cyclo-converters.								
1		CLOSED LOOP CONTROL OF DC DRIVES: Single Quadrant variable speed							
1		rives; Four Quadrant variable speed drives, Armature voltage control at							
		nt field, field weakening, details of vari		1					
		employing armature reversal by a con		ving a dual					
		ter with non- simultaneous and simulta							
		STRIAL APPLICATION OF POWI							
		l of electric drives used in manufa	0 1				l		
		ion of electric drives using solid state					CO2,		
2		ve systems. Testing for drive cont			8		CO3		
		rocessor based drive controllers, and							
		ial drives, design and testing of thyris	tor based controllers	for electric					
	drives.			0 1 1					
3	-	JENCY CONTROLLED INDUCTION							
	•	VSI-3 phase VSI, six step inverter	U				CO4		
		ng and multi-quadrant control, VSI vari	1 1		8				
	-	CSI- 3 phase CSI, current sources, Bt		ristor CSI,					
	PWM	GTO CSI, CSI variable frequency drive	es.						

4	SELF -CONTROLLED SYNCHRONOUS MOTOR DRIVES: Self-control, brushless &commutator less, DC & AC motors synchronous motor control- operation of a wound field and permanent magnet synchronous motor from a variable frequency current source; source, permanent magnet, operation of a permanent magnet motor at the maximum torque to armature current ratio and at the maximum torque to flux ratio; operation of self-controlled synchronous motor drives- CSI drives, VSI drives, cyclo-converters drives, brush-less and commutator-less AC & DC motor drives and their applications.	8	CO4
---	--	---	-----

TEXT BOOKS: REFERENCE BOOKS:

- 1. Industrial Electronics by Frank D. Petruzella (Mc Graw-Hill)
- 2. Industrial Electronics by Morris (McGraw-Hill)
- 3. Power semiconductor drives by G.K.Dubey, Prentice Hall Inc, New Jersey

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.