Kurukshetra University, Kurukshetra

(Established by the State Legislature Act XII of 1956) ('A+' Grade, NAAC Accredited)

> ।। योगस्थः कुरु कर्माणि।। समबुद्धि व योग युक्त होकर कर्म करो

(Perform Actions while Steadfasting in the State of Yoga)

DEPARTMENT OF INSTRUMENTATION (DOI)

LOCF/OBE/NBA CURRICULUM (2020 -2021)

Program Name: B. Tech.-Electrical and Instrumentation Engineering (For the Batches from 2020-2021 in phased manner)

(UTD Only)

LOCF/OBE/NBA CURRICULUM (2020 -2021)

Program Name: B. Tech.-Electrical and Instrumentation Engineering (For the Batches Admitted From 2020-2021)

VISION

Be globally acknowledged as a distinguished centre of academic excellence.

MISSION

To prepare a class of proficient scholars and professionals with ingrained human values and commitment to expand the frontiers of knowledge for the advancement of society.

DEPARTMENT VISION AND MISSION

VISION

• To become a model department as a Centre of quality education, research with innovation and recognition at National and International level for serving society.

MISSION

- M1: To provide quality education to aspiring young minds for improving their skills, inculcating values, creating leadership qualities and enhance research with innovative methods.
- M2: To produce young engineers capable to be utilized in the areas of New Technological Design, Environment, ethics and sustainable technologies.
- M3: To develop Teaching-Learning methods which can produce socially committed good professional human being who can contribute effectively in Nation building and represent Country Internationally.

Mapping of University Vision and Mission to Department Vision and Mission

Acclaimed as modal Centre of Learning and Research by

University Vision and Mission	Department Vision and Mission
High quality knowledge delivery through state of art	Yes
infrastructure and ethical values to the students	1 es
Students excellence will makethem professionals and	Yes
innovators emerging as global leaders	ies
Research and development will help in furtherance of	Vac
Faculty knowledge	Yes

Programme Educational Objectives (PEOs):

The Department of Instrumentation in consultation with various stakeholders have formulated the Programme Educational Objectives (PEO's) that are broad statements that describe the career and professional accomplishments that the program is preparing its graduates to achieve in few years, subsequent to receiving the degree. The PEO's of the B. Tech. programme in Electrical and Instrumentation Engineering are as follows:

- **PEO1:**The graduates will become competent by applying their technical and managerial skills.
- **PEO2:**The graduates will be able to adapt to any environment and succeed in higher positions in contemporary rapidly evolving technologies in Electrical and Instrumentation engineering field.
- PEO3:The graduates will engage themselves in the life-long learning by pursuing higher education and participation in research and development activities to meet all challenges to transform them as responsible citizens of the nation

Program Specific Outcomes (PSO's):

- **PSO1:** Clearly understand the fundamental concepts of Electrical and Instrumentation Engineering
- PSO2: Graduates will be able to formulate and solve real life problems in the area of Electrical and Instrumentation Engineering
- PSO3: Graduate will possess the skills to communicate effectively in both oral and written forms, demonstrating the practice of professional ethics, and responsive to societal and environmental needs.

PEOs to Mission statement mapping

PEO's	MISSI	ON OF THE DEPART	MENT
PEUS	M1	M2	M3
PEO1	3	3	1
PEO2	2	3	2
PEO3	2	2	3

Program Outcomes (PO) with Graduate Attributes

Programme Outcomes are attributes of the graduates from the programme that are indicative of the graduates' ability and competence to work as an engineering professional upon graduation. Program Outcomes are statements that describe what students are expected to know or do by the time of graduation, they must relate to knowledge and skills that the students acquire from the programme. The achievement of all outcomes indicates that the student is well prepared to achieve the program educational objectives down the road. The Department of Instrumentation engineering has following twelve PO's. The course syllabi and the overall curriculum are designed to achieve these outcomes:

S. No	Graduate Attributes	Program Outcomes (POs)
1	Engineering Knowledge	PO1: Able to understand the fundamentals of mathematics, science, Electrical and Instrumentation Engineering and apply them to provide solution of complex engineering problems.
2	Problem Analysis	PO2: Ability to analyze, identify, formulate and solve engineering problems in Electrical and Instrumentation Engineering using basic fundamental principles of mathematics and science.
3	Design and Development of Solutions	PO3: Design a system, component or process to meet the desired needs and standards within realistic constraints such as public health and safety, social and environmental considerations.
4	Investigation of Problem	PO4: Design and conduct experiments, as well as do research, analyze and interpret data and give clear solutions.
5	Modern Tool usage	PO5: Use and learn the recent techniques, skills and modern engineering and IT tools necessary for engineering practice with an understanding of the limitations.
6	Engineer and society	PO6 : To give basic knowledge of social, economic, safety and cultural issues relevant to professional engineering.
7	Environment and sustainability	PO7: To impart knowledge related to the design and development of modern systems which are environmentally sensitive and to understand the importance of sustainable development.
8	Ethics	PO8: Apply ethical principles and professional responsibilities in engineering practice.
9	Individual & team work	PO9: Ability to visualize and function as an individual and as a member in a team of a multi-disciplinary environment.
10	Communication	PO10: Ability to communicate effectively on complex engineering ideas to the engineering community & the society at large. (i.e. being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions)
11	Lifelong learning	PO11: To impart education to learn and to engage in independent and life – long learning in the technological change.
12	Project management and finance	PO12: Ability to handle administrative responsibilities, manage projects & handle finance related issues in a multidisciplinary environment.

Mapping of PEO's with PO's

S. No.	Program Educational Objectives	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PS01	PSO2	PSO3
1	The graduates will become competent by applying their technical and managerial skills.	1	V	1												
2	The graduates will be able to adapt to any environment and succeed in higher positions in contemporary rapidly evolving technologies in Electrical and Instrumentation engineering field.	√	1	V	V	√	√	V	V	√	V	√	√	V	√	√
3	The graduates will engage themselves in the life-long learning by pursuing higher education and participation in research and development activities to meet all challenges to transform them as responsible citizens of the nation			√	√			√	√	√		√	√	√	√	√

LOCF/OBE/NBA CURRICULUM (2020 -2021)

Program Name: B. Tech.-Electrical and Instrumentation Engineering **Undergraduate Degree Program**

General, Course structure & Theme & Semester-wise credit distribution

A. Definition of Credit:

1 Hour Lecture (L) per week	1 credit
1 Hour Tutorial (T) per week	1 credit
1 Hour Practical (P) per week	0.5 credits
and/or	
2 Hours Practical(Lab)/week	1 credit

B. Total credits:

Total credits for a student to be eligible to get Under Graduate degree in Engineering are 174.0 credits. A student will be eligible to get Under Graduate degree with Honors' or additional Minor Engineering, if he/she completes an additional 20 credits. These could be acquired through MOOCs.

C. Structure of Undergraduate Engineering program:

S. No.	Category	Breakup of Credits (Total 174.0)
1	Humanities, Social Sciences and Management Courses	07.0
2	Basic Science Courses	17.0
3	Engineering Science Courses including workshop, drawing,	17.0
	basics of Electrical/ Mechanical/ Computer etc.	
4	Professional Core Courses	83.0
5	Program Elective Courses relevant to the branch	18.5
6	Open Elective Courses: Electives from other technical and /or	22.5
	emerging subjects	
7	Project work, Seminar and Internship in Industry etc.	09.0
8	Mandatory Courses: [Environmental Sciences, Induction	
	training, Indian Constitution, Essence of Indian Traditional	(non-credit)
	Knowledge].	
	Total	174.0

D. Course code and definition:

Category of	Definitions
Course/ Code	
${f L}$	Lecture
T	Tutorial
P	Practical
С	Credit
CIE	Continuous Internal Evaluation
SEE	Semester End Examination

BS	Basic Science Courses
ES	Engineering Science Courses
HSM	Humanities, Social Sciences and Management Courses
EI	Electrical and Instrumentation Engineering
PC	Professional core courses
PE	Professional Elective courses
OE	Open Elective courses
PRBS/ PRPC/	Practical Basic Science/Professional Core/
PRES/PRPE/	Engineering Science/ Program Elective/
PROE/ PRHSM	Open Elective/Humanities, Social Sciences and Management Courses
MC	Mandatory courses
PROJ	Project

E. Details of Structure and distribution of credits to various courses:

S.	Cotogon				Te	achin	g Sch	edule
No	Categor y	- Course No.	Course Title	C	L	Т	P	Cont. Hrs.
		Humanit	Course	S				
1	HSM	EI-HSM-107	English	2.0	2	-	-	2
2	PRHS M	EI-PRHSM-07	Language Lab	1.0	-	-	2	2
3	HSM	EI-HSM-211	Basics of Industrial Sociology, Economics and Management	2.0	2	0		2
4	HSM	EI-HSM-212	Project Planning Estimation and Assessment	2.0	2	0		2
			Total	7.0	6	0	2	8
			Basic Science Courses					
1	BS	EI-BS-101	Physics	4.0	3	1	-	4
2	PRBS	EI-PRBS-01	Physics Lab	1.5	-	-	3	3
3	BS	EI-BS-103	Mathematics-I	3.0	2	1	-	3
4	BS	EI-BS-102	Chemistry	4.0	3	1		4
5	PRBS	EI-PRBS-02	Chemistry Lab	1.5			3	3
6	BS	EI-BS-104	Mathematics-II	3.0	2	1		3
			Total	17.0	10	4	6	20
			Engineering Science Courses					
1	ES	EI-ES-105	Basic Electrical Engineering	4.0	3	1	-	4
2	PRES	EI-PRES-03	Engineering Drawing lab	1.5	-	-	3	3
3	PRES	EI-PRES-05	Basic Electrical Lab	1.0	-	-	2	2
4	ES	EI-ES-106	Programming for Problem Solving	4.0	3	1		4
5	ES	EI-ES-108	Basic Electronics Engineering	3.0	2	1		3
6	PRES	EI-PRES-04	Computer programming Lab	1.5	-	-	3	3
7	PRES	EI-PRES-06	Basic Electronic lab	1.0	-	-	2	2
8	PRES	EI-PRES-08	Workshop Practice Lab.	1.0	-	-	2	2

			Total	17.0	8	3	12	23
			Professional Core Courses					
1	PC	EI-PC-201	Power Systems -I	3.0	2	1		3
2	PC	EI-PC-203	Basic Instrumentation Engineering	3.0	2	1		3
3	PC	EI-PC-205	Network Analysis	3.0	2	1		3
4	PC	EI-PC-207	Transducers and Applications	3.0	2	1		3
5	PRPC	EI-PRPC-09	Network Analysis Lab	1.0			2	2
6	PRPC	EI-PRPC-11	Transducers lab	1.5			3	3
7	PRPC	EI-PRPC-15	Power System-I Lab	1.0			2	2
8	PC	EI-PC-202	Power Electronics-I	4.0	3	1		4
9	PC	EI-PC-204	Electrical Measurements & Instrumentation	4.0	3	1		4
10	PC	EI-PC-208	Electrical Machines-I	4.0	3	1		4
11	PRPC	EI-PRPC-10	Power Electronics-I Lab	1.0			2	2
12	PRPC	EI-PRPC-12	Electrical Measurements & Instrumentation Lab	1.0			2	2
13	PRPC	EI-PRPC-16	Electrical Machines –I lab	1.5			3	3
14	PC	EI-PC-303	Power Electronics-II	4.0	3	1		4
15	PC	EI-PC-307	Power System- II	4.0	3	1		4
16	PC	EI-PC-309	Linear Automatic Control System	4.0	3	1	-	4
17	PRPC	EI-PRPC-17	Power Electronic Lab-II	1.5			3	3
18	PRPC	EI-PRPC-19	Power System Lab- II	1.5			3	3
19	PRPC	EI-PRPC-23	Control System Lab	1.5			3	3
20	PRPC	EI-PRPC-25	Industrial Training-I	**			1\$	1
21	PC	EI-PC-304	Electrical Machines-II	4.0	3	1		4
22	PC	EI-PC-306	Power Plant Engineering	3.0	2	1	-	3
23	PC	EI-PC-308	Digital Signal Processing	4.0	3	1	1	4
24	PRPC	EI-PC-310	Microcontroller & Embedded System	4.0	3	1		4
25	PRPC	EI-PRPC-18	Electrical Machines Lab-II	1.5			3	3
26	PRPC	EI-PRPC-20	Micro-controller Lab	1.5			3	3
27	PRPC	EI-PRPC-22	Digital Signal Processing Lab	1.5			3	3
28	PC	EI -PC-405	Electric Drives	4.0	3	1		4
29	PC	EI-PC-407	Advance Process Dynamics and Control	4.0	3	1	1	4
30	PRPC	EI-PRPC-27	Electric Drives Lab	1.5			3	3
31	PRPC	EI-PRPC-31	Industrial Training-II	**			1\$	1\$
32	PC	EI-PC-406	Industrial Process Control	4.0	3	1		4
33	PRPC	EI-PRPC-24	Process Control Lab	1.5			3	3
34	PRPC	EI-PRPC-28	Seminar	1.0			2	2
			Total	83	46	17	42	105

			Program Elective Courses					
1	PE	EI-PE-206	Program Elective- I	3.0	2	1		3
			i. Control System Components					
			ii. Electrical Energy Conservation					
			and Auditing					
2	PE	EI-PE-305	Program Elective- II	4.0	3	1		4
			i. Microprocessors					
			ii. Analog and Digital Communication					
			iii. Switch Gear and Protection					
3	PRPE	EI-PRPE-21	Program Elective- II Lab	1.5			3	3
			i. Microprocessors					
			ii. Analog and Digital Communication					
			iii. Switch Gear and Protection					
4	PE	EI-PE-302	Program Elective-III	3.0	2	1		3
			i. Electrical Machine Design					
			ii. Mechanical Measurements in Instrumentation					
			iii. Electrical and Hybrid Vehicles					
5	PE	EI -PE-403	Program Elective- IV	3.0	2	1		3
			i. Biomedical Instrumentation					
			ii. Reliability Engineering					
			iii. Wind and Solar Energy Systems					
			iv. Power Quality and FACTS					
6	PE	EI-PE-404	Program Elective- V	4.0	3	1		4
			i. Utilization of Electrical Energy					
			ii. Instrumentation and System Design					
			iii. Fuzzy Logic Control					
			iv. Optical Instrumentation					
			v. Remote Sensing					
			Total	18.5	12	5	3	20
	T	1	Open Elective Courses	T	ı	1	, ,	
1	OE	EI-OE-209	Open Elective-I	3.0	2	1		3
			i. Linear Integrated Circuits					
			ii. Computer Networks					
2	PROE	EI-PROE-13	Open Elective- I Lab	1.5			3	3
			i. Linear Integrated Circuits					
			ii. Computer Networks					
3	OE	EI-OE-210	Open Elective-II	3.0	2	1		3
			i. Digital Techniques					

			ii. Computer Organization					
4	PROE	EI-PROE-14	Open Elective- II Lab	1.0			2	2
			i. Digital Techniques					
			ii. Computer Organization					
5	OE	EI-OE-301	Open Elective- III	4.0	3	1		4
			i. Environment Monitoring Instrumentation					
			ii. Electromagnetic Field Theory					
			iii. Mathematics-III					
			iv. Energy Efficient Systems					
6	OE	EI-OE-401	Open Elective- IV	4.0	3	1		4
			i. Computer Graphics & CAD CAM					
			ii. IoT and IT'S APPLICATIONS					
			iii. Introduction to Python Programming					
7	PROE	EI-PROE-29	Open Elective- IV lab	1.5	-		3	3
			i. Computer Graphics & CAD CAM					
			ii. IoT and IT'S APPLICATIONS					
			iii. Introduction to Python Programming					
8	OE	EI-OE-402	Open Elective- V	3.0	2	1		3
			i. Artificial Intelligence					
			ii. Robotics					
			iii. High Voltage Engineering					
9	PROE	EI-PROE-26	Open Elective- V Lab	1.5			3	3
			i. Artificial Intelligence					
			ii. Robotics					
			iii. High Voltage Engineering					
			Total	22.5	12	5	11	28
			Project Work	I				
1	PROJ	EI-PROJ-02	Minor Project	3.0			6	6
2	PROJ	EI-PROJ-01	Case Study (Project Work)	2.0			4	4
3	PROJ	EI-PROJ-04	Major Project	4.0			8	8
			Total	9.0			18	18
1	MC	EL MC 112	Mandatory Courses		2	0		
1	MC	EI-MC-112	Environmental Science		3	0		3

Detailed First Year Curriculum Contents

B. Tech Electrical and Instrumentation Engineering SCHEME OF EXAMINATIONS

B. Tech. 1st YEAR (SEMESTER-I) (w.e.f. 2020-21)

			Te	eachin	g Sche	edule	Allotment of marks			Exam
Course No.	Course Title	C	L	Т	P	Cont. Hrs.	CIE	SEE	Total	Duration in Hrs.
EI-BS-101	Physics	4	3	1	-	4	40	60	100	3 Hrs
EI-BS-103	Mathematics-I	3	2	1	-	3	40	60	100	3 Hrs
EI-ES-105	Basic Electrical Engineering	4	3	1	-	4	40	60	100	3 Hrs
EI-HSM-107	English	2	2	-	-	2	40	60	100	3 Hrs
EI-PRBS-01	Physics Lab	1.5	-	-	3	3	30	45	75	3 Hrs
EI-PRES-03	Engineering Graphics and Design lab	1.5	-	-	3	3	40	60	100	3 Hrs
EI-PRES-05	Basic Electrical Lab	1	-	-	2	2	20	30	50	3 Hrs
EI-PRHSM-07	Language Lab	1	-	-	2	2				
	Total	18	10	3	10	23	250	375	625	

B.Tech. 1stYEAR (SEMESTER-II) (w.e.f.2020-21)

	D.Techi 1				g Sche			ment of	marks	Exam
Course No.	Course Title	С	L	Т	P	Cont. Hrs.	CIE	SEE	Total	Duration in Hrs.
EI-BS-102	Chemistry	4	3	1		4	40	60	100	3 Hrs
EI-BS-104	Mathematics-II	3	2	1		3	40	60	100	3 Hrs
EI-ES-106	Programming for Problem Solving	4	3	1		4	40	60	100	3 Hrs
EI-ES-108	Basic Electronics Engineering	3	2	1		3	40	60	100	3 Hrs
EI-MC-112	Environmental Science	**	3	0		3	40**	60**	100**	3 Hrs
EI-PRBS-02	Chemistry Lab	1.5			3	3	30	45	75	3 Hrs
EI-PRES-04	Computer programming Lab	1.5	-	-	3	3	30	45	75	3 Hrs
EI-PRES-06	Basic Electronic lab	1	-	-	2	2	20	30	50	3 Hrs
EI-PRES-08	Workshop Practice Lab.	1	-	-	2	2	20	30	50	3 Hrs
	Total	19	13	4	10	27	260	390	650	

^{**} Industrial training is noncredit, audit pass course which will not counted towards marks/grade calculations

B. Tech Electrical and Instrumentation Engineering SCHEME OF EXAMINATIONS

B. Tech. 2nd YEAR (SEMESTER-III) (w.e.f. 2021-22)

		,	Te	eachin	g Sche	edule	Allot	ment of	marks	Exam
Course No.	Course Title	С	L	Т	P	Cont. Hrs.	CIE	SEE	Total	Duration in Hrs.
EI-PC-201	Power Systems-I	3	2	1		3	40	60	100	3 Hrs
EI-PC-203	Basic Instrumentation	3	2	1		3	40	60	100	3 Hrs
	Engineering									
EI-PC-205	Network Analysis	3	2	1		3	40	60	100	3 Hrs
EI-PC-207	Transducers and	3	2	1		3	40	60	100	3 Hrs
	Applications									
EI-OE-209	Open Elective-I	3	2	1		3	40	60	100	3 Hrs
EI-HSM-211	Basics of Industrial	2	2	0		2	40	60	100	3 Hrs
	Sociology, Economics and									
	Management									
EI-PRPC-09	Network Analysis Lab	1			2	2	20	30	50	3 Hrs
EI-PRPC-11	Transducers lab	1.5			3	3	20	30	50	3 Hrs
EI-PROE-13	Open Elective- I Lab	1.5			3	3	20	30	50	3 Hrs
EI-PRPC-15	Power System-I Lab	1			2	2	20	30	50	3 Hrs
	Total	22	12	5	10	27	320	480	800	

Open	Open Elective –I							
i.	Linear Integrated Circuits							
ii.	Computer Networks							

B.Tech. 2nd YEAR (SEMESTER-IV) (w.e.f. 2021-22)

			Te	eachin	g Sche	edule	Allot	ment of	marks	Exam
Course No.	Course Title	С	L	Т	P	Cont. Hrs.	CIE	SEE	Total	Duration in Hrs.
EI-PC-202	Power Electronics-I	4	3	1		4	40	60	100	3 Hrs
EI-PC-204	Electrical Measurements & Instrumentation	4	3	1	1	4	40	60	100	3 Hrs
EI-PE-206	Program Elective- I	3	2	1	1	3	40	60	100	3 Hrs
EI-PC-208	Electrical Machines-I	4	3	1		4	40	60	100	3 Hrs
EI-OE-210	Open Elective-II	3	2	1		3	40	60	100	3 Hrs
EI-HSM-212	Project Planning Estimation and Assessment	2	2	0		2	40	60	100	3Hrs
EI-PRPC-10	Power Electronics-I Lab	1			2	2	20	30	50	3 Hrs
EI-PRPC-12	Electrical Measurements & Instrumentation Lab	1			2	2	20	30	50	3 Hrs
EI-PROE-14	Open Elective- II Lab	1			2	2	20	30	50	3 Hrs
EI-PRPC-16	Electrical Machines –I lab	1.5			3	3	30	45	75	3 Hrs
	Total	24.5	15	5	09	29	330	495	825	

Progra	nm Elective- I	Open 1	Elective- II
i.	Control System Components	i.	Digital Techniques
ii.	Electrical Energy Conservation and Auditing	ii.	Computer Organization

B. Tech Electrical and Instrumentation Engineering SCHEME OF EXAMINATIONS

B. Tech. 3rd YEAR (SEMESTER-V) (w.e.f. 2022-23)

			Te	eachin	g Sche	edule	Alloti	ment of	marks	Exam
Course No.	Course Title	C	L	Т	P	Cont. Hrs.	CIE	SEE	Total	Duration in Hrs.
EI-OE-301	Open Elective- III	4	3	1	1	4	40	60	100	3 Hrs
EI-PC-303	Power Electronics-II	4	3	1		4	40	60	100	3 Hrs
EI-PE-305	Program Elective- II	4	3	1		4	40	60	100	3 Hrs
EI-PC-307	Power System- II	4	3	1		4	40	60	100	3 Hrs
EI-PC-309	Linear Automatic Control	4	3	1		4	40	60	100	3 Hrs
	System									
EI-PRPC-17	Power Electronic Lab-II	1.5			3	3	30	45	75	3 Hrs
EI-PRPC-19	Power System Lab- II	1.5			3	3	30	45	75	3 Hrs
EI-PRPE-21	Program Elective- II Lab	1.5			3	3	30	45	75	3 Hrs
EI-PRPC-23	Control System Lab	1.5	1		3	3	30	45	75	3 Hrs
EI-PRPC-25	Industrial Training-I	**			1\$	1	40**	60**	100**	
	Total	26	15	5	13	33	320	480	800	

^{\$} Evaluation seminar for Industrial Training-I

^{**} Industrial training is noncredit, audit pass course which will not counted towards marks/grade calculations

Open Elective- III			am Elective- II
i.	Environment Monitoring Instrumentation	i.	Microprocessors
ii.	Electromagnetic Field Theory	ii.	Analog and Digital Communication
iii.	Mathematics-III	iii.	Switch Gear and Protection
iv.	Energy Efficient Systems		

B. Tech. 3rd YEAR (SEMESTER-VI) (w.e.f. 2022-23)

			Te	eachin	g Sche	edule	Allot	ment of	marks	Exam
Course No.	Course Title	C	L	Т	P	Cont. Hrs.	CIE	SEE	Total	Duration in Hrs.
EI-PE-302	Program Elective-III	3	2	1	-	3	40	60	100	3 Hrs
EI-PC-304	Electrical Machines-II	4	3	1	-	4	40	60	100	3 Hrs
EI-PC-306	Power Plant Engineering	3	2	1	-	3	40	60	100	3 Hrs
EI-PC-308	Digital Signal Processing	4	3	1		4	40	60	100	3 Hrs
EI-PC-310	Microcontroller &	4	3	1		4	40	60	100	3 Hrs
	Embedded System									
EI-PRPC-18	Electrical Machines Lab-II	1.5	-		3	3	30	45	75	3 Hrs
EI-PRPC-20	Micro-controller Lab	1.5			3	3	30	45	75	3 Hrs
EI-PRPC-22	Digital Signal Processing	1.5			3	3	30	45	75	3 Hrs
	Lab									
EI-PROJ-02	Minor Project	3			6	6	50	100	150	3 Hrs
	Total	25.5	13	5	15	33	340	535	875	

Progra	Program Elective- III								
i.	Electrical Machine Design								
ii.	Mechanical Measurements in Instrumentation								
iii.	Electrical and Hybrid Vehicles								

B. Tech Electrical and Instrumentation Engineering SCHEME OF EXAMINATIONS

B. Tech. 4thYEAR (SEMESTER-VII) (w.e.f. 2023-24)

			Te	eachin	g Sche	dule	Alloti	ment of	marks	Exam
Course No.	Course Title	C	L	Т	P	Cont. Hrs.	CIE	SEE	Total	Duration in Hrs.
EI-OE-401	Open Elective- IV	4	3	1		4	40	60	100	3 Hrs
EI -PE-403	Program Elective- IV	3	2	1		3	40	60	100	3 Hrs
EI -PC-405	Electric Drives	4	3	1		4	40	60	100	3 Hrs
EI-PC-407	Advance Process Dynamics	4	3	1		4	40	60	100	3 Hrs
	and Control									
EI-PRPC-27	Electric Drives Lab	1.5			3	3	30	45	75	3 Hrs
EI-PROE-29	Open Elective- IV lab	1.5			3	3	30	45	75	3 Hrs
EI-PROJ-01	Case Study (Project Work)	2			4	4	40	60	100	3 Hrs
EI-PRPC-31	Industrial Training-II	**			1\$	1\$	40**	60**	100**	3 Hrs
	Total	20	11	4	11	26	260	390	650	

^{\$} Evaluation seminar for Industrial Training-I

^{**} Industrial training is noncredit, audit pass course which will not counted towards marks/grade calculations

Open l	Elective- IV	Progra	am Elective- IV
i.	Computer Graphics & CAD CAM	i.	Biomedical Instrumentation
ii.	IoT and IT'S APPLICATIONS	ii.	Reliability Engineering
iii.	Introduction to Python Programming	iii.	Wind and Solar Energy Systems
		iv.	Power Quality and FACTS

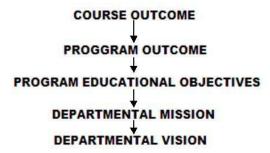
B. Tech. 4th YEAR (SEMESTER-VIII) (w.e.f. 2023-24)

	Course Title		Teaching Schedule			Allot	ment of	Exam		
Course No.		C	L	Т	P	Cont. Hrs.	CIE	SEE	Total	Duration in Hrs.
EI-OE-402	Open Elective- V	3	2	1		3	40	60	100	3 Hrs
EI-PE-404	Program Elective- V	4	3	1	-	4	40	60	100	3 Hrs
EI-PC-406	Industrial Process Control	4	3	1	-	4	40	60	100	3 Hrs
EI-PRPC-24	Process Control Lab	1.5			3	3	30	45	75	3 Hrs
EI-PROE-26	Open Elective- V Lab	1.5			3	3	30	45	75	3 Hrs
EI-PRPC-28	Seminar	1.0			2	2	20	30	50	3 Hrs
EI-PROJ-04	Major Project	4			8	8	40	60	100	3 Hrs
	Total	19	8	3	16	27	240	360	600	

Open Elective V		Progra	am Elective V
i.	Artificial Intelligence	i.	Utilization of Electrical Energy
ii.	Robotics	ii.	Instrumentation and System Design
iii.	High Voltage Engineering	iii.	Fuzzy Logic Control
		iv.	Optical Instrumentation
		v.	Remote Sensing

APPENDIX A

Outcome Based Education


Outcome-based education (OBE) is an educational theory that bases each part of an educational system around goals (outcomes). By the end of the educational experience each student should have achieved the goal. There is no specified style of teaching or assessment in OBE; instead classes, opportunities, and assessments should all help students achieve the specified outcomes.

There are three educational Outcomes as defined by the National Board of Accreditation: Program Educational Objectives: The Educational objectives of an engineering degree program are the statements that describe the expected achievements of graduate in their career and also in particular what the graduates are expected to perform and achieve during the first few years after graduation. [nbaindia.org]

Program Outcomes: What the student would demonstrate upon graduation. Graduate attributes are separately listed in Appendix C

Course Outcome: The specific outcome/s of each course/subject that is a part of the program curriculum. Each subject/course is expected to have a set of Course Outcomes

Mapping of Outcomes

APPENDIX B

The Graduate Attributes of NBA

Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

Conduct investigations of complex problems: The problems that cannot be solved by straightforward application of knowledge, theories and techniques applicable to the engineering discipline.

* That may not have a unique solution. For example, a design problem can be solved in many ways and lead to multiple possible solutions. Hat require consideration of appropriate constraints/requirements not explicitly given in the problem statement (like: cost, power requirement, durability, product life, etc.) which need to be defined (modeled) within appropriate mathematical framework that often require use of modern computational concepts and tools.#

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

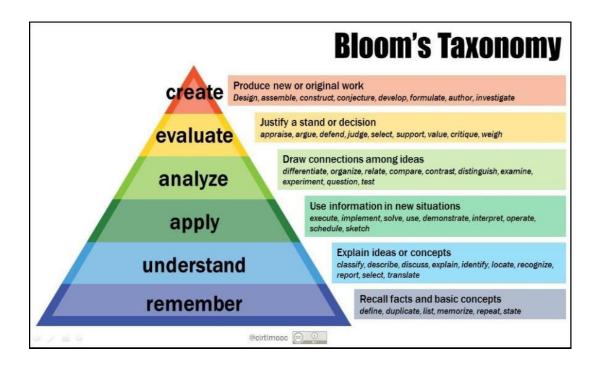
Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.


Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

APPENDIX C

BLOOM'S TAXONOMY

Bloom's taxonomy is a classification system used to define and distinguish different levels of human cognition—i.e., thinking, learning, and understanding. Educators have typically used Bloom's taxonomy to inform or guide the development of assessments (tests and other evaluations of student learning), curriculum (units, lessons, projects, and other learning activities), and instructional methods such as questioning strategies. [eduglosarry.org]

B. Tech Electrical and Instrumentation Engineering SYLLABI OF EXAMINATIONS B. Tech 1st Year (2020-21)

	Code:	Course Name: Physics		L	T	P		C				
EI-BS-1		•	Γ~	3	1	-		4				
Year an		1 st Yr.	Contact hours per	· wee	k: (4	4Hrs	5)					
Semeste		1 st Semester	Exam: (3 Hrs)									
_	uisite of	NIL		Evaluation SEE: 60								
course	01: 4:		CIE: 40			SEE	: 60					
	Objective		of about 100 and 100									
		the students with basic concepts of the students with the students		and los	₁₇₀ 1							
		dents to serve them well towards ta				hveic	val nrok	lame				
^						•		oicilis.				
		owledge and applications that they						4 -				
		owledge about different application			a stai	e eie	ectronic	es etc.				
		s: On completion of the course,	student would be ab.	ie to:								
CO1		nd the applications of Optics	ad their applications									
CO2		nd components of a laser system ar		dinas	M 1110	NO C	anotica					
CO3		nd significance and normalization on the base of Classification of solids on the base of t					•	1				
CO4		rity by Hall measurements	asis of band theory and	ı now	to m	easu	re					
CO5		d Electro and magneto statics, Maxwe	Il'a aquationa									
CO6		SER and Optical fiber for various phy	•	nonts								
Modul	Apply LA	COURSE SYL	<u> </u>	nems.								
e No		CONTENTS OF 1					Hrs	CO'S				
6 110	Flactros			electi	roeta	tic						
	Electrostatics and Magnetostatics: Divergence and curl of electrostatic field; Laplace's and Poisson's equations for electrostatic potential,											
		tatic field and charge density. ele		-								
				_			of dielectrics. Differential and integral calculus: Concept of gradient,					
	operator, divergence and curl Line, surface and volume integrals, Gauss											
1 Divergence theorem, Stokes theorem, Equation of continuity, 8							8	CO5				
1	-Diverge	ence theorem, Stokes theor	rem, Equation of	con	tinui	ty,	8	CO5				
1	–Diverge	ence theorem, Stokes theorence of magnetic induction, Bio	rem, Equation of ot savarts law. Mag	cont netic	tinui vec	ty, tor	8	CO5				
1	-Diverge Diverger potential	ence theorem, Stokes theorence of magnetic induction, Biol., Amperes circuital law, Far	rem, Equation of ot savarts law. Mag raday's law of elec	contentic troma	tinui vec agne	ty, tor	8	CO5				
1	Diverger Diverger potential induction	ence theorem, Stokes theoremee of magnetic induction, Biol., Amperes circuital law, Farn, the basic equations of elect	rem, Equation of ot savarts law. Mag aday's law of electromagnetism, gener	cont netic troma alizat	tinui vec agne tion	ty, tor tic of	8	CO5				
1	-Diverge Diverger potential induction amperes	ence theorem, Stokes theorence of magnetic induction, Biol., Amperes circuital law, Farn, the basic equations of elections, Maxwell's equations. Energy	rem, Equation of ot savarts law. Mag aday's law of elec- tromagnetism, gener ergy in an electroma	cont netic troma alizat	tinui vec agne tion	ty, tor tic of	8	CO5				
1	-Diverge Diverger potential induction amperes Flow of	ence theorem, Stokes theoremee of magnetic induction, Biol., Amperes circuital law, Farn, the basic equations of elect	rem, Equation of ot savarts law. Mag aday's law of electromagnetism, generary in an electromagh examples.	contromaticalization	tinui vecagne tion c fie	ty, tor tic of ld;	8	CO5				
1	-Diverge Diverger potential induction amperes Flow of PHYSIC	ence theorem, Stokes theoremee of magnetic induction, Biology, Amperes circuital law, Farn, the basic equations of electronic law, Maxwell's equations. Encenergy and Poynting vector with CAL OPTICS: Interference:	rem, Equation of ot savarts law. Mag aday's law of electromagnetism, generary in an electromagnetism. Division of wave from the samples.	contromaticalization	tinui vec agne tion c fie	ty, tor tic of ld;	8	CO5				
1	-Diverge Diverger potential induction amperes Flow of	ence theorem, Stokes theoremee of magnetic induction, Biologia, Amperes circuital law, Farn, the basic equations of electrology, Maxwell's equations. Energy and Poynting vector with CAL OPTICS: Interference: Division of amplitude—	rem, Equation of ot savarts law. Mag aday's law of electromagnetism, generatery in an electromagnetism. Division of wave from the examples.	connetic troma ralizate gnetic ont-Fr	tinui vec agne tion c fie	ty, tor etic of ld; el's	8	CO5				
2	-Diverged Diverged potential induction amperes Flow of PHYSIC biprism, interfero	ence theorem, Stokes theoremee of magnetic induction, Biologia, Amperes circuital law, Farm, the basic equations of elect law, Maxwell's equations. Energy and Poynting vector with CAL OPTICS: Interference: Division of amplitude—meter, applications. Diffractions.	rem, Equation of ot savarts law. Mag raday's law of electromagnetism, generargy in an electromagnetism. Division of wave from the examples. Division of wave from the examples of the examples. Division of wave from the examples of the examples.	connetic troma ralizat gnetic ont-Fr Mic e be	tinui vec agne tion c fie resne hels	ty, tor etic of ld; el's on en	8	CO5				
	-Diverged Diverged potential induction amperes Flow of PHYSIC biprism, interferor Fraunhor	ence theorem, Stokes theoremee of magnetic induction, Biologia, Amperes circuital law, Farm, the basic equations of electron law, Maxwell's equations. Encenergy and Poynting vector with CAL OPTICS: Interference: Division of amplitudemeter, applications. Diffraction for and Fresnel diffraction. Frau	rem, Equation of ot savarts law. Mag aday's law of electromagnetism, generated in an electromagnetism. Division of wave from the examples. Division of wave from the examples of wave from the examples of wave from the examples of the example of the examples of the examp	connetic troms alizate gnetic ont-Fr Mice be rough	tinui vec agne tion c fie resne thels etwe	ty, tor tic of ld; el's on en lit.						
	-Diverged Diverger potential induction amperes Flow of PHYSIC biprism, interferor Fraunhor Plane tr	ence theorem, Stokes theoremee of magnetic induction, Biologia, Amperes circuital law, Farm, the basic equations of elect law, Maxwell's equations. Energy and Poynting vector with CAL OPTICS: Interference: Division of amplitude—meter, applications. Diffractions.	rem, Equation of ot savarts law. Mag aday's law of electromagnetism, generated in an electromagnetism of wave from the examples. Division of wave from the examples of wave from the examples of wave from the examples of th	contentic atromatalizate gnetic ont-Fr Mice be roughd res	tinui vec agne tion c fie resne thels etwe n a sl	ty, tor stic of ld; el's on en lit.						
	-Diverged Diverger potential induction amperes Flow of PHYSIC biprism, interferor Fraunhor Plane tr	ence theorem, Stokes theoremee of magnetic induction, Biologia, Amperes circuital law, Farm, the basic equations of electron law, Maxwell's equations. Encenergy and Poynting vector with CAL OPTICS: Interference: Division of amplitude—meter, applications. Diffraction for and Fresnel diffraction. Frautansmission diffraction grating Polarization, quarter wave plate	rem, Equation of ot savarts law. Mag aday's law of electromagnetism, generated in an electromagnetism of wave from the examples. Division of wave from the examples of wave from the examples of wave from the examples of th	contentic atromatalizate gnetic ont-Fr Mice be roughd res	tinui vec agne tion c fie resne thels etwe n a sl	ty, tor stic of ld; el's on en lit.						
	-Diverged Diverged potential induction amperes Flow of PHYSIC biprism, interferor Fraunho Plane trapowers. Polarime	ence theorem, Stokes theoremee of magnetic induction, Biologia, Amperes circuital law, Farm, the basic equations of electron law, Maxwell's equations. Encenergy and Poynting vector with CAL OPTICS: Interference: Division of amplitude—meter, applications. Diffraction for and Fresnel diffraction. Frautansmission diffraction grating Polarization, quarter wave plate	rem, Equation of ot savarts law. Mag raday's law of electromagnetism, generatery in an electromagnetism. Division of wave from the examples. Division of wave from the examples of the electron of the electro	connetic troms ralizate gnetic ont-Fr Mice be roughd res	tinui vec agne tion c fie esne hels etwe a a sl solvi pris	ty, tor tor etic of ld; el's on een lit.						
2	Diverged Diverger potential induction amperes Flow of PHYSIC biprism, interferor Fraunhor Plane transpowers. Polarime Wave no	ence theorem, Stokes theoremee of magnetic induction, Biologia, Amperes circuital law, Farm, the basic equations of electron law, Maxwell's equations. Encenergy and Poynting vector with CAL OPTICS: Interference: Division of amplitude—meter, applications. Diffraction fer and Fresnel diffraction. Frau cansmission diffraction grating Polarization, quarter wave plateter	rem, Equation of ot savarts law. Mag aday's law of electromagnetism, generated in an electromagnetism of wave from the examples. Division of wave from the examples of the example	contentic atromatalizate gnetic ont-Fr Mice be roughd restricted icontenticont	tinui vec agne tion c fie esne shels the a si solvi priss	ty, ttor ttic of ld; el's on een lit. ng m,	8					
	-Diverged Diverged potential induction amperes Flow of PHYSIC biprism, interferor Fraunhor Plane trapowers. Polarime Wave no conduct	ence theorem, Stokes theoremee of magnetic induction, Biologia, Amperes circuital law, Farm, the basic equations of electron law, Maxwell's equations. Encenergy and Poynting vector with CAL OPTICS: Interference: Division of amplitude—meter, applications. Diffraction for and Fresnel diffraction. Fraugansmission diffraction grating Polarization, quarter wave plateter ature of particles, Solid state of	rem, Equation of ot savarts law. Mag aday's law of electromagnetism, generated in an electromagnetism of wave from the examples. Division of wave from the electronic of wave from the electronic of wave plate, its dispersive and electronics and Semiles, Time-dependent	connectic atroma ralizate gnetic ont-Fr Mice be roughd restricted in the control of the control	tinui vec agne tion c fie resne hels colvi pris:	ty, tor tor tice of ld; el's on een lit. ng m, or ne-		CO1				

	values, Free-particle wavefunction and wave-packets, Uncertainty principle. Free electron theory, Band theory of solids, Classification of solids on the basis of band theory, Fermi-Dirac probability function, Position of Fermi level in intrinsic Temperature variation of carrier concentration in extrinsic semiconductors. Electron and hole concentrations in intrinsic semiconductors, Intrinsic density, Intrinsic conductivity, Extrinsic conductivity, Law of mass action, Fermi level in extrinsic semiconductors, Electrical conduction in Extrinsic semiconductors, Diffusion length and mean life time, Hall Effect. Dielectric and Magnetic materials: Introduction, Nonpolar molecules, Polar molecules, Polar and nonpolar molecules in an electric field,		
4	Electric polarization of matter, Electric polarization vector, Electric field in dielectrics, Gauss's law in dielectrics, Relation between three electric vectors D, E and P, Effect of dielectric on capacitance. Magnetisation of matter (Origin of Magnetic Moment, Diamagnetism, Paramagnetism, Ferromagnetism, B, H, M), B-H curve.	4	CO5
5	LASER: Spontaneous and stimulated emissions, Laser action, characteristics of laser beam-concepts of coherence, He-Ne and semiconductor lasers (simple ideas), applications. FIBRE OPTICS: Propagation of light in fibres, numerical aperture, single mode and multi-mode fibres, dispersion, applications.	7	CO1 CO2 CO6

Text Books:

- Perspectives of Modern Physics Arthur Beiser (TMH), 2001 1.
- A Text Book of Optics Brij Lal & Subramanyam, Chand & Co.1981 2.
- David Griffiths, Introduction to Electrodynamics, PHI 2004 3.
- Eisberg and Resnick, Introduction to Quantum Physics, AP, 1985 4.
- Ghatak, Optics, PHI, 1995
- Introduction to Solid State Physics (VII Ed.) Charles Kittel (John Wiley)., 2007

Suggested Reference Books:

- Halliday and Resnick, Physics, 1981
- W. Saslow, Electricity, magnetism and light 2.
- O. Svelto, Principles of Lasers 3.
- Introduction to Solid State Physics (VII Ed.) Charles Kittel (John Wiley)., 2007 4.
- Ouantum Mechanics Powell and Crasemann (Oxford & IBH)

Reference Books:

- 1. Classical Electrodynamics, By J D Jacson, Wiley Publishers, 1970
- 2. Solid State Physics – A. J. Dekkar.; Mac Millan India Limited, 1981
- Fundamentals of Magnetism- B. Cullity Addison-Wiley Publishing, 2008 3.
- Semiconductor devices, physics and technology, S. M. Sze Wiley, 1981 4.
- Introduction to solid state physics C. Kittel, Wiley, 20011

Note for Examiner(s): Question paper will comprise three sections,

1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.

- Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions 2. will be based on concepts, definitions, derivations, principles, construction and working
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- Section A is compulsory and attempt/answer all the four questions carrying 12 marks in
- 2. Attempt/answer two questions each out of the Section - B and Section - C. All questions will carry 12 marks each.

Program Name: B. TechElectrical and Instrumentation Engineering								
Course Code: EI-BS-103	Course Name: Mathematics-I			T 1	P 0	C 3		
Year and	1 st Year	Contact hours per week: (3 Hrs)						
Semester	I st Semester	Exam: (3 Hrs)		`				
Pre-requisite of	The course requires prior	Evalua	ation	ì				
course	knowledge of Differentiation, Integration and vector algebra.	CIE: 40	SEE: 6			0		
Course Objective	s:							
1. To apply Differ	entiation to geometric principles and ex	xpand functions into s	eries	•				
2. To understand I	Partial differentiation and apply to various	ous mathematical situa	ation	s.				
3. To gain knowle	dge on fundamentals of Multiple Integra	rals and their Applicat	ions	•				
4. To explore how	to differentiate and integrate Vectors.	To provide good unde	erstai	nding	g of			
interrelation bet	ween vector differentiation and Integra	ntion through Basic Th	eore	ms.				
Course Outcomes	: On completion of the course, student	would be able to:						
CO1 Unde	rstand the Differentiation and Integrati	on applications.						
CO2 Unde	rstand and solve Partial differentiation	and Multiple integrals	s for	vario	ous			
probl	ems.							
CO3 Apply	y the knowledge of Differentiation to g	eometric principles ar	nd ex	panc	1			
funct	ions into series.			-				
CO4 Stude	ents should be able to use his knowledg	ge of Vector analysis a	nd re	elate	it to			
	flows.	<i>,</i>						

Module	COURSE SYLLABUS CONTENTS OF MODULE		COs
No			COS
1	Applications of Differentiation: Taylor's & Maclaurin's series, Expansion by use of known series, Expansion by forming a differential equation, Asymptotes, Curvature, Tracing of Cartesian curves.	6	CO1, CO2, CO3
2	Partial Differentiation & its Applications: Euler's theorem, Jacobian, Errors and approximations, Maxima-minima	6	CO1, CO2,

	of functions of two variables, Lagrange's method of undetermined multipliers.		CO3
3	Double Integral: Change of order of integration Double integral in polar coordinates, Applications of double integral to find area enclosed by plane curves volume of solids of revolution. Triple integral: Volume of solids,	6	CO1, CO2, CO3
4	Vector Calculus: Differentiation of vectors: Gradient of a scalar field and directional derivative, divergence, and curl of a vector field, Del applied twice to point functions, Del applied to product of point functions. Integration of vectors: line integral, surface integral, volume integral, Green's, Stoke's and Gauss divergence theorems (without proof).	6	CO1, CO2, CO3, CO4

TEXT BOOKS:

- 1. Advanced Engineering Mathematics: E. Kreyszig. 10th Edition, John Wiley & sons,
- 2. Higher Engineering Mathematics: B.S. Grewal. 43rd Edition, Khanna Publications

REFERENCE BOOKS:

- 1. Engineering Mathematics Part-I: S.S. Sastry, 4th Edition, PHI.
- 2. Advanced Engineering Mathematics: R.K. Jain, S.R.K. Iyengar, 3rd Edition, Narosa **Publications**
- 3. Advanced Engineering Mathematics: Michael D. Greenberg, 2nd Edition, Pearson Publications.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code:	Course Name: Basic Electrical Engineering		L	T	P	C
EI-ES-105			3	1	-	4
Year and	1 st year	Contact hours per week: (4Hrs))
Semester	1 st Semester	Exam: (3hrs.)				
Pre-requisite of	NIL	Evaluat	tion			

course		CIE: 40	SEE: 60					
Course (Course Objectives:							
1. To stu	1. To study basics theory, laws and theorem of DC electrical networks.							
2. To stu	2. To study working of various electrical AC circuits, magnetic circuits and its parameters.							
3. To stu	udy the working theory of AC and DC electric	al machines.						
4. To in	troduce the domestic wiring and earthing in el	ectrical system.						
Course (Dutcomes: On completion of the course, stude	ent would be able to:						
CO1	To understand the basic concept of electric	cal circuits, electrical	l laws and network					
	theorems.							
CO2	To understand the basic components and wo	rking theory of DC and	d AC network.					
CO3	To understand the parameters of electrical ne	etworks and equipment	ts.					
CO4	To understand the circuits and working of va	rious electrical machin	nes.					
CO5	To impart basic technical knowledge of 6	electrical wiring syste	em and apply it to					
	technological fields.							

Modu le No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	DC Circuits: Electrical circuit elements (Resistance, inductance and Capacitance), voltage and current sources, Kirchoff current and voltage laws, analysis of simple circuits with dc excitation. Superposition, Thevenin and Norton Theorems. Time-domain analysis of first-order RL and RC circuits.	7	CO1, CO2
2	AC Circuits: Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor, power factor improvement and its significance. Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance. Three-phase balanced circuits, voltage and current relations in star and delta connections.3-phase power equation, measurement of three phase power by two wattmeter method.	7	CO1, CO2, CO3
3	Transformers: Magnetic materials, BH characteristics, working of ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.	7	CO3, CO4
4	Electrical Rotating Machines: Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Loss components and efficiency, starting and speed control of induction motor. Construction and working of Single-phase induction motor and torque-speed characteristic. Construction and working of DC machine and speed control of separately dc motor. Construction and working of synchronous generators.	8	CO3, CO4
5	Electrical Installations: Components of domestic wiring system, earthing system and its significance. Elementary calculations for energy consumption.	4	CO3, CO5

Suggested Text / Reference Books:

- 1. D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.
- 2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.
- 3. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
- 4. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- 5. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.
- 6. B.L. Theraja and A. K. Theraja, "Electrical Technology", Vol-I, S.Chand.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course EI-HSN		Course Name: English	ame: English				
Year a	nd	1 st Yr.	Contact hours per w	eek: (2Hrs)			
Semest	er	1 st Semester	Exam: (3 Hrs)				
Pre-requisite of course		NIL	Evalua	tion			
		NIL	CIE: 40	SEE: 60			
Course	Objective	es:					
To mak	e student u	understand the details of functional En	nglish.				
To mak	e student l	earn the effective communication ski	lls				
Course	Outcome	s: On completion of the course, stude	ent would be able to:				
CO1	The stude	ent will acquire basic proficiency in E	nglish				
CO2	Writing and speaking skills						
CO3	Reading and listening skills						
CO4	Vocabulary enrichment						

Modul e No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Vocabulary Building: The concept of Word Formation Root words from foreign languages and their use in English Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives.	3	CO1, CO2, CO3, CO4

	Synonyms, antonyms, and standard abbreviations.		
2	Basic Writing Skills: Sentence Structures, Use of phrases and clauses in sentences, Importance of proper punctuation, Creating coherence, Organizing principles of paragraphs in documents, Techniques for writing precisely	5	CO2
3	Identifying Common Errors in Writing: Subject-verb agreement, Noun-pronoun agreement, Misplaced modifiers, Articles, Prepositions, Redundancies, Clichés	4	CO1
4	Nature and Style of sensible Writing: Describing, Defining, Classifying, Providing examples or evidence, writing introduction and conclusion	5	CO1, CO2
5	Writing Practices: Comprehension, Précis Writing, Essay Writing	3	CO1, CO2
6	Oral Communication (This unit involves interactive practice sessions in Language Lab): Listening Comprehension, Pronunciation, Intonation, Stress and Rhythm, Common Everyday Situations: Conversations and Dialogues, Communication at Workplace, Interviews, Formal Presentations	4	CO1, CO3

Text Books:

- 1. Practical English Usage. Michael Swan. OUP.1995.
- 2. Remedial English Grammar. F.T. Wood. Macmillan. 2007
- 3. On Writing Well. William Zinsser. Harper Resource Book.2001
- 4. Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press.2006.
- 5. Communication Skills. Sanjay Kumar and Pushp Lata. Oxford University Press.2011.
- **6.** ExercisesinSpokenEnglish.Parts.I-III.CIEFL,Hyderabad.OxfordUniversityPress

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in
- 2. Attempt/answer two questions each out of the Section -B and Section -C. All questions will carry 12 marks.

	rse Code: RBS-01 Course Name: Physics Lab		L -	T	P 3	C 1.5	
Year ar	nd	1 st Yr.	Contact hours per w	eek: (3H	rs)	
Semeste	er	1 st Semester	Exam: (3 Hrs)				
Pre-req	uisite of	NIL	Evalua	tion			
course		NIL	CIE: 30	S	SEE	: 45	
Course	Course Objectives:						
1. Und	erstand the	e applications of Optics					
2. Und	erstand co	mponents of a laser system and their	applications				
3. Und	erstand to	measure conductivity in semiconduc	tors				
4. Und	erstand ba	sics of quantum principles					
Course	Outcome	s: On completion of the course, stude	nt would be able to:				
CO1	Experime	ents in Optics/ principles					
CO2	CO2 Experiments in acoustics/ applications						
CO3	•						
CO4	Experiments in Magnetism/ applications						
CO5	Experime	ents in Semiconductor conductivity/ p	roperties				

Expt.	COURSE SYLLABUS	COs
No	CONTENTS OF MODULE	COS
1	Magnetic field from Helmholtz coil; To study the variation of magnetic field	
1	with distance and to find the radius of coil by Stewart and Gee's apparatus	
2	To find the wavelength of sodium light by Newton's rings experiment.	
3	To find the wavelength of sodium light by Fresnel's biprism experiment.	
4	To find the wavelength of various colours of white light with the help of a	CO1
7	plane transmission diffraction grating.	CO2
5	To find the wavelength of sodium light by Michelson interferometer.	CO3
6	To find the resolving power of a telescope.	CO4
7	To find the specific rotation of sugar solution by using a polarimeter.	
8	To compare the capacitances of two capacitors by Density bridge and hence	
0	to find the dielectric constant of a medium.	
9	To find the frequency of A.C. mains by using sonometer.	
10	To Find Value of high Resistance by substitution method	
11	To Find the value of high resistance by leakage method	
12	To Convert a galvanometer in to an Ammeter of given range.	
13	To study laser beam characteristics, diffraction.	
14	To find the value of e/m for electrons by Helical method, Measurement of	
14	Lorentz force in a vacuum tube.	
15	To find the ionization potential of Mercury using a thyratron tube	
16	To find the value of Planck's constant by using a photo electric cell.	
17	To find the value of Hall Co-efficient of semi-conductor.	
18	To find the band gap of intrinsic semi-conductor using four probe method.	
19	To calculate the hysteresis loss by tracing a B-H curve.	

Text Books:

- 1. Advanced Practical Physics B.L. Worshnop and H.T. Flint (KPH)
- 2. Practical Physics S.L.Gupta & V.Kumar (Pragati Prakashan).
- 3. Advanced Practical Physics Vol.I& II Chauhan & Singh (Pragati Prakashan).

Program Name: B. Tech.-Electrical and Instrumentation Engineering

Course Code: EI-PRES-03 Course Name: Engineering Graphics and Design lab		L T P C - 3 1.5				
Year and	1 st Yr.	Contact hours per w	eek: (3Hrs)			
Semester	1 st Semester	Exam: (3 Hrs)				
Pre-requisite of	NIL	Evalua	ation			
course	NIL	CIE: 40	SEE: 60			
Course Objectiv	res:					
1. To make stud	dents understand about construction of	f various types of Curve	es and scales.			
2. To make stud	dents understand about orthographic p	rojections of Point, Lin	e, Plane and			
regular solid	S.					
3. To make stud	dents understand about sectional views	s and development of ri	ight regular solids			
Course Outcome	es: On completion of the course, stude	ent would be able to:				
CO1 To learn	CO1 To learn about construction of various types of Curves and scales.					
CO2 To learn about orthographic projections of Point, Line and Plane						
CO3 To learn	To learn about orthographic projections of regular solids.					
CO4 To learn	To learn about sectional views and development of right regular solids					

Module No	COURSE SYLLABUS CONTENTS OF MODULE	COs
1	Introduction to Engineering Drawing covering: Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales;	
2	Orthographic Projections covering: Principles of Orthographic Projections-Conventions - Projections of Points and Projection of lines inclined to both planes; Projections of planes inclined Planes - Auxiliary Planes;	CO1, CO2, CO3,
3	Projections of Regular Solids: those inclined to both the Planes- (Pyramid, Prism, Cone and Cylinder) Auxiliary Views. Floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc.	CO4
4	Section of Solids: Sectional View of simple right regular solids, Development of Surfaces of right regular solids (Pyramid, Prism, Cone and Cylinder)	

Suggested Text/Reference Books:

1. Bhatt N.D., Panchal V.M. & Ingle P.R., (2014), Engineering Drawing, Charotar Publishing House

- 2. Shah, M.B. & Rana B.C. (2008), Engineering Drawing and Computer Graphics, Pearson Education
- 3. Agrawal B. & Agrawal C. M. (2012), Engineering Graphics, TMHPublication
- 4. Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publishers

Course	Course Code:		Tech-Electr				L	T	P	(С
EI-PRE		Course N	l ame: Basic E	Electrical	Lab.		0	0	2		1
Voor	nd Compostor	1st Year			Contact hou	ırs per v	week	: (2H	Hrs))	
rear a	nd Semester	1st Seme	ster		Exam: (3hr	s.)					
Pre-re	quisite of	т	Basic Science			Evalu	ıatior	1			
course		1	basic Science		CIE: 2	20		SE	E: 3	30	
Course	Objectives:										
1. To st	tudy the different	ent laws an	d theorems of	electric	networks.						
2. To fa	amiliarize with	different l	OC and AC el	ectric net	works						
3. To st	tudy different o	electric equ	ipments and t	heir appl	ication.						
4. Fam	iliarize with th	ne safety ru	les for electric	cal labora	itory.						
Course	Outcomes: O	n completi	on of the cour	se, studei	nt would be ab	ole to:					
CO1	Impart the co	onceptual l	knowledge of	electric c	ircuit laws and	d netwoi	rk the	orer	ns a	nd	
	apply these t										
CO2	Ability to an	nalyze the p	performance of	f an elect	ric circuits as	well as l	handl	ing	of e	lecti	ric
	equipments.										
CO3	_		iples of opera	tion and	the main featu	ires of el	lectri	e net	twoı	rk aı	nd
	their applica										
CO4			nmon electrica	al compo	nents and their	r ratings	. Dev	elop	ski	lls t	O
	use in differ	ent technol									
Expt.				E SYLL						C	Os
No			CONTENT								<u> </u>
1	•		chhoff's curre		nd Kirchhoff's	s voltage	law.				
2	•		evenin's theor								
3	•		rton's theoren								
4			perposition the							~	21
5			ximum power								01
6			of series RLC) 2
7			of parallel RL								D3
8	•		tics of series I				condi	tion	l	C)4
			ance frequency								
9			tics of paralle								
			e its resonance					1.0			
10	Perform three phase power measurement by using two wattmeter's method for										
	balanced three phase load.										
11	To study the basic operation and equivalent circuit of a single-phase										
	transformer.	<u> </u>	gi (G) :		1 1 .	<u> </u>					
12			Short Circuit			ranstorn	ner.				
13			ngle phase tra								
14	•		tics of fluores								
15	To study the	characteris	tics of tungste	en filame	nt lamps.						

Text/Reference Books:

- 1. D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.
- 2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.
- 3. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.

Program Name: R. Tech - Flectrical and Instrumentation Engineering

Program Name: B. TechElectrical and Instrumentation Engineering							
	urse Code: -PRHSM-07	Cource Name: Language Lah					
Ye	ar and	1 st Yr.	Contact hours per	week: (2Hrs)			
Sei	mester	1 st Semester					
Pr	e-requisite of	Functional English	Evalu	ation			
coı	ırse	-	CIE: 00	SEE: 00			
Co	urse Objectiv	es:					
1.	Graduates wil	l attain skills to conduct experiments/	investigations and into	erpret data with			
	reference to s	ystems and standards		-			
2.	Graduates wil	l have ability to communicate effective	vely in written, oral an	d instrumentation			
	formats to put	forth solutions and prepare detailed e	engineering report in the	he process and			
	automation in			1			
3.	Graduates wil	l be able to apply the knowledge, skil	l and attitude as a tean	n player in			
		cuting and managing projects in the a		± •			
	•	eurship in multi-disciplinary environn	0	, .			
Co		es: On completion of the course, stude					
CO		g the role of communicative ability as		needed for			
	placemen	•					
CO		ing communicative ability and soft ski	ills needed for placem	ent			
CO	•	students Industry-Ready through incul	•				

Expt. No	COURSE SYLLABUS CONTENTS OF MODULE	COs
1	GRAMMAR IN COMMUNICATION: Grammar and Usage – Building Blocks, Homonyms, Subject and Verb Agreement, Error Correction - Grammar Application, Framing Questions – Question words, Verbal Questions, Tags, Giving Replies –Types of Sentences, Listening Comprehension –Listening and Ear training.	
2	ASSERTIVE COMMUNICATION: Listening Comprehension in Cross—Cultural Ambience, Telephonic Conversations/Etiquette, Role Play Activities, Dramatizing Situations- Extempore – Idioms and Phrases	
3	CORPORATE COMMUNICATION: Video Sensitizing, Communicative Courtesy – Interactions – Situational Conversations, Time Management, Stress Management Techniques, Verbal Reasoning, Current Affairs – E Mail Communication / Etiquette	CO1, CO2, CO3
4	PUBLIC SPEAKING: Giving Seminars and Presentations, Nuances of Addressing a Gathering - one to one/ one to a few/ one to many, Communication Process, Visual Aids & their Preparation, Accent Neutralization, Analyzing the Audience, Nonverbal Communication.	
5	INTERVIEW & GD TECHNIQUES: Importance of Body Language –Gestures & Postures and Proxemics, Extempore, Facing the Interview Panel, Interview FAQs, Psychometric Tests and Stress Interviews, Introduction to GD, Mock GD Practices.	

Text Books:

- 1. Bhatnagar R.P. & Rahul Bhargava, "English for Competitive Examinations", Macmillian Publishers, India, 1989, ISBN: 9780333925591
- 2. Devadoss K. & Malathy P., "Career Skills for Engineers", National Book Publishers, Chennai, 2013.
- 3. Aggarwal R.S., "A Modern Approach to Verbal & Non-Verbal Reasoning", S.Chand Publishers, India, 2012, ISBN: 8121905516

Program Name: B. Tech.-Electrical and Instrumentation Engineering

Course Code: $\mathbf{L} \mid \mathbf{T}$ \mathbf{C} **Course Name:** Chemistry 3 1 EI-BS-102 1st Yr. Year and **Contact hours per week:** (4Hrs) 2nd Semester Semester Exam: (3 Hrs) **Evaluation Pre-requisite of NIL** course **CIE: 40 SEE: 60 Course Objectives:** The concepts developed in this course will aid in quantification of several concepts in chemistry that have been introduced at the 10+2 levels in schools. Technology is being increasingly based on the electronic, atomic and molecular level modifications. Quantum theory is more than 100 years old and to understand phenomena at nanometer levels, one has to base the description of all chemical processes at molecular levels. **Course Outcomes:** On completion of the course, student would be able to: Analyze microscopic chemistry in terms of atomic and molecular orbitals and inter **CO1** molecular forces. CO₂ Apply the knowledge of conductance to explain various electrochemical phenomenon.

Distinguish the ranges of the electromagnetic spectrum used for exciting different

Rationalize periodic properties such as ionization potential, electronegativity, oxidation

Rationalize bulk properties and processes using thermodynamic considerations.

molecular energy levels in various spectroscopic techniques

states and electronegativity.

Distinguish between various stereoisomers.

CO₃

CO₄

CO5

CO6

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Atomic and molecular structure: Schrodinger equation. Particle in a one-dimensional box solution and its applications for molecules. Molecular orbital theory and its applications to the formation of homonuclear (H ₂ , N ₂) and heteronuclear diatomic molecules (NO, CO, CN) Energy level diagrams of diatomics. Pi (p)-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and the energy level diagrams for [Ni(CO) ₄], [Co(NH ₃) ₆], [PtCl ₂ (NH ₃) ₂] and magnetic properties of transition metal complexes and their magnetic properties.	10	CO1, CO2

2	Spectroscopic techniques and applications: Principles of spectroscopy and selection rules. Electronic spectroscopy. Fluorescence spectroscopy and its applications in medicine. Vibrational and rotational spectroscopy of diatomic molecules. Applications. Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI), surface characterization with Auger electron spectroscopy (AES), X-ray Photoelectron Spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS).	10	CO3
3	Electrochemistry: Conductance of electrolytic solutions, Transference number and its determination by Hittorf method and Moving boundary method, Kohlrausch's law of independent migration of ions, Interionic attraction theory, activity and activity coefficients of strong electrolytes. Use of free energy in chemical equilibria: Thermodynamic functions: Internal energy, enthalpy, entropy and free energy. Estimations of entropy and free energies. Free energy and EMF. Cell potentials, the Nernst equation and applications. pH, Acid-base, oxidation-reduction and solubility equilibria.	10	CO4
4	Periodic properties: Effective nuclear charge, penetration of orbitals, variations of <i>s</i> , <i>p</i> , <i>d</i> and <i>f</i> orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries of molecules: H ₂ O, NH ₃ , CCl ₄ , PCl ₅ , SF ₆ and Pt(NH ₃) ₂ Cl ₂ . Stereochemistry: Representations of 3-dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis.	8	CO4, CO5

Text Books:

- **1.** University chemistry, by B. H.Mahan
- 2. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane
- 3. Fundamentals of Molecular Spectroscopy, by C. N.Banwell
- 4. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M.S. Krishnan
- **5.** Physical Chemistry, by P. W. Atkins
- 6. Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore, 5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Co	rrogram Name: D. TechElectrical and	instrumentation Engin	T	T	P	С
EI-BS-1	I Course Name: Mathematics_II		2	1	0	3
Year and	I st Year	Contact hours per w				
		-	eek.	(311	15)	
Semester	, ,					
	The course assumes prior knowledge	Evalua	tion			
Pre-requis	ite of topics in Matrices,					
of course	Differentiation, Partial Fractions,	CIE: 40		SE	E: 60)
	Partial Differentiation.					
Course Ol	ojectives:	<u> </u>				
1. To exp	olore the Properties of Matrices.					
2. To kno	ow various basic Differential equations and	solve them.				
3. To gai	n knowledge on Laplace transformations an	d ability to apply them in	ı var	ious		
proble	ms					
4. To pro	vide good understanding of Linear and non-	linear Partial Differentia	al equ	uatio	ns.	
Course Or	itcomes: On completion of the course, stude	ent would be able to:				
CO1 U	Inderstand significance and Solve for differ	ent Matrix properties				
CO2	Differentiate between linear and non-linear of	ifferential equations and	l solv	e the	em.	
CO3	Jnderstand and apply Laplace Transformation	ons and use them to solve	e Dif	ffere	ntial	
	equations.					
	Differentiate between linear and non-linear p	artial differential equation	ons.	form	then	 n
	elated to in hand problems and solve them.	artial arriorondar oquali	J110, .	. 01111		
	ciated to in nand problems and solve them.					

Module	COURSE SYLLABUS	Hrs	COs
No	CONTENTS OF MODULE		
1	Matrices & its Applications:, inverse using elementary transformations, consistency of linear system of equations, linear and orthogonal transformations, Eigen values and Eigen vectors, properties of Eigen values.	6	CO1
2	Ordinary Differential Equations & its Applications: Exact differential equations. Equations reducible to exact differential equations. Linear differential equations of second and higher order: complementary function and particular integral, method of variation of parameters to find particular Integral, Cauchy and Legendre linear differential equations, Simultaneous linear Differential equation with constant co-efficients.	6	CO2
3	Laplace Transforms and its Applications: Transforms of derivatives, transforms of integrals, multiplication by t ⁿ , division by t. Evaluation of integrals by Laplace transforms. Laplace transform	6	CO3

	of Unit step function, unit impulse function and periodic function. Inverse Laplace transforms, convolution theorem, application to		
	linear differential equations		
4	Partial Differential Equations and Its Applications: Formation of partial differential equations, Lagrange's linear partial differential equation, First order non-linear partial differential equation, Method of separation of variables and its applications.	6	CO4

TEXT BOOKS:

- 1. Advanced Engineering Mathematics: E. Kreyszig, 10th Edition, John Wiley & son
- 2. Higher Engineering Mathematics: B.S. Grewal. 43rd Edition, Khanna Publication

REFERENCE BOOKS:

- 1. Engineering Mathematics Part-I: S.S. Sastry, 4th Edition, PHI.
- 2. Advanced Engineering Mathematics: R.K. Jain, S.R.K. Iyengar, 3rd Edition, Narosa **Publications**
- 3. Advanced Engg. Mathematics: Michael D. Greenberg, 2nd Edition, Pearson Publications.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code: EI-ES-106	Course Name: Programming for Problem Solving		L 3	T 1	P 0	C 4	
Year and	1 st Year	st Year Contact hours per week: (4Hr			lrs)		
Semester	II nd Semester	Exam: (3 Hrs)					
Pre-requisite of	NIL	Evaluation					
course	NIL	CIE: 40	SEE: 60)	
Course Objective	Course Objectives:						
1. To explain the problem solving concepts using a computer.							
2. To develop problem solutions for the computer by using problem solving tools.							

3. To d	3. To describe the Programming structure of C language.					
4. To c	onvert an Algorithm, Pseudo code and Flowchart into a C program					
5. To fi	ind errors and execute a C program					
Course	e Outcomes: On completion of the course, student would be able to:					
CO1	Understand the fundamental concepts of computerhardware and number systems.					
CO2	Apply the basic programming skills of C Language in problem solving.					
CO3	Use different data types, decision structures, loops, arrays, strings and functions of C-					
	programming to design a computer program.					
CO4	Apply dynamic memory concepts with pointers.					
CO5	Apply various algorithms in solving sorting problems.					
CO6	Apply linear data structures like Stack, Queues and Trees in organizing and traversing					
	data.					

Modul e No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Generations and Classification of Computers - Applications of Computers - Basic Organization of a Computer - Number system - Binary, Decimal, Octal and Hexadecimal – Problems Introduction to C Language: Algorithm, Flowchart, Pseudo-code solution to problem, Basic concepts of a C program, Declaration, Assignment & Print statement, Types of operators and expressions, Programming examples and exercise. Branching and Looping: Two-way selection (if, if- else, nested if- else, cascaded if-else), switch statement, ternary operator? Goto, Loops (For, do- while, while) in C, break and continue, programming examples and exercises.	9	CO1, CO2, CO3
2	Functions: User defined functions-function definition, function declaration, function call, Formal and actual parameters, Categories of functions, Passing parameters to functions- Pass by value, Pass by reference, Recursion- types of recursion, programming example s and exercises. Arrays and Strings: Arrays: Classification of arrays, Storing value in arrays, Using arrays with Functions- passing individual elements of array, passing the whole array, Multidimensional arrays-addition and multiplication of matrices, Searching and Sorting-Linear search, Binary search, Bubble sort, String: Declaring, Initializing, Printing and reading strings, String input and output functions, String handling functions, Arrays of strings, programming examples and Exercises.	9	CO2, CO3, CO5
3	Structures and File Management: Basics of structures-structure data types, type definition, accessing structures, Structure operations, Complex structures-nested structures, structures containing arrays, Array of structures, Structures and Functions, File Management: Creating a file, Declaring file pointer variable, Modes of a file, Opening and closing the files, Input and output operations, Programming examples and exercises.	9	CO3, CO4
4	Pointers: Pointers concepts, Pointers and functions, Arrays and	9	CO4 ,

poi	nters, address arithmetic, Character pointer and functions, Pointers	CO6
top	pointer, Dynamic allocations methods- malloc(), calloc(),	
rea	lloc(),free(), Array of pointers,	
Int	roduction to Data Structures: Primitive and non-primitive data	
typ	es, Definition and applications of Stacks, Queues, Linked Lists and	
Tre	es	

Text Books:

- 1. "The C Programming Language", Brian W. Kernighan and Dennis M. Ritchie, 2nd Edition, PHI, 2012.
- 2. "Problem Solving with C", Jacqueline Jones & Keith Harrow, 1stEdition, Pearson2011.
- 3. "Let Us C", by Yashavant Kanetkar, 5th Edition, BPB

Reference Books:

- 1. "Computer Concepts and C Programming", Vikas Gupta, Dreamtech Press2013.
- 2. "Programming with C", R. S. Bichkar, University Press, 2012.
- 3. "Computer Programming in C", V. Rajaraman, PHI, 2013.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in
- 2. Attempt/answer two questions each out of the Section -B and Section -C. All questions will carry 12 marks.

Course Code: EI-ES-108	Course Name: Basic Electronics En	ourse Name: Basic Electronics Engineering						
Year and	1 st Yr.	Contact hours per w	reek: (3Hrs)					
Semester	2 nd Semester	Exam: (3 Hrs)						
Due meguicite of	EI-BS-101, Physics-I First	Evaluation						
Pre-requisite of	Semester, Introduction to Solid	CIE. 40	CEE. (A					
course	State Physics	CIE: 40	SEE: 60					
Course Objective	Course Objectives:							
1. To impart the basic concepts of Semi-Conductor Electronics.								
2. To lay the	2. To lay the foundation to understand the various semi-conductor devices.							

3.	To impart the basic concept of design and study of various circuits in Electronics.				
4.	4. To lay the foundation for the advance courses in electronics.				
Course	Course Outcomes: On completion of the course, student would be able to:				
CO1	Understand the principles of semiconductor Physics and foundation of various semi-				
	conductor devices.				
CO2	Understand transistors as an amplifier and as a switch and various design parameter of				
	an amplifier.				
CO3	Know the concept of feedback in amplifier and oscillator and design of different				
	oscillator.				
CO4	Understand the constructional geometry of FET family and FET amplifier circuit with a				
	view towards reduced power consumption.				

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Semiconductors p-type and n-type, pn junction diodes and energy band structure, pn junction as a circuit element and its characteristics, half wave and full wave rectifier circuits, basic filter circuits, clipper & clamper circuit. Zener diode and its applications as a voltage regulator. LED its characteristics construction & applications.	6	CO1
2	Transistor PNP and NPN- its fabrication and Characteristics in different configurations. Biasing in transistors, Concept of d.c. and a.c. load line and operating point selection. Transistor action as an amplifier and as a switch, Various amplifiers configurations, Design of amplifier and determination of parameters voltage gain current gain input resistance and output resistance & power gain.	6	CO2
3	Concept and need of feedback in amplifiers, Types of feedback in amplifiers, their effect on the amplifier parameters with their advantages and disadvantages, Cascading in amplifiers, Frequency response of RC Coupled amplifiers with explanation, Oscillators circuits and their types with explanation on their design difference, Multivibrators and their types, design and their applications.	6	CO2 CO3
4	Field Effect Transistors, Constructions and their types, Characteristics of JFET, MOSFET their types and Various amplifier configurations using FET. Characteristics and Construction of SCR, TRIAC, UJT and their basic areas applications.	6	CO4

Reference Books:

- 1. Electronic Devices & Circuits Boylstad & Nashelsky.
- 2. Integrated Electronics By Millman & Halkias.
- 3. Electronic Principles Malvino
- 4. Principles of Electronics V.K. Mehta, Shalu Melta.
- 5. Electronic Circuits Donald L. Shilling & Charles Belowl

Note for Examiner(s): Question paper will comprise three sections,

1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.

- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

		Program Name: B. TechElectrical and in	isti umentation Engineern	ğ			
Course EI-MC-		Course Name: Environmental Science L T P C 3 0 - -				<u>C</u>	
Year ar	nd	1 st Yr. Contact hours per week: (3Hrs)					
Semeste	er	2 nd Semester	Exam: (3 Hrs)	(,			
Pre-reo	Pra-requisite of Fyelustion						
course	•	NIL	CIE: 40**		SEE	: 60	**
Course	Objective	es:	1				
	-	s from economic, political, and social	analysis as they pertain	to th	ne de	esigr	n and
		ronmental policies and institutions.	J J 1			υ	
		nd methods from ecological and physic	cal sciences and their a	pplic	atio	n in	
_	_	oblem solving.					
To stud	y the ethic	al, cross-cultural, and historical conte	xt of environmental iss	ues a	nd t	he li	inks
	•	nd natural systems.					
To intro	duce roles	s and identities of citizens in a comple	x and interconnected w	orld.			
		-					
Course	Outcome	s: On completion of the course, stude	nt would be able to:				
CO1	Understa	nd key concepts from economic, polit	ical, and social analysis	s as t	hey	pert	ain to
	the design and evaluation of environmental policies and institutions.						
CO2							
	application in environmental problem solving.						
CO3	Apprecia	te the ethical, cross-cultural, and histo	orical context of environ	nmen	ıtal i	ssue	s and
		between human and natural systems.					
CO4	Reflect c	ritically about their roles and identitie	s as citizens, consumer	s and			
	environn	nvironmental actors in a complex, interconnected world.					

Module No	COURSE SYLLABUS CONTENTS OF MODULE		Cos
1	The Multidisciplinary nature of environmental studies Definition, scope and importance, Need for public awareness.	3	CO1
2	 Natural Renewable and non-renewable resources: Natural resources and associated problems. a) Forest resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on 	6	CO1 CO2 CO3 CO4

	forests and tribal people. b) Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.		
	c) Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.		
	d) Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies.		
	e) Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification.		
	Role of an individual in conservation of natural resources.		
3	Ecosystems: Concept of an ecosystem, Structure and function of an ecosystem, Producers, consumers and decomposers, Energy flow in the ecosystem, Ecological succession, Food chains, food webs and ecological pyramids,	3	CO3
	Biodiversity and its conservation:		
	 Introduction – Definition: genetic, species and ecosystem diversity. Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values. 		
4	 Hot-spots of biodiversity. Threats to biodiversity: habitat loss, poaching of wildlife, manwildlife conflicts. Endangered and endemic species of India. 	4	CO4 CO2
	• Conservation of biodiversity: in-situ and ex-situ conservation of biodiversity.		
	Environmental Pollution Definition		
5	 Causes, effects and control measures of: Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Thermal pollution, Nuclear hazards Solid waste Management: Causes, effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution. Disaster management 	5	CO1 CO2 CO3 CO4
	Social Issues and the Environment		
6	 From Unsustainable to Sustainable development Urban problems related to energy Water conservation, rain water harvesting, watershed management Resettlement and rehabilitation of people; its problems and concerns. Case studies. 	5	CO1 CO2
	 Environmental ethics: Issues and possible solutions. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case studies. Wasteland reclamation. Consumerism and waste products. Environment Protection Act. 	3	CO3 CO4
-	•		•

	Air (Prevention and Control of Pollution) Act.
	Water (Prevention and Control of Pollution) Act
	Wildlife Protection Act
	Forest Conservation Act
	Issues involved in enforcement of environmental legislation
	Public awareness.
	Human Population and the Environment
	Population growth, variation among nations
	Population explosion – Family Welfare Programme
7	Environment and human health.
/	Human Rights.
	Value Education.
	• HIV/AIDS
	Women and Child Welfare.
	Field Work:
	Visit to a local area to document environmental assets-river / forest
8	/ grassland / hill / mountain.
0	Visit to a local polluted site—Urban/Rural / Industrial / Agricultural.
	Study of common plants, insects, birds.
	• Study of simple ecosystems – pond, river, hill slopes, etc.

Note for Examiner(s): Question paper will comprise three sections,

- Section-A will be compulsory and comprise 4-short answer type questions uniformly 1. spread to the entire syllabus.
- Section-B will comprise 4-questions uniformly spread to the entire syllabus and 2. questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- Section-C will comprise 4-questions uniformly spread to the entire syllabus and **3.** questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section – A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section – B and Section – C. All questions will carry 12 marks.

Course Code: EI-PRBS-02	Course Name: Chemistry Lab		<u>L</u>	T -	P 3	C 1.5
Year and Semester	1 st Yr. Contact hours per week: (3Hrs) 2 nd Semester Exam: (3 Hrs)					
Pre-requisite of	NITT	Evaluation				
course	NIL	CIE: 30	CIE: 30 SEE: 45			5
Course Objectives:						

develop	To teach the fundamentals of basic chemical sciences with hand on experience essential for the development of new technologies to Electrical and Instrumentation engineering.			
Course	Outcomes: On completion of the course, student would be able to:			
CO1	Measuremolecular/system properties such as surfacetension, viscosity, conductance and			
	pH of solutions, alkalinity, chloride content, dissolved oxygen, hardness of water,etc.			
CO2	Identify the number of compounds in a mixture using TLC.			
CO3	Synthesize a small drug molecule and polymer resin.			
CO4	Determine the amount of solute in a solution using spectrophotometers.			
CO5	Measure the kinematic viscosity, pour and cloud point of oil.			

Expt. No	CONTENTS OF MODULE	COs	
NO	CONTENTS OF MODULE		
1	To determine the relative viscosity of a given liquid using Ostwald		
2	viscometer.		
2	Using Redwood viscometer determine the viscosity of an oil sample.	-	
3	To determine the surface tension of a giving liquid using stalagmometer.	-	
4	To determine the alkalinity of a given water sample.		
5	To identify the number of components, present in a given organic mixture		
3	by Thin Layer Chromatography (TLC).		
6	Determination of strength of a given HCl solution by titrating it with a		
6	standardized NaOH solution using conductivity meter.		
7	To determine the strength of a given acid solution by titrating it with a base	1	
7	using pH meter.		
8	Synthesis of a drug (Aspirin/Paracetamol).	CO1, CO2,	
9	To prepare Phenol-formaldehyde and Urea formaldehyde resin.	CO3,	
10	Determination of chloride content of a given water sample.	CO4,	
1.1	To determine temporary and permanent hardness of a given water sample	CO5	
11	by EDTA method.		
10	Determination of the partition coefficient of a substance for its distribution		
12	between two immiscible solvents.		
10	To find out the content of sodium and potassium in a given salt solution by		
13	Flame Photometer.		
4.4	To verify Beer-Lambert law and determine the □max and concentration of	-	
14	unknown solution of KMnO4 using a spectrophotometer.		
1.5	To determine the amount of dissolved oxygen present in a given water		
15	sample.		
16	To find out the pour point and cloud point of a lubricating oil.	1	

SUGGESTED BOOKS:

- 1. A Text Book on Experimental and Calculation Engineering Chemistry, S.S. Dara, S. Chand & Company (Ltd.)
- 2. Essential of Experimental Engineering Chemistry, Shashi Chawla, Dhanpat Rai Publishing Company.
- **3.** Theory & Practice Applied Chemistry O.P. Virmani, A.K. Narula (New Age)

Course Code: EI-PRES-04	Course Name Computer Programming Lab		L 0	T 0	P 3	C 1.5
Year and	1 st Year	Contact hours per v	veek	: (31	Hrs)	
Semester	II nd Semester	Exam: (3hrs.)				
Pre-requisite of	NIL	Evalu	atio	n		
course	NIL	CIE: 30		SE	E: 4	5
Course Objectiv	res:					
1. To write C p	rograms to solve the problems					
2. To compile a	and execute programs in C					
3. To identify t	he syntax errors and semantic errors					
4. To debug the	e program in C					
5. To write C p	rograms to solve the problems					
Course Outcome	s: On completion of the course, studer	nt would be able to:				
CO1 Use flo	owcharts to solve computational proble	ems.				
CO2 Create	Create and develop algorithms with arithmetic and logical operators.					
CO3 Analys	Analyse and implement an algorithm with data types, decision structures, loops,					
arrays,	arrays, strings and functions.					
CO4 Design	Design and develop algorithms using predefined or user-defined functions to solve			lve		
	problems on sorting, searching and file processing.					

Expt.	COURSE SYLLABUS	COa
No	CONTENTS OF MODULE	COs
1	Write a C program to compute roots of quadratic equation $ax^2+bx+c=0$, where	
1	a, b, and c are three coefficients of a quadratic equation are inputs.	
2	Design and develop an algorithm to find the <i>reverse</i> of an integer number.	
	Design and develop an algorithm to check whether given number is	
3	PALINDROME or NOT, Implement a C program for the developed algorithm	
3	that takes an integer number as input and output the reverse of the same with	
	suitable messages. Ex: Num: 2019, Reverse: 9102, Not a Palindrome.	
4	Design and develop a c program to implement simple calculator using switch	
4	case statement.	
5	Draw the flowchart and Write a C Program to compute Sin(x) using Taylor	CO1,
3	series approximation given by $Sin(x) = x - (x^{3}/3!) + (x^{5}/5!) - (x^{7}/7!) +$	CO1,
6	Develop, implement and execute a C program to search a Number in a list	CO2,
U	using linear searching Technique.	CO3,
7	Develop an algorithm, implement and execute a C program that reads N	CO4
/	integer numbers and arrange them in ascending order using Bubble Sort.	
8	Design and develop a C program to read and print a matrix and check whether	
0	a given Matrix is a sparse Matrix or not.	
9	Write and execute a C program to display Pascal Triangle using for loop.	
10	Write a C program to implements the following string manipulation functions	
	till the use wishes to continue (infinite loop): (i) strcpy() (ii) srrlen() (iii) strrev	
	() (iv) strcmp() (v) strcat().	
	Read a sentence and print frequency of vowels and total count of consonants.	
11	Design and develop a C function $RightRotate(x, n)$ that takes two integers x	

	and n as input and returns value of the integer x rotated to the right by n
	positions. Assume the integers are unsigned.
	Draw the flowchart and write a <i>recursive</i> C function to find the factorial of a
10	number, $n!$, define by $fact(n)=1$, if $n=0$. Otherwise $fact(n)=n*fact(n-1)$.
12	Using this function, write a C program to compute the binomial coefficient
	${}^{n}C_{r}$. Tabulate the results for different values of n and r with suitable messages
	Given two university information files such as "studentname.txt" and
	"usn.txt" that contains students Name and USN respectively. Write a C
	program to create a new file called "output.txt" and copy the content of files
12	"studentname.txt" and "usn.txt" into output file in the sequence shown below.
13	Display the contents of output file "output.txt" on to the screen.
	Student Name USN
	Name 1 USN1
	Name 2 USN2
	a. Write a C program to maintain a record of n student details using an array
	of structures with four fields (Roll number, Name, Marks, and Grade).
1.4	Assume appropriate data type for each field. Input & Print the members of
14	the structure
	b. Write a C program to take 2 structures HH:MM: SS as T1 & T2 & display
	the time difference as structure as T3.
1.7	Write a C program using pointers to compute the sum, mean and standard
15	deviation of all elements stored in an array of n real numbers.

Course Code: EI-PRES-06		Course Name: Basic Electronic Lab.		L T P C - 2 1	
Year and		1 st Yr.	Contact hours per we	eek: (2Hrs)	
Semester		2 nd Semester	Exam: (3 Hrs)		
Pre-requisit	e of	NIL	Evalua	tion	
course		NIL	CIE: 20	SEE: 30	
Course Obje	ective	es:			
1. Ability to	iden	tify the basic electronic components.			
2. Ability to	wor	k on the basic electronic equipments.			
3. Ability to	get 1	the electronic circuit concepts.			
4. Ability to	desi	gn the basic circuit in electronics.			
Course Out	come	s: On completion of the course, stude	ent would be able to:		
CO1 Wel					
CO2 Wel	Well verse with the fundamentals and the parameters of components related to their				
fabr	fabrication and construction.				
CO3 Ablo	Able to start with the basic design concepts circuits operations.				

Expt.	t. COURSE SYLLABUS	
No	CONTENTS OF MODULE	COs
1	Familiarization of the basic electronic components and electronic lab	
1	equipment's like Functional Generators, CRO, Power supplies, multimeters etc.	

2	Draw and study the forward and reverse characteristics of the PN Diode.	
3	To draw and study the clipping circuits in various modes.	
4	To draw and study the clamping circuits in positive and negative mode.	
5	To draw and study the differentiating and integrating circuits.	CO1,
6	To draw and study the low pass and high pass filters.	CO2,
7	To design and study the half and full wave rectifier	CO3
8	To design and study the effect of various filter circuits on rectifiers	
0	performance.	
9	To study the characteristics of pnp and npn transistors in CE mode and	
	determine h parameters from characteristics.	
10	To study the characteristics of pnp and npn transistors in CB mode and	
10	determine h parameters from characteristics.	
11	To design and study the RC coupled CE amplifier and measure its voltage and	
11	current gain.	
12	To design and study Hartley oscillator.	
13	To design and study Phase shift oscillator.	
14	To measure the effect of negative feedback on amplifier in RC coupled current	
	series mode.	

Course Code:		Course Name: Workshop Practice Lab		L T P C	
EI-PRES-08				2 1	
Year and		1 st Yr.	Contact hours per week: (2Hrs)		
Semest	er	2 nd Semester	Exam: (3 Hrs)		
Pre-rec	quisite of	NIII	Evalu	ation	
course	_	NIL	CIE: 20	SEE: 30	
Course	Objective	es:			
1. Upo	n comple	etion of this course, the students	will gain knowledg	e of the different	
man	ufacturing	g processes which are commonly	employed in the inc	lustry, to fabricate	
com	ponents u	sing different materials.			
2. Upo	n complet	ion of this laboratory course, students	will be able to fabrica	ate components with	
their	r own hand	ds.		_	
3. The	y will also	get practical knowledge of the dimensional accuracies and dimensional			
tole	rances pos	sible with different manufacturing pro	ocesses.		
4. By a	assembling	g different components, they will be al	ble to produce small de	evices of their	
inte	rest.	·	_		
Course	Outcome	s: On completion of the course, stude	nt would be able to:		
CO1					
CO2	O2 To provide working knowledge of lathe machines				
CO3	O3 To provide the study of measuring tools				
CO4					

Expt.	COURSE SYLLABUS	COs
No	CONTENTS OF MODULE	
	Lectures & videos: Detailed contents (i.) Manufacturing Methods- casting, forming, machining, joining, advanced manufacturing methods (2 lectures)	
1	(ii.) CNC machining, Additive manufacturing (1lecture)	
1	(iii.) Fitting operations & power tools (1lecture)	
	(iv.) Plastic molding, glass cutting (1lecture)	
	(v.) Metal casting (1lecture)	
	(vi.) Welding (arc welding & gas welding), brazing (1 lecture)	
2	To study different types of measuring tools used in metrology and determine least counts of Vernier calipers, micrometers and Vernier height gauges.	
3	To study different types of machine tools (lathe, shape or planer or slotter, milling, drilling machines)	
4	To prepare a job on a lathe involving facing, outside turning, taper turning, step turning, radius making and parting-off.	CO1, CO2,
5	To study different types of fitting tools and marking tools used in fitting practice.	CO3, CO4
6	To prepare lay out on a metal sheet by making and prepare rectangular tray, pipe shaped components e.g. funnel.	
7	To prepare joints for welding suitable for butt welding and lap welding.	
8	To perform pipe welding.	
9	To study various types of carpentry tools and prepare simple types of at least two wooden joints.	
10	To prepare simple engineering components/ shapes by forging.	
11	To prepare mold and core assembly, to put metal in the mold and fettle the casting.	
12	To prepare horizontal surface/ vertical surface/ curved surface/ slots or V-grooves on a shaper/ planner.	
13	To prepare a job involving side and face milling on a milling machine.	

Text Books:

- Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 4th 2. edition, Pearson Education India Edition, 2002.
- Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology I" Pearson **3.** Education, 2008.
- Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall 4. India,1998.
- Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGrawHill House, 2017. 5.

Appendix -I

Detailed first year curriculum contents

Guide to Induction Program

1. Introduction

(Induction Program was discussed and approved for all colleges by AICTE in March 2017. It was discussed and accepted by the Council of IITs for all IITs in August 2016. It was originally proposed by a Committee of IIT Directors and accepted at the meeting of all IIT Directors in March 2016. This guide has been prepared based on the Report of the Committee of IIT Directors and the experience gained through its pilot implementation in July 2016 as accepted by the Council of IITs. Purpose of this document is to help institutions in understanding the spirit of the accepted Induction Program and implementing it.)

Engineering colleges were established to train graduates well in the branch/department of admission, have a holistic outlook, and have a desire to work formational needs and beyond.

The graduating student must have knowledge and skills in the area of his study. However, he must also have broad understanding of society and relationships. Character needs to be nurtured as an essential quality by which he would understand and fulfill his responsibility as an engineer, a citizen and a human being. Besides the above, several meta-skills and underlying values are needed.

There is a mad rush for engineering today, without the student determining for himself his interests and his goals. This is a major factor in the current state of demotivation towards studies that exists among UG students.

The success of gaining admission into a desired institution but failure in getting the desired branch, with peer pressure generating its own problems, leads to a peer environment that is demotivating and corrosive. Start of hostel life without close parental supervision at the same time, further worsens it with also a poor daily routine.

To come out of this situation, a multi-pronged approach is needed. One will have to work closely with the newly joined students in making them feel comfortable, allow them to explore their academic interests and activities, reduce competition and make them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and build character.

2. **Induction Program**

When new students enter an institution, they come with diverse thoughts, backgrounds and preparations. It is important to help them adjust to the new environment and inculcate in them the ethos of the institution with a sense of larger purpose. Precious little is done by most of the institutions, except for an orientation program lasting a couple of days.

¹A Committee of IIT Directors was setup in the 152nd Meeting of IIT Directors on 6th September 2015 at IIT Patna, on how to motivate undergraduate students at IITs towards studies, and to develop verbal ability. The Committee submitted its report on 19th January 2016. It was considered at the 153rd Meeting of all IIT Directors at IIT Mandi on 26 March 2016, and the accepted report came out on 31 March 2016. The Induction Program was an important recommendation, and its pilot was implemented by three IITs, namely, IIT(BHU), IIT Mandi and IIT Patna in July 2016. At the 50th meeting of the Council of IITs on 23 August 2016, recommendation on the Induction Program and the report of its pilot implementation were discussed and the program was accepted for all IITs.

We propose a 3-week long induction program for the UG students entering the institution, right at the start. Normal classes start only after the induction program is over. Its purpose is to make the students feel comfortable in the in new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature.²

The time during the Induction Program is also used to rectify some critical lacunas, for example, English background, for those students who have deficiency in it. The following are the activities under the induction program in which the student would be fully engaged throughout the day for the entire duration of the program.

- IIT Gandhinagar was the first IIT to recognize and implement a special 5-week Foundation **(i)** Program for the incoming 1st year UG students. It took a bold step that the normal classes would start only after the five week period. It involved activities such as games, art, etc., and also science and other creative workshops and lectures by resource persons from outside.
- (ii) IIIT Hyderabad was the first one to implement a compulsory course on Human Values. Under it, classes were held by faculty through discussions in small groups of students, rather than in lecture mode. Moreover, faculty from all departments got involved in conducting the group discussions under the course. The content is non-sectarian, and the mode is dialogical rather than sermonizing or lecturing. Faculty were trained beforehand, to conduct these discussions and to guide students on issues of life.
- (iii) Counselling at some of the IITs involves setting up mentor-mentee network under which 1st year students would be divided into small groups, each assigned a senior student as a student guide, and a faculty member as a mentor. Thus, a new student gets connected to a faculty member as well as a senior student, to whom he/she could go to incase of any difficulty whether psychological, financial, academic, or otherwise.

The Induction Program defined here amalgamates all the three into an integrated whole, which leads to its high effectiveness in terms of building physical activity, creativity, bonding, and character. It develops sensitivity towards self and one's relationships, builds awareness about others and society beyond the individual, and also in bonding with their own batch-mates and a senior student besides a faculty member. Scaling up the above amalgamation to an intake batch of 1000 plus students was done at IIT(BHU), Varanasi starting from July 2016.

Physical Activity

This would involve a daily routine of physical activity with games and sports. It would start with all students coming to the field at 6 am for light physical exercise or yoga. There would also be games in the evening or at other suitable times according to the local climate. These would help develop teamwork. Each student should pick one game and learn it for three weeks. There could also be gardening or other suitably designed activity where labour yields fruits from nature.

Creative Arts

Every student would choose one skill related to the arts whether visual arts or performing arts.

²Induction Program as described here borrows from three programs running earlier at different institutions: (1) Foundation Program running at IIT Gadhinagar since July 2011, (2) Human Values course running at IIIT Hyderabad since July 2005, and (3) Counselling Service or mentorship running at several IITs for many decades. Contribution of each one is described next.

Examples are painting, sculpture, pottery, music, dance etc. The student would pursue it every day for the duration of the program. These would allow for creative expression. It would develop a sense of aesthetics and also enhance creativity which would, hopefully, flow into engineering design later.

Universal Human Values

It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, take decisions with courage, be aware of relationships with colleagues and supporting staff in the hostel and department, be sensitive to others, etc. Need for character building has been underlined earlier. A module in Universal Human Values provides the base. Methodology of teaching this content is extremely important. It must not be through do's and dont's, but get students to explore and think by engaging the mini dialogue. It is best taught through group discussions and real life activities rather than lecturing. The role of group discussions, however, with clarity of thought of the teachers cannot be over emphasized. It is essential for giving exposure, guiding thoughts, and realizing values.

The teachers must come from all the departments rather than only one department like HSS or from outside of the Institute. Experiments in this direction at IIT (BHU) are noteworthy and one can learn from them.³

Discussions would be conducted in small groups of about 20 students with a faculty men to reach. It is too pen thinking towards these. If, Universal Human Values discussions could even continue for rest of the semester as a normal course, and not stop with the induction program. Besides drawing the attention of the student to larger issues of life, it would build relationships between teachers and students which last for their entire4-year stay and possibly beyond.

Literary

Literary activity would encompass reading, writing and possibly, debating, enacting a play etc.

Proficiency Modules

This period can be used to overcome some critical lacunas that students might have, for example, English, computer familiarity etc. These should run like crash courses, so that when normal courses start after the induction program, the student has overcome the lacunas substantially. We hope that problems arising due to lack of English skills, wherein students start lagging behind or failing in several subjects, for no fault of theirs, would, hopefully, become a thing of the past.

Lectures by Eminent People

This period can be utilized for lectures by eminent people, say, once a week. It would give the students exposure to people who are socially active or in public life.

Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized.

³The Universal Human Values Course is a result of along series of experiments at educational institutes starting from IIT-Delhi and IIT Kanpur in the 1980s and 1990s as an elective course, NIT Raipur in late 1990s as a compulsory one-week off campus program. The courses at IIT (BHU) which started from July 2014, are taken and developed from two compulsory courses at IIIT Hyderabad first introduced in July 2005.

This would familiarize them with the area as well as expose them to the under privileged.

Familiarization to Dept./Branch &Innovations

The students should be told about different method of study compared to coaching that is needed at IITs. They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities.

3. Schedule

The activities during the Induction Program would have an Initial Phase, a Regular Phase and a Closing Phase. The Initial and Closing Phases would be two days each.

3.1 **Initial Phase**

Time	Activity
Day 0	Students arrive - Hostel allotment.
Whole day	(Preferably do pre-allotment)
Day 1	
09:00am-03:00pm	Academic registration
04:30 pm -06:00pm	Orientation
Day 2	
09:00 am - 10:00 am	Diagnostic test (for English etc.)
10:15 am - 12:25 pm	Visit to respective depts.
12:30 pm - 01:55 pm	Lunch
02:00 pm - 02:55 pm	Director's address
03:00 pm - 03:30 pm	Interaction with parents
03:30 pm - 05:00 pm	Mentor-mentee groups - Introduction within group.
	(Same as Universal Human Values groups)

3.2 **Regular Phase**

After two days is the start of the Regular Phase of induction. With this phase there would be regular program to be followed everyday.

Daily Schedule 3.2.1

Some of the activities are on a daily basis, while some others are at specified periods within the Induction Program. We first show a typical daily timetable.

	Sessn. Time	Activity	Remarks
		Day 3 onwards	
	06:00am	Wake up call	
I	06:30 am -07:10am	Physical activity (mild exercise/yoga)	
	07:15am-08:55am	Bath, Breakfast, etc.	
II	09:00 am -10:55am	Creative Arts /Universal Human	Half the groups do
111		Value	Creative Arts
III	11:00 am -12:55pm	Universal Human Values / Creative	Complementary
111	11.00 am -12.55pm	Arts	alternate
	01:00pm-02:25pm	Lunch	
IV	02:30 pm - 03:55 pm	Afternoon Session	See below.

V	04:00 pm - 05:00 pm	Afternoon Session	See below.
	05:00 pm - 05:25 pm	Break / light tea	
VI	05:30 pm - 06:45 pm	Games / Special Lectures	
	06:50 pm - 08:25 pm	Rest and Dinner	
VII	08:30 pm - 09:25 pm	Informal interactions (in hostels)	

Sundays are off. Saturdays have the same schedule as above or have outings.

3.2.2 **Afternoon Activities(Non-Daily)**

The following five activities are scheduled at different times of the Induction Program, and are not held daily for everyone:

- 1. Familiarization to Dept./Branch & Innovations
- 2. Visits to Local Area
- 3. Lectures by Eminent People
- 4. Literary
- 5. Proficiency Modules

Here is the approximate activity schedule for the afternoons (may be changed to suit local needs):

Activity	Session	Remarks
Familiarization with	IV	For 3 days (Day 3 to 5)
Dept./Branch & Innovations	- 1	1 of 5 days (Bay 5 to 5)
Visits to Local Area	IV, V and VI	For 3 days - interspersed (e.g. 3
Visits to Local Area	1v, v and vi	Saturdays)
Lectures by Eminent People	IV	As scheduled - 3-5 lectures
Literary (Play/Book Reading /	137	Ear 2 5 days
Lecture) IV		For 3-5days
Proficiency Modules	V	Daily, but only for those who need it

3.3 **Closing Phase**

Time	Activity			
Last But One Day				
08:30 am -12noon	Discussions and finalization of presentation within			
08:30 am -12h00h	each group			
02:00 am 05:00mm	Presentation by each group in front of 4 other groups			
02:00 am -05:00pm	besides their own (about 100 students)			
	Last Day			
Whole day	Examinations (if any). May be expanded to last 2			
Whole day	days, in case needed.			

3.4 Follow Up after Closure

A question comes up as to what would be the follow up program after the formal 3-week Induction Program is over? The groups which are formed should function as mentor- mentee network. A student should feel free to approach his faculty mentor or the student guide, when facing any kind of problem, whether academic or financial or psychological etc. (For every 10 undergraduate first year students, there would be a senior student as a student guide, and for every 20 students, there would be a faculty mentor.) Such a group should remain for the entire 4-5

year duration of the stay of the student. Therefore, it would be good to have groups with the students as well as teachers from the same department/discipline⁴.

Here we list some important suggestions which have come up and which have been experimented with.

3.4.1 Follow Up after Closure – Same Semester

It is suggested that the groups meet with their faculty mentors once a month, within the semester after the 3-week Induction Program is over. This should be a scheduled meeting shown in the timetable. (The groups are of course free to meet together on their own more often, for the student groups to be invited to their faculty mentor's home for dinner or tea, nature walk, etc.)

3.4.2 Follow Up – Subsequent Semesters

It is extremely important that continuity be maintained in subsequent semesters. It is suggested that at the start of the subsequent semesters (upto fourth semester), three days be set aside for three full days of activities related to follow up to Induction Program. The students be shown inspiring films, do collective artwork, and group discussions be conducted. Subsequently, the groups should meet at least once a month.

4. **Summary**

Engineering institutions were setup to generate well trained man power in engineering with a feeling of responsibility towards oneself, one's family, and society. The incoming undergraduate students are driven by their parents and society to join engineering without understanding their own interests and talents. As a result, most students fail to link up with the goals of their own institution.

The graduating student must have values as a human being, and knowledge and metaskills related to his/her profession as an engineer and as a citizen. Most students who get demotivated to study engineering or their branch, also lose interest in learning.

The *Induction Program* is designed to make the newly joined students feel comfortable, sensitize them towards exploring their academic interests and activities, reducing competition and making them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and building of character.

The Universal Human Values component, which acts as an anchor, develops awareness and sensitivity, feeling of equality, compassion and oneness, draw attention to society and nature, and character to follow through. It also makes them reflect on their relationship with their families and extended family in the college (with hostel staff and others). It also connects students with each other and with teachers so that they can share any difficulty they might be facing and seek help.

⁴We are aware that there are advantages in mixing the students from different depts. However, in mixing, it is our experience that the continuity of the group together with the faculty mentor breaks down soon after. Therefore, the groups be from the same dept. but hostel wings have the mixed students from different depts. For example, the hostel room allotment should be in alphabetical order irrespective of dept.

References:

1. Motivating UG Students Towards Studies, Rajeev Sangal, IITBHU Varanasi, Gautam Biswas, IIT Guwahati, Timothy Gonsalves, IIT Mandi, Pushpak Bhattacharya, IIT Patna, (Committee of IIT Directors), 31 March 2016, IIT Directors' Secretariat, IIT Delhi.

Contact: Prof. Rajeev Sangal, Director, IIT(BHU), Varanasi (director@iitbhu.ac.in)

B. Tech Electrical and Instrumentation Engineering SYLLABI for EXAMINATIONS

B. Tech. 2nd YEAR

Course	Code:	Course Name: Power Systems-I		L T P C
EI-PC-2	201			2 1 - 3
Year a	Year and 2 nd year Contact hours per week: (3Hrs		eek: (3Hrs)	
Semester I		III rd Semester	Exam: (3hrs.)	
Pre-rec	quisite of	Basic Electrical Engineering	Evalua	ation
course			CIE: 40	SEE: 60
Course	Objective	es:		
1.To int	roduce an	d study the basic concept, layout and s	structure of power syste	em.
2.To stu	idy types o	of transmission line and type of line co	onductors.	
3.To stu	dy the rol	e of insulators and towers in transmiss	sion lines.	
4.To stu	idy the var	rious parameters of transmission lines	and its performance.	
Course	Outcome	es: On completion of the course, stude	nt would be able to:	
CO1	To Famil	iarize with the basic concept, layout a	and structure of power s	system.
CO2				actors.
CO3	To under	stand the significance of insulators an	d towers in power syste	em.
CO4	O4 To understand the models of transmission line and analyze the various parameters of		rious parameters of	
	transmission lines and its performance.			
CO5	To impa	rt basic technical knowledge of pow	ver system and apply	it to technological
	fields. To	engage in independent and life – lon	g learning in the techno	ological change.

Modul e No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	GENERAL SUPPLY SYSTEMS: Introduction to Power System, Per unit system, Layout of power supply network, System interconnection, Importance of electric power, Power system components, power supply network, effect of voltage on conductor size, comparison of conductor volume in typical supply systems, elementary high voltage DC transmission and its advantages & disadvantages. Types of conductors: Hard drawn copper conductors, AAC, AAAC, ACSR and bundled conductors, Resistance, Skin effect, Proximity Effect.	7	CO1, CO2
2	INSULATORS: Types of insulators, voltage distribution across suspension insulators, string efficiency, methods of improving string efficiency. MECHANICAL DESIGN: Line supports- Towers and Poles, Vibration of conductors, Effect of vibration on transmission lines, Prevention of vibration, Sag and tension—Various methods of sag and tension calculations, Loading on conductors and it affects, Span of equal and unequal lengths, Effect of ice and wind, dampers.	7	CO1, CO3
3	TRANSMISSION-LINE PARAMETERS Conductance and Inductance: Solid Cylindrical Conductor, Inductance: Single-Phase Two-Wire Line and Three-Phase Three-Wire Line with Equal Phase Spacing, Composite Conductors, Unequal Phase Spacing, Bundled Conductors, Series Impedances: Three-Phase Line with	7	CO2, CO4, CO5

	Neutral Conductors and Earth Return, Electric Field and Voltage: Solid Cylindrical Conductor Capacitance: Single-Phase Two-Wire Line and Three-Phase Three-Wire Line with Equal Phase Spacing, Stranded Conductors, Unequal Phase Spacing, Bundled Conductors		
4	PERFORMANCE OF TRANSMISSION LINES: models of short, medium and long transmission lines, Transmission-Line Differential Equations and detailed performance analysis of these lines including A B C D parameters, Ferranti effect, capacity of synchronous condenser, voltage control, Reactive Compensation Techniques.	7	CO4, CO5

Text/Refrence Books:

- 1. J. Grainger and W. D. Stevenson, "Power System Analysis", McGraw Hill Education, 1994.
- 2. O. I. Elgerd, "Electric Energy Systems Theory", McGraw Hill Education, 1995.
- 3. D. P. Kothari and I. J. Nagrath, "Modern Power System Analysis", McGraw Hill Education, 2003.
- 4. A. R. Bergen and V. Vittal, "Power System Analysis", Pearson Education Inc., 1999.
- 5. B. M. Weedy, B. J. Cory, N. Jenkins, J. Ekanayake and G. Strbac, "Electric Power Systems", Wiley, 2012.
- 6. W.D.Stevenson, "Elements of power system analysis", MGH.
- 7. B.M. Weedy, "Electric Power System", John Wiley & Sons.
- 8. Transmission & Distribution of Electrical Engineering: Westing House & Oxford Univ. Press. New Delhi.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code:	Course Name: Basic Instrumentat	ion Engineering	L	T	P	C
EI-PC-203			2	1	0	3
Year and	2 nd year	Contact hours per w	eek	: (3]	Hrs)
Semester	3 rd Semester	Exam: (3hrs.)				
Pre-requisite of	Physics, Mathematics	Evaluation				
		CIE: 40		CE	E: (<u> </u>
course		CIE: 40		OL	٠. ١	JU
Course Objective	es:	CIE: 40		SE	/IL) • ()U
Course Objective	es: al knowledge that includes terminological controls.		met)U

3 To	o introduce to the students the operation of various electronic Instruments which are used
	measure the electronic parameters
	1
Course	Outcomes: On completion of the course, student would be able to:
CO1	Analyze the characteristics of each instrument
CO2	Define terms associated with instrumentation
CO3	Categorize various types of instruments
CO4	Explain various types of indicating and recording instruments
CO5	Apply the knowledge of various transducers to measure the physical quantities of shaft
	speed and acceleration
CO6	Apply the knowledge of to identify instrument for measuring quantities like Power,
	field strength, phase, Q factor

Module	COURSE SYLLABUS	Hrs	COs
No	CONTENTS OF MODULE		
1	Introduction: Block diagram of measuring instruments, characteristics of instruments, classification of instruments, classification of standards, error in measurement, relative, systematic, random error, parabolic errors. Standards, True Value, Errors (Gross, Systematic, Random); Static Characteristic of Instruments (Accuracy, Precision, Sensitivity, Resolution & threshold). Classification of Instruments (Absolute & Secondary Instruments; Indicating, Recording & Integrating instruments; Based upon Principle of operation), Generalized Instrument (Block diagram, description of blocks).	8	CO1, CO2, CO3
2	Indicating Instruments: Three forces in Electromechanical indicating instrument, Comparison between gravity & spring controls; Comparison of damping methods & their suitability, bearing supports, pivot-less supports (Simple & taut-band), Scale information. Recorders: Strip chart recorders, galvanometric recorders, null type recorders, potentiometric recorders, X-Y recorders, ultraviolet recorders, magnetic tape recorders, FM recorders and their merits and demerits, pulse duration modulation (PDM) recorders & digital tape recorders (RB, RZ, NRZ-M and NRZ-C).	6	CO1, CO4
3	Tachometers: DC tachometers, AC tachometers, Bearing tachometers, magnetic speed sensors, impulse tachometers, stroboscopic tachometers, variable-reluctance tachometers, photoelectric tachometers, eddy current tachometers, hydraulic tachometers, vibration measurement. Accelerometers: Bonded strain gauge accelerometer, Piezoelectric accelerometer, seismic mass accelerometer, servo accelerometer and digital accelerometer.	6	CO1, CO5
4	Potentiometers: DC potentiometers, Basic potentiometer circuit, Compton type & multiple range potentiometer, constructional details & precision type potentiometers & their applications, AC potentiometer, Power meter, field strength meter, phase meter, vector impedance meter, Q meter, LCR bridge.	6	CO1, CO6

Reference Books:

- 1.
- Electronic Instrumentation ByH.S.Kalsi, TMH
 Electronic Instrumentation Techniques By Cooper Halfrick, PHI 2.

- 3. Electronic Instrumentation & Measurement By A. K.Sawhney, Dhanpat Rai& Sons
- Electronic Instruments and Measurement By Jones & Chin 4.
- Principles of measurement &Instrumentation by Alan S. Morris 5.
- Electrical, Electronics measurement & Instrumentation, by JB Gupta 6.

Note for Examiner(s): Question paper will comprise three sections,

- Section-A will be compulsory and comprise 4-short answer type questions uniformly 1. spread to the entire syllabus.
- Section-B will comprise 4-questions uniformly spread to the entire syllabus and 2. questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- Section-C will comprise 4-questions uniformly spread to the entire syllabus and 3. questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- Section A is compulsory and attempt/answer all the four questions carrying 12 marks
- 2. Attempt/answer two questions each out of the Section – B and Section – C. All questions will carry 12 marks.

Course		Course Name: Network Analysis		L	T	P	С
EI-PC-2	205	-		2	1	-	3
Year a	nd	2 nd year	Contact hours per w	eek:	(3H	Irs)	
Semest	er	3 rd Semester	Exam: (3hrs.)				
Pre-rec	uisite of	Basic Electrical Engineering	Evalua	uation			
course			CIE: 40		SEI	E: 60)
Course	Objective	es:					
1. To in	troduce sti	udents with the fundamental concepts	s in graph theory				
2. To fa	miliarize a	about transient response of different ty	ype of circuits.				
3. To ex	xplain cond	cepts of network functions.					
4. To in	troduce op	en circuit, short circuit, transmission	, hybrid parameters and	their	r		
inter	relationshi	p.					
5. To u	nderstand	and learn network filters					
6. To le	arn the syr	nthesize of network using passive element	ments.				
Course	Outcome	s: On completion of the course, stude	ent would be able to:				
CO1		nd the fundamental concepts of graph					
CO2		nd and analyze the transient response	of various type of circu	iits u	nde	r diff	ferent
	excitation						
CO3		nd poles and zeroes of network func	tions and interpretation	s in t	erm	s of	their
	stability.						
CO4		e various parameters and their interrel	<u>.</u>	num	eric	al wi	ith
		scade, and parallel connection using t					
CO5		nderstand and solve problems related	to low-pass, high–pass	and	bar	nd re	ject,
		K pass filters, m-derived					
CO6		nd and problem solving related to syr	thesization one port and	d two	po po	rt	
	networks	•					

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Topology: Principles of network topology, Graph matrices, network analysis using graph theory. Transient Response: Transient response of RC, RLC, RL circuits to various excitation signals such as step, ramp, impulse and sinusoidal excitations using Laplace transform.	6	CO1, CO2
2	Network Functions: Terminal pairs or ports, network functions for one port and two port networks, pole and zeros of network functions, restrictions on pole and zero locations for driving point functions and transfer functions, time domain behaviour from pole – zero plots, stability criteria of active networks.	6	соз,
3	Two Port Networks: Characteristics and parameters of two port networks, short circuit admittance parameters, open circuit impedance parameters, transmission parameters, hybrid parameters, relationship between parameter sets, interconnection of two port networks, T and π networks.	5	CO4
4	Filter Networks: Fundamentals of filters, network equations, and characteristic impedance of low-pass, high-pass and band reject, constant K pass filters, m-derived.	5	CO5
5	Network Synthesis : Herwitz polynomial, positive real functions, elementary idea of active networks and frequency	4	CO6

Text Books:

- 1. Networks and Systems, D. Roy Choudhary, Wiley Eastern Ltd.
- 2. Network Analysis: A Sudhakar and S P Shyammohan, TMH.
- 3. Network Analysis and Synthesis, CL Wadhwa, New Age International Publishers.
- 4. Circuit Theory, A. Chakrabarti, Dhanpat Rai& Co.

Reference Books:

- 1. An Introduction to Modern Network Synthesis, M E Van Valkenburg, Wiley Eastern Ltd.
- 2. Circuit Theory, T.S.K.V. Iyer, Tata McGraw Hill

Note for Examiner(s): Question paper will comprise three sections,

- Section-A will be compulsory and comprise 4-short answer type questions uniformly 1. spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- Section A is compulsory and attempt/answer all the four questions carrying 12 marks 1.
- 2. Attempt/answer two questions each out of the Section – B and Section – C. All questions will carry 12 marks.

Course Code:	Course Name: Transducers and Ap	pplications	L T P C		
EI-PC-207		2 1 - 3			
Year and	2 nd year	Contact hours per w	reek: (3Hrs)		
Semester	III rd Semester	Exam: (3hrs.)			
Pre-requisite	of Knowledge of Basic science,	Evalua	ıtion		
course	Basic Electrical Engineering	CIE: 40	SEE: 60		
Course Objec	ives:				
1. To study th	e basic concept and fundamental of sens	sors and transducers.			
2. To study B	asic principle of operation of strain gaug	ge, piezoelectric sensors	and its circuits.		
3. To study t	ne different types of transducers/senso	rs for the measuremen	nt of non-electrical		
quantities.					
Course Outco	nes: On completion of the course, stude	ent would be able to:			
CO1 Able t	o understand the fundamental concepts of	of sensors and transduce	ers.		
CO2 Abilit	to analyze various electrical and no	n-electrical Sensors ar	nd Transducers by		
using	heir basic fundamental principles of ma	thematics and science.			
CO3 Famil	arize to use sensors and transducers for	or the measurements of	f various electrical		
and no	and non-electrical parameters.				
CO4 To in	part technical knowledge of sensors	and apply it to techno	ological fields. To		
engag	e in independent and life – long learning	in the technological ch	ange.		

	engage in independent and ine – long learning in the technological change.			
Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs	
1	Transducers: Basic concepts of sensors and transducers and their classification, characteristics and choice of transducers, factors influencing the choice of transducers. Basic operating principle of resistance strain gauge, type of electrical strain gauges and their theories: wire gauges, unbounded strain gauges, foil gauges, semiconductor strain gauges and thin film gauges, Materials for strain gauges, strain gauge circuits.	7	CO1, CO2	
2	Displacement Transducers: Resistive transducers, potentiometers, loading effect, construction of potentiometers. Variable inductance transducers, Linear Variable Differential Transformer (LVDT), Rotary Variable Differential Transformer (RVDT), Variable Reluctance, Variable Capacitive displacement Transducers and Hall Effect Transducers. Piezoelectric transducers: modes of operation of piezoelectric crystals, properties of piezoelectric crystals, equivalent circuit of piezoelectric transducers, loading effects and frequency response, impulse response of piezoelectric crystals.	7	CO2, CO3, CO4	
3	Force Transducers: load Cell, Hydraulic Load Cell. Pressure transducers: Manometers, Elastic transducers, Mcloed Gauge, Pirani-gauge, Ionization gauge, Temperature Transducers: Resistance Temperature Detector, Thermistor, Thermocouple, Thermoelectric sensors, Pyrometers.	7	CO2, CO3, CO4	
4	Flow Transducers: Classification of flow meter, Volume flow Sensors, Turbine type, Rotameters, Anemometers, Ultrasonic, Mass flow meters, Positive displacement type flow-meter, Open channel flow measurement, E.M. Flow-meter. Level Transducers: Thermal effect type, Electric methods, Ultrasonic	7	CO2, CO3, CO4	

method.		
Acoustics sensors: Ceramic microphones, capacitor microphones,		
electric microphones, magnetic microphone.		
Humidity sensors: Hair hygrometer, electrode hygrometer, moisture		
sensors.		

Text/References Books:

- A. K.Sawhney, "A Course in Electrical and Electronics Measurement and Instrumentation, DhanpatRai & Co.
- D.Patranabis, "Principles of Electronic Instrumentation,", PHI
- D. Patranabis, "Sensors and Transducers", PHI.
- D.A.Bell, "Electronic Instrumentation and Measurements", PHI.
- Rangan, Sharma and Mani, "Instrumentation Devices and Systems", TMH.
- Raman Pallas-Arency and J.G. Webster, "Sensors and Signal Conditioning", John Wiley & Sons.
- 7. Considine DM (ed), "Process Instruments and Controls Handbook", McGraw-Hill.
- Jones B.E "Instrument Science & Technology", Adam Hilger.
- Neubert H.K.P, "Instrument Transducers: An introduction to their performance and design", Oxford.
- 10. Norton H.N, "Sensors and Analyzer Handbook", Prentice Hall.
- 11. Usher M.J, "Sensors and Transducers", Macmillan.

Note for Examiner(s): Question paper will comprise three sections,

- Section-A will be compulsory and comprise 4-short answer type questions uniformly 1. spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- Section-C will comprise 4-questions uniformly spread to the entire syllabus and **3.** questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section – B and Section – C. All questions will carry 12 marks.

Pre	ogram Name: B. TechElectrical and In	strumentation Engi	neer	ıng		
Course Code:	Course Name: Open Elective-I		L	T	P	C
EI-OE-209	(i) Linear Integrated Circuits	near Integrated Circuits		1	0	3
Year and	2 nd year	Contact hours per	wee	k: (3Hrs	
Semester	III rd Semester	Exam: (3 Hrs)				
Pre-requisite	EI-ES-108 Basic Electronics	Evalua	atioı	1		
of course	Engineering	CIE: 40		SE	E: 6	0
Course Objecti	ves:		•			·
1. To impart th	e basic concepts of Analog Electronics.		•			·

- 2. To impart the basic concepts of one of the most widely used active components of analog electronics Operational Amplifier.
- 3. To design and study various circuits using active components mainly OpAmp.
- 4. To lay the foundation for the courses in electronics related to instrumentation.

Course Out	Course Outcomes: On completion of the course, student would be able to:				
CO1	CO1 Understand the basic design of Operational amplifier and its parameters.				
CO2	Understand the frequency response of Op-amp and various inverting and non-				
	inverting Op amp based applications.				
CO3	Understand the uses of opamp in Instrumentation.				

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Basics of Operational Amplifier (Op-Amp)emitter coupled differential amplifier, transfer characteristics of differential amplifier, Block Diagram of Op-amp, Op- amp parameters : offset voltages and currents, input bias current, CMRR and measurement of Op-Amp parameters	6	CO1
2	Frequency and Phase Response in Opamp, Op-Amp Circuit Bandwidth. OpAmp applications: Inverting, Concept of virtual ground, Non-inverting, adder, analog integration and differentiation, wave form generators (square wave, pulse and triangle wave generator)	6	CO2
3	Op-Amp Applications II: Instrumentation Amplifier, Precision Half Wave Rectifier, Precision Full Wave Rectifier, limiting Circuits, Clamping Circuits, Peak Detectors, Sample & Hold Circuits, logarithmic Amplifier, Phase Shift Oscillator, Oscillator Amplitude Stabilization, Wien-Bridge Oscillator.	6	CO2 CO3
4	Regulated Power Supplies: Regulator Action, Regulator Performance, Voltage follower Regulator (Design & performance), Adjustable Voltage Regulator (Design & performance), Stabilization, Output Current limiting (Short circuit Protection) (Fold-back Current limiting), I.C. Regulators (Basic Idea). The 555 I.C. Timer, and its applications.	6	CO2 CO3

Reference Books:

- 1. Integrated Electronics by MillmanHalkias, McGraw Hill
- 2. Op-Amps & Linear Integrated Circuits by R.A.Gayakwad
- 3. Op-Amps & Linear Integrated Circuits by David A.Bell

Note for Examiner(s): Question paper will comprise three sections,

- Section-A will be compulsory and comprise 4-short answer type questions uniformly 1. spread to the entire syllabus.
- Section-B will comprise 4-questions uniformly spread to the entire syllabus and 2. questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- Section A is compulsory and attempt/answer all the four questions carrying 12 marks 1.
- Attempt/answer two questions each out of the Section B and Section C. All 2. questions will carry 12 marks.

	1108-44-114-14-14-14-14-14-14-14-14-14-14-14							
Course (ourse court of the manufacture is					C		
EI-OE-20	9 (ii) Computer Networks		2	1	0	3		
Year and	l 2 nd Year	Contact hours p	ntact hours per week: (3Hrs)					
Semester	· III rd Semester	Exam: (3 Hrs)	- , ,					
Due need	The course does not assume prior	Evalu	valuation					
Pre-requestion of course	I KNOW/IECOSE OF DELW/ORKING HOW/EVER	CIE. 40			E. 66	,		
of course	Basic Computer Knowledge is desirable	CIE: 40	SEE: 60			,		
Course (Course Objectives:							
5. To exp	plore the basics of computer networks							
6. To kn	ow various computer network protocols.							
7. To gai	n knowledge on fundamentals of network administra	ation.						
8. To exp	plore how tomanage the flow of information. To pro	vide good understa	andii	ng of	Inte	rnet		
and ne	tworking design aspects	_		_				
Course (Outcomes: On completion of the course, student wo	uld be able to:						
CO1	To understand the fundamental of computer network	rks						
CO2	To understand the models of UDP and TCP models	S.						
CO3	To apply the TCP/IP and OSI models with merits a	nd demerits.						
CO4	Students should be able to use his knowledge to de	velop/design at LA	ΙN					

Module	COURSE SYLLABUS	Hrs	COs
No	CONTENTS OF MODULE	1115	COS
1	INTRODUCTION TO COMPUTER NETWORKS: Components, Direction of Data flow Types of connections, topologies, protocols and standards of ISO/OSI model, TCP/IP Model. PHYSICAL LAYER: Transmission modes, Multiplexing, Transmission media, Switching, Circuit Switched Networks, Datagram Networks, Virtual Circuit Networks.	7	CO1, CO2
2	DATA LINK LAYER: Introduction, Framing, Error Detection and Correction-Parity-LRC-CRC Hamming code, flow and error control, Noiseless channels, Noisy Channels, HDLC, Point to Point Protocols. Medium Access Sub Layer: ALOHA, CSMA/CD, LAN-Ethernet IEEE802.5, IEEE 802.11, Random Access, Controlled Access, Channelization.	5	CO2, CO3
3	NETWORK LAYER: Logical Addressing, Internetworking, Tunneling, Address mapping, ICMP, IGMP, Forwarding, Unit-Cast Routing Protocols, Multicast Routing Protocols.	5	CO2, CO3, CO5
4	TRANSPORT LAYER: Process to Process Delivery, UDP and TCP protocols, Data traffic, congestion, congestion control, QoS in switched networks.	5	CO3, CO4
5	APPLICATION LAYER: Domain name space, DNS in Internet, Electronic Mail, SMPT, FTP, WWW, HTTP, SNMP	5	CO4, CO6

TEXT BOOKS

- 1. Computer Networking: A. Top-Down Approach Featuring the Internet, James F Kurose & Keith W. Ross. 3rdEdition Pearson Education.
- 2. Data Communications and Networking, Behrouz. A. Forouzan, Fourth Edition TMH, 2006.
- 3. Computer Networks, Andrew S Tanenbaum 4th Edition Pearson Education, PHI

REFERENCE BOOKS

- 1. Data Communication and Computer Networks, P.C. Gupta, PHI
- 2. An Engineering approach to Computer Networks, S. Keshav, 2nd Edition Pearson Education.
- 3. Understanding communications and Networks, 3rdedition, W.A. Shay, Cengage Learning.
- 4. Data and Computer Communication, William Stallings, 6thEdition, Pearson Education, 2000.

Note for Examiner(s): Question paper will comprise three sections,

- Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 5. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 6. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 4. Attempt/answer two questions each out of the Section – B and Section – C. All questions will carry 12 marks.

		gram Maine. D. TechElectrical and		пссі	****5		
Cours	se Code:	Course Name: Basics of Industrial Sc	ciology, Economics	L	T	P	C
EI-HS	M-211	and Management		2	0	0	2
Year	and	2 nd year	Contact hours per w	eek:	(2H	rs)	
Semes	ster	III rd Semester	Exam: (3 Hrs)				
Pre-re	equisite	NIL	Evalua	tion			
of cou	ırse		CIE: 40		SE	E: 60)
Cours	se Objectiv	ves:					
1. Ac	equire basi	c knowledge of social processes of soci	ety, social institutions a	nd p	atter	ns of	
SO	cial behavi	ior					
2. Ac	quire knov	wledge of economics to facilitate the pro-	ocess of economic decis	sion	mak	ing	
3. Ac	equire know	wledge of basic management aspects					
4. De	evelop cog	nizance of the importance of manageme	ent principles				
Cours	se Outcom	nes: On completion of the course, studer	nt would be able to:				
CO1	Demonst	rate knowledge of core sociological con	cepts				
CO2	Evaluate	the economic theories, cost concepts an	d pricing policies				
CO3							
CO4	Demonst	rate the roles, skills and functions of ma	nagement				

Modul	COURSE SYLLABUS	Hrs	COa
e No	CONTENTS OF MODULE	шз	COS
1	Meaning of social change, nature of social change, theories of social change. The causes of social change, the process of social change. Factors of social change - the technological factors, the cultural factors, the effect of technology on major social institutions, social relations in industry.	6	CO1
2	Introduction to Industrial Economic, production function and its type;	10	CO2

	least cost combination, law of variable proportion, law of return increasing, constant and diminishing. Fixed and variable costs in short run and long run, opportunity costs. Perfect competition – meaning and characteristics, Monopoly – meaning and characteristics, concept of equilibrium of a firm.		
3	Meaning of management, characteristics of management, Fayol's principles of management. Personnel management - meaning and functions, manpower – process of manpower planning, recruitment and selection – selection procedure. Training – Objectives and types of training, various methods of training. Marketing research – meaning, objectives. Purchasing management – meaning and objectives, purchase procedure, inventory control techniques. Financial management- Introduction, objectives of financial decision.	10	CO3, CO4

TEXT BOOKS

- 1. An introduction to Sociology by D.R.Sachdeva and VidyaBhusan,
- 2. Society- An introductory Analysis by R.N.MaclverCharls H. Page
- 3. Microeconomics- Theory and Applications by D. N. Dwivedi, Vikas Publishing House
- 4. Modern Economics Theory by K.K.Dewett, S.Chand and Co.
- Economic Analysis by K.P.Sundharam and E.N.Sundharam, Sultan Chand & Sons 5.
- 6. Micro Economic Theory by M.L.Jhingam, Konark Publishers Pvt. Ltd.
- 7. Principle of Economics by M.L. Seth, LakshamiNarain Aggarwal Educ. Pub.- Agra
- 8. Principle & Practices of Management by R.S.Gupta, B.D.Sharma, N.S.Bhalla, Kalyani Pub.
- 9. Organization and Management by R.D.Aggarwal TMH
- 10. Business Organization and Management by N.C.Shukla.

Note for Examiner(s): Question paper will comprise three sections,

- Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section – A is compulsory and attempt/answer all the four questions carrying 12 marks
- 2. Attempt/answer two questions each out of the Section - B and Section - C. All questions will carry 12 marks.

Course Code:	Course Name: Network Analysis	Lab	L	T	P	C
EI-PRPC-09			0	0	2	1
Year and	2 nd Year	Contact hours per week: (2 Hrs)				
Semester	III rd Semester	Exam: (3hrs.)				
Pre-requisite of	Basic Electrical Engg	Evaluation				
course		CIE: 20 SEE: 30)		

Course	Objectives:
1. 7	Γο familiarize with different components and equipments used in the laboratory.
2.	Γο study RLC combination circuits practically.
3.	Γο familiarize and practical understanding of two port network.
4. 7	Γο understand various filter circuits practically.
Course	Outcomes: On completion of the course, student would be able to
CO1	Analyse circuit combinations of R, L and C for transient behaviors.
CO2	Work with two port networks for practical understanding of Y, Z, and ABCD
	parameters.
CO3	Analyse low pass, high pass filters based on their characteristics.

Expt.	COURSE SYLLABUS	COa
No	CONTENTS OF MODULE	COs
1	To find resonance frequency, Bandwidth, Q factor of RLC series circuit.	
2	To study and plot the transient response of RL circuit	
3	To study and plot the transient response of RC circuit	
4	Determination of driving point and transfer functions of a two port ladder	
	network and verify with theoretical values.	
5	To calculate and verify 'Z' parameters of two-port network	CO1
6	To calculate and verify 'Y' parameters of two-port network.	CO1,
7	To calculate and verify 'ABCD' parameters of two-port network.	CO ₂ ,
8	To determine equivalent parameters of parallel connection of two-port network	CO3,
9	To plot the frequency response of High pass filter and determine the half-	
9	power frequency	
10	To plot the frequency response of Low pass filter and determine the half- power	
10	frequency.	
11	To plot the frequency response of High pass filter and determine the half-	
11	power frequency	

Course Code: EI-PRPC-11 Course Name: Transducers Lab			L 0	T 0	P 3	C 1.5	
Year and		2 nd Year	Contact hours per w	eek	: (3I	Hrs)	
Semester		III rd Semester	Exam: (3hrs.)				
Pre-requis	ite of	Basic Science, Basic Electrical	Evalua	atio	1		
course		Engineering Lab	CIE: 20		SE	E: 3	0
Course Ob	Course Objectives:						
1. To stud	ly the ba	sic operation of different type of sen	sors/transducers.				
2. To fam	iliarize v	with transducers circuits and their ap	plication.				
3. Familia	rize wit	h the safety rules for transducers lab	oratory.				
Course Out	tcomes:	On completion of the course, studen	nt would be able to:				
CO1 I	Impart th	ne conceptual knowledge of transduc	ers /sensors and apply	thes	se to	labo	oratory
\	work.	-					
CO2	Ability to analyze the performance as well as handling of transducer equipments.					S.	
CO ₃	Acknow	ledge the principles of operation and	I the main features of s	enso	rs/tr	ansc	lucers.
CO4 I	Develop	skills to use these measuring device	s in different technolog	gical	fiel	d.	

Expt.	COURSE SYLLABUS	COa
No	CONTENTS OF MODULE	COs
1	To study the characteristics of strain gauge for pressure measurement.	
2	To study the characteristics of Load cell for force measurement.	
3	To study the characteristics of Thermistor for temperature measurement.	
4	To study the characteristics of Resistance temperature detector (RTD) for temperature measurement.	
5	To study the characteristics of Thermocouple for temperature measurement.	
6	To study the characteristics and loading effect of Potentiometer.	
7	To study the characteristics of Elastic transducers.	CO1
8	To study the characteristics and calibration of linear variable differential	CO2 CO3
9	transformer (LVDT) transducer for displacement measurement. To study the characteristics of Piezo-electric Transducer.	CO4
10	To study the characteristics of Hall-effect Transducer.	
11	To Study and calibration of a flow sensors for flow measurement.	
12	To Study the characteristics and calibration of electrical transducers for level measurement.	
13	To Study the characteristics and calibration of acoustics sensors for sound measurement.	
14	To Study the characteristics of light sensors for light measurement.	
15	To Study the characteristics of hygrometer transducers for moisture measurement.	

Reference Books:

- 1. Sawhney. A.K, "A Course in Electrical and Electronics Measurements and Instrumentation", 18th Edition, DhanpatRai& Company Private Limited, 2007.
- 2. Renganathan. S, "Transducer Engineering", 4th edition Allied Publishers, Chennai, 2003.

Course (Code: Course Name:	Open Elective- I	Lab	L	T	P	C
EI-PROE	-13 (i) Linear Integr	rated Circuits Lab		0	0	3	1.5
Year and	2 nd Year		Contact hours per v	veek	: (3]	Hrs)	Exam:
Semester	III rd Semester		(3hrs.)				
Pre-requisite EI-PRES-06, Basic Electronic		Basic Electronic	Evalu	uatio	n		
of course	Lab		CIE: 20		Sl	EE:	30
Course (bjectives:						
1. To in	part the basic practical as	spects of one of the	e most widely used act	ive c	omp	one	nts of
analo	g electronics Operational	Amplifier.					
2. To de	sign and study various cir	rcuits using active	components mainly O	pAn	ıp.		
3. To la	the experimental founda	ation for the course	es in electronics related	l to i	nstr	ume	ntation.
Course (Outcomes: On completion	n of the course, stu	dent would be able to:				
CO1 I	Inderstand the basic designation	gn of Operational	amplifier and its param	eter	S.		
CO ₂	CO2 Understand the basic circuit design using IC opamp for different applications.						
CO3 1	Understand the uses of opamp in Instrumentation.						
CO4	Inderstand the advantage	s of the application	ns when performed usi	ng a	ctive	cor	nponents
i	n integrated form like opa	amp.					

	COURSE SYLLABUS	
Expt. No	CONTENTS OF MODULE	COs
1	Study opamp as inverter and scale changer.	
2	Study opamp as non inverting amplifier and unity gain amplifier.	
3	Study of Opamp as Differentiator.	
4	Study of opamp as Integrator.	
5	Study and measurement of Opamp Parameters Offset voltages and currents.	
6	Measurement of CMRR for Opamp.	
7	Design and study of Opamp as half wave rectifier.	
8	Design and study of opamp as full wave rectifier.	CO1,
9	Design and study of opamp as Logarithmic amplifier.	$-\frac{\text{CO1,}}{\text{CO2,}}$
10	Design and study of opamp as square wave generator.	$- \frac{\text{CO2}}{\text{CO3}},$
11	Design and study of opamp as triangular wave generator.	$\begin{array}{c} - \text{CO3,} \\ \text{CO4} \end{array}$
12	Design and study of opamp as Astable multivibrator.	
13	Design and study of opamp as monostable multivibrator.	

Course C	ode:	Course Name: Open Elective V La	b	L	T	P	С
EI-PROE-	-13	(ii) Computer Networks		0	0	3	1.5
Year and		2 nd Year	Contact hours per we	eek: (3 H	(rs)	
Semester		III rd Semester	Exam: (3hrs.)				
Pre-requisite of The course does not assume prior Evalua			tion				
course		knowledge of networking.	CIE: 20	5	SEE	2: 30)
Course O	bjective	es:					
1. To und	derstand	the functionalities of various layers of	of OSI model				
2. To uno	derstand	the operating system functionalities.					
3. To giv	e compi	rehensive knowledge of TCP/IP layers	S.				
4. To pro	ovide go	od understanding of Internet and netw	orking design aspects.				
Course O	utcome	s: On completion of the course, stude	nt would be able to				
CO1 U	CO1 Understand the encryption and decryption concepts in Linux environment						
CO2 A	CO2 Apply appropriate algorithm for the finding of shortest route						
CO3 C	Configure the routing table.						
CO4 S	tudents	should be able to use his knowledge to	o develop/design at LA	N.			

System/ Software Requirement

Intel based desktop PCs LAN connected with minimum of 166 MHZ or faster process with at least 64 MB RAM and 100 MB free disk space.

Expt.	COURSE SYLLABUS	COs
No	CONTENTS OF MODULE	COS
1	Implementing the data link layer framing methods such as character, stuffing and bit stuffing.	CO1,
2	Implement on a data set of characters the three CRC polynomials- CRC 12, CRC 16 and CRC CCIP.	CO2, CO3,
3	Practice the basic network commands and network configuration commands.	CO4
4	Configure a network topology using packet tracer software.	

5	Configure a network using dynamic source distance vector (DSDV) routing protocol.	
6	Configure a network using link state routing (LSR) protocol.	
7	Configure a network using dynamic source routing (DSR) protocol.	
8	Configure a network using open shortest path first (OSPF) protocol.	
9	Write program for DES Encryption.	
10	Write program for DES decryption.	
11	Write program for RSA Encryption.	
12	Write program for RSA decryption.	

Text Books: Linux Manuals and Lab Manuals

Course Code: EI-PRPC-15	Course Name: Power System-II ab			T	P 2	C 1
Year and	2 nd Year	Contact hours per w	eek	: (21	Hrs))
Semester	III rd Semester	Exam: (3hrs.)				
Pre-requisite	f Basic Electrical Engineering	Evalua	atio	n		
course	Lab	CIE: 20		SE	E: 3	30
Course Object	ives:					
1. To study tl	e layouts of Power system and its comp	onents.				
2. To familia	ze power system elements, devices, equ	aipments and application	ns.			
3. To study d	ferent type of transmission line model	and their applications.				
4. To familia	ze with the safety rules for power syste	m laboratory.				
Course Outcor	es: On completion of the course, stude	nt would be able to:				
CO1 Imp	rt the conceptual knowledge of basic la	youts of power system	and	its		
com	oonents.					
CO2 Abi	*					
equi	equipments like line conductors, cables, insulators etc.					
CO3 Ack	3 Acknowledge the principles of operation and the main features of transmission line.					line.
CO4 Dev	lop skills to use power system elements	s and devices in differe	nt te	chn	olog	ical
field						

Expt.	COURSE SYLLABUS	COa
No	CONTENTS OF MODULE	COs
1	To study and draw the layout of 33KV substation.	
2	To study and draw the layout of 110/220 KV substation.	
3	To study distribution network with measurement of distribution voltage and current in distributors.	
4	To study different types of Line insulators and obtain breakdown characteristics of any one type of insulator.	CO1
5	To study and designing of Earthing / Grounding.	CO2
6	To measure Potential distribution across different units of a string insulators: with guard ring and without guard ring and also determine the string efficiency.	CO3 CO4
7	To plot equi-potential curve and voltage gradient in i. Two/three core cable ii. Single-core cable.	

8	To study the different parts of a power cable and measurement of insulation resistance of a cable.	
9	To study the core to core & core to sheath capacitance of a three phase cable.	
10	To study and obtain A B C D parameter of a transmission line (model).	
11	To study Ferranti Effect of transmission line model.	
12	To obtain Voltage Regulation of a long transmission line with resistive,	
12	inductive and capacitive loads	
	To obtain Voltage Profile of a long transmission line when:	
13	i. Open circuited	
13	ii. Using shunt/series capacitive compensation	
	iii. Using shunt inductive compensation.	
14	To study filtration and treatment of transformer oil.	
15	To study and determine dielectric strength of transformer oil.	

Reference books:

- 1. Power System Engg: I.J.Nagrath and D.P.Kothari (TMH)
- 2. A Course in Electrical Power: Gupta, Soni & Bhatnagar (Dhanpat Rai & Sons).
- 3. Electric Power System: B.M.Weedy, John Wiley & Sons.
- 4. Transmission & Distribution of Electrical Engineering: Westing House & Oxford Univ. Press, New Delhi.

0	am Name. B. TeenElectrical and first		Course Code: LTPC						
EI-PC-202	Course Name: Power Electronics-I		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
	and v								
Year and	2 nd Year	_	oer week: (4Hrs)						
Semester	(IV th Semester)	Exam: (3 Hrs)							
	Brief knowledge of in the following	Eva	luation						
Due meguicite of	topics: Basic Electrical and								
Pre-requisite of	Electronics engineering,	CIE. 40	CEE. CO						
course	Semiconductor devices, Digital	CIE: 40	SEE: 60						
	Electronics, rectifiers.								
Course Objectiv	es:								
1. To introduce,	study the Constructional features & chara	cteristics of power	r devices.						
2. To study the	various Triggering & switching techniques	s and devices.							
3. To study the s	series parallel operation and thyristors pro	tection							
4. To study the s	single phase and three phase thyristors at o	lifferent types of le	oadings.						
5. To study the	principle and different types of cycloconve	erters.							
6. To study the	various modes of cycloconverter under co	ontinuous and dis-	continuous						
conduction, e	effect of source inductance on the perf	ormance of cyclo	oconverter.						
Course Outcome	es: On completion of the course, student w	ould be able to:							
CO1 To Fami	liarize with construction and characteristic	es of power device	s.						
CO2 To under	stand and analyze the various triggering t	echniques and dev	rices						
CO3 To under	estand series parallel operation and protect	ion of thyristor.							
CO4 To under	estand the output response of rectifiers at o	lifferent loading.							
CO5 To under	To understand and analyze the operation of cycloconverters under different modes.								
CO6 To under	rstand the effect of source impedance on p	erformance of cyc	cloconverters.						

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Introduction to power devices: Constructional features & characteristics of thyristors, MOSFET, IGBT, MCT. Triggering & switching: Various triggering devices used for thyristor.	7	I & II
2	Thyristor Analogy: Two transistor analogy, series and parallel operation of thyristors. Protection: Protection of SCR against over current, over voltage, high dv/dt, and high di/dt.	8	III
3	Classification of Rectifiers, Phase Controlled Rectifiers: Single phase half wave controlled, Fully wave and half controlled rectifiers with Resistive, Inductive and e.m.f. loading and their performance parameters. Three phase half wave, full wave and half controlled rectifiers with resistive and inductive and emf loading and their performance.	11	IV
4	Cycloconverter: Introduction & principle of working cycloconverter; types of cycloconverter; enveloped type & phase controlled type, features of cycloconverter; voltage wave form, circulating mode of operation, circulating current free modes, cycloconverter under discontinuous conduction, effect of source inductance on the performance of cycloconverter, network reaction, Advantages and disadvantages of cycloconverter.	10	V & VI

Text Books:

- 1. Modern Power Devices by B.Jayant Balica, New Age Inter.
- 2. Power Electronics by P.C. Sen (TMH)
- 3. An Introduction to Thyristors and Their Applications by M. Ramamurthy (EWP)
- 4. Power electronics by Ned Mohan and Robins, John Wiley and Sons
- 5. Power Electronics by M. Rashid (PHI)
- 6. Thyristor Phase Controlled converters and Cyclo-converters by B.R.Pelly
- 7. Power Electronics by Vendem Subrahmanyam, New Age International

Note for Examiner(s): Question paper will comprise three sections,

- Section-A will be compulsory and comprise 4-short answer type questions uniformly 1. spread to the entire syllabus.
- Section-B will comprise 4-questions uniformly spread to the entire syllabus and 2. questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section – A is compulsory and attempt/answer all the four questions carrying 12 marks
- Attempt/answer two questions each out of the Section B and Section C. All 2. questions will carry 12 marks.

Course Code:	Course Name: Electrical Measurements &	L	T	P	C
EI-PC-204	Instrumentation	3	1	0	4

Year a	nd	2 nd Year	Contact hours p	er week: (4Hrs)	
Semest	er	(IV th Semester)	Exam: (3 Hrs)		
Pre-requisite of course		Physics, Mathematics, Basic Electrical	Eva	luation	
		Engineering, Basic Electronics Engineering, basic Instrumentation.	CIE: 40	SEE: 60	
Course	Objective				
1. To:	introduce e	electrical & electronics measurement tech	niques. To study t	he varioustypes of	
inst	ruments ar	nd different types of measurements in AC	/DC.		
2. To	study the l	ow and high resistance measurements.			
3. To	study the p	principle and performance equations of gal	lvanometers.		
4. To	study the p	principle and operation of wattmeters and	energy meters.		
5. To	study the C	Construction, operation, and principle of p	power factor & fre	equency meters.	
6. To	study the A	AC bridges and CROs.			
Course	Outcome	s: On completion of the course, student w	ould be able to:		
CO1	To learn	different types of Instruments used in AC	& DC supplies an	nd Electrical &	
	Electroni	cs measurement techniques.			
CO2	To under	stand and analyze the how to calculate lov	w & high resistanc	es.	
CO3	To learn	various types of Galvanometers.			
CO4	To under	stand various types of wattmeters & energ	gy meters and its a	pplications.	
CO5	To under	stand and analyze the Construction, opera	<u> </u>		
	frequency	y meters.	, 1 1 1		
CO6	To under	stand the AC bridges and CROs.			

Modul e No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Fundamentals of Electrical & Electronics measurements: Principle, Construction, Features, Analysis & Performance of moving coil instruments, Moving iron instruments, Electrodynamic instruments, electrostatic instruments and Induction Instruments. Instrument cases (Covers). Construction, operating principle, Torque equation, Shape of scale. MEASURING INSTRUMENTS (AC/DC): use as Ammeter or as Voltmeter (Extension of Range), Use on AC/DC or both, Advantages & disadvantages, Errors (Both on AC/DC) of PMMC types, Electrodynamics Type, Moving iron type (attraction, repulsion & combined types), Induction type.	6	CO1
2	LOW & HIGH RESISTANCE MEASUREMENTS: Measurement of resistance (low, medium, high). Limitations of Wheatstone bridge; Kelvin's double bridge method, bridge controlled circuits, Sensitivity-Null indicators Difficulties in high resistance measurements, Measurement of high resistance by direct deflection, loss of charge method, Megaohm bridge. GALVANOMETERS: General principle and performance equations of D'Arsonval Galvanometers, Vibration Galvanometer and Ballistic Galvanometer.	8	CO2, CO3

3	WATTMETERS & ENEGRY METERS: Construction, operating principle, Torque equation, Shape of scale, Errors, Advantages & Disadvantages of Electrodynamic & Induction type Wattmeters; construction, theory, operation, Two element energy meter, average demand indicator. Single Phase Induction Type Energy meter, Compensation & creep in energy meter. POWER FACTOR & FREQUENCY METERS: Construction, operation, principle, Torque equation, Advantages & disadvantages of Single phase power factor meters (Electrodynamic & Moving Iron types) & Frequency meters (Electrical Resonance Type, Ferrodynamic & Electrodynamic types).	12	CO4, CO5
4	A.C. BRIDGES: General balance equation, Ckt. diagram, Phasor diagram, Advantages, disadvantages, applications of Maxwell's, inductance-capacitance, Hays, Owens, Schering & Wein's bridges, Shielding & earthing, wagner's device. CRO: Block diagram, Sweep generation, vertical amplifiers, use of CRG in measurement of frequency, phase, Amplitude and rise time of a pulse.	10	CO6

TEXT BOOK:

1. A Course in Elect. & Electronic Measurement & Instrumentation by A. K. Sawhney; Khanna Pub.

REFERENCE BOOKS:

- 1. Electrical Measurments by E.W. Golding
- 2. Electronic & Elect. Measurment&Instrumention by J.B.Gupta; Kataria& Sons.
- 3. Electronic Instrumentation & Measurment Technique, W.D. Cooper & A.D. Helfrick.
- 4. Measuring Systems by E.O. Doeblin; TMH.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in
- 2. Attempt/answer two questions each out of the Section -B and Section -C. All questions will carry 12 marks.

Course Code:	Course Name: Program Elective- I		L	T	P	C
EI-PE-206	(ii) Electrical Energy Conservation and Auditing		2	1	0	3
Year and	2 nd Year	Contact hours per week: (3 Hrs)			Hrs)	
Semester	(IV th Semester)	Exam: (3 Hrs)				

Pre-requi	gita of	Basic Science, Basic Electrical	Eva	luation
course	Site of	Engineering, Basic Instrumentation Engineering	- (1 H· ΔI) CF	
Course O	bjective	es:		
1. To stud	ly the p	resent Energy Scenario and Basics of var	ious forms of Energ	gy
2. To intro	oduce tl	ne concept of Energy Management, Actio	on Planning, Financi	ial Management
and Au	ıdit.			
3. To stud	ly the E	nergy Monitoring and Targeting system,	the Power Supply S	System and electric
motors				
4. To intro	oduce tl	he concept of Lighting System, Energy E	fficient Technologie	es.
Course O	utcome	s: On completion of the course, student v	vould be able to:	
CO1 T	Γo famil	iarized with the present Energy Scenario	and Basics concept	of various forms
0	of Energ	y.		
CO2 T	Γo impa	rt conceptual knowledge and analysis of l	Energy Managemer	nt, Action
P	Planning	g, Financial Management and Audit.		
CO3 1	Γo unde	rstand the concept of Energy Monitoring	and Targeting syste	em, the Power
S	Supply S	System and electric motors, Lighting Syst	em, Energy Efficien	nt Technologies.
CO4	Ability t	o use and learn the conventional technique	es and skills ofengi	ineering in the field
0	of electri	ical and instrumentation engineering.		
CO5 T	Γo impa	rt technical education to learn and engage	e in the related field	s. Ability to handle
a	dminist	rative responsibilities and manage projec	ts and their related	issues.

Module	COURSE SYLLABUS	Hrs	COs	
No	CONTENTS OF MODULE	1115	COS	
1	Energy Scenario and Basics of Energy: Energy scenario in world and India, Energy Conservation and its Importance, Energy Strategy for the Future, The Energy Conservation Act, 2001 and its Features, Various Forms of Energy, Electrical Energy Basics Energy Management and Audit: Definition & Objectives of Energy Management, Energy Audit: Types and Methodology, Energy Audit Reporting Format, Understanding Energy Costs, Benchmarking and Energy Performance, Matching Energy Usage to Requirement, Maximizing System Efficiency, Fuel and Energy Substitution, Energy Audit Instruments.	7	CO1, CO2	
2	Energy Action Planning and Financial Management: Introduction, Energy Management System, Introduction, Investment Need, Appraisal and Criteria, Financial Analysis, Financial Analysis Techniques, Sensitivity and Risk Analysis, Financing Options. Introduction and steps in Project Management. Energy Monitoring and Targeting: Definition, Elements of Monitoring & Targeting System, A Rationale for Monitoring, Targeting and Reporting, Data and Information Analysis, Relating Energy Consumption and Production, CUSUM, Case Study.	7	CO3, CO4, CO5	
3	Electrical System and Motors: Electrical Load Management and Maximum Demand Control, Power Factor Improvement and Benefits, Harmonics, Analysis of Electrical Power Systems Motor Selection, Energy Efficient Motors, Factors Affecting Energy Efficiency and Minimizing Motor Losses in Operation, Rewinding Effects on Energy Efficiency, Speed Control of AC Induction Motors, Motor Load	7	CO3, CO4, CO5	

	Survey: Methodology.		
4	Lighting System: Introduction, Basic Terms in Lighting System and Features, Lamp Types and their Features, Recommended Illuminance Levels for Various Tasks/Activities/Locations, Methodology of Lighting System, Energy Efficiency Study, Case Examples, Some Good Practices in Lighting. Energy Efficient Technologies in Electrical Systems: Maximum Demand Controllers, Automatic Power Factor Controllers, Energy Efficient Motors, Soft Starter, Variable Speed Drives, Energy Efficient Transformers, Electronic Ballasts, Energy Efficient Lighting Controls.	7	CO3, CO4, CO5

Text/References:

- 1. B.R.Gupta, "Generation of Electrical Energy", Eurasia Publishing House, New Delhi.
- 2. A Ter-Gazarian, "Energy Storage for Power Systems", Peter Peragrinus Ltd.
- 3. Quarterly journals on Energy Managements, Energy Management Centre, Govt. of India, Ministry of Power, New Delhi.
- 4. Anthony J. Pansini, Kenneth D. Smalling, "Guide to Electric Load Management", Pennwell Pub: 1998
- 5. Howard E. Jordan, "Energy-Efficient Electric Motors and Their Applications", Plenum Pub Corp: 2ndedition, 1994.
- 6. Giovanni Petrecca, "Industrial Energy Management: Principles and Applications", The Kluwerinternational series -207, 1999.
- 7. Y P Abbi and Shashank Jain, "Handbook on Energy Audit and Environment Management", TERI,2006
- 8. Albert Thumannand William J. Younger,, "Handbook of Energy Audits", Terry Niehus, 2009.

Note for Examiner(s): Question paper will comprise three sections,

- Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- Section-B will comprise 4-questions uniformly spread to the entire syllabus and 2. questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- Section A is compulsory and attempt/answer all the four questions carrying 12 marks
- 2. Attempt/answer two questions each out of the Section – B and Section – C. All questions will carry 12 marks.

Course Code:	Course Name: Program Elective- I		L	T	P	C
EI-PE-206	(i) Control System Components		2	1	0	3
Year and	2 nd Year (IV th Semester)	Contact hours per week: (3 Hrs)				
Semester	2 Tear (IV Semester)	Exam: (3 Hrs)				
Pre-requisite of	Mathematics, Physics, basic electrical	Evaluation				
course	and electronic engineering	CIE: 40		SEI	E: 60)

Course Objectives:

- 1. Introduction, concept of Open loop & closed loop operation and to study the components for Mechanical, pneumatic, hydraulic and electrical systems
- 2. Study of Mathematical Modeling of Dynamic system and find out the Transfer function of system by block diagram, reduction technique, signal flow graphs techniques
- 3. To study the Basic control action & Industrial pneumatic automatic controllers and their mathematical Modeling and analysis
- 4. To study Hydraulic control system and their mathematical Modeling and analysis
- 5. To study Electronic control system and their mathematical Modeling and analysis
- 6. Introduction the concept of control valve, their sizing and applications

Course Outcomes: On completion of the course, student would be able to:

- Student understands the concept of Open loop & closed loop control system and CO₁ familiarized with the Mechanical, pneumatic, hydraulic and electrical systems components.
- Ability to derive Mathematical Modeling of various dynamical systems and able to find CO₂ out the Transfer function of system by block diagram, reduction technique, signal flow graphs techniques.
- Ability to identify, formulate and solve a problem using pneumaticsystem in CO₃ instrumentation control engineering
- Ability to identify, formulate and solve a problem using hydraulic system in **CO4** instrumentation and control engineering
- Ability to identify, formulate and solve a problem using electronic system in **CO5** instrumentation and control engineering
- Ability to understand and use the concept of control valve, their sizing and applications **CO6**

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Control System: Open loop & closed loop operation, Introduction to control system components, Representation of control components: Mechanical, Electrical, hydraulic and pneumatic. Transfer function of control system, Mathematical Modeling of Dynamic system: Mechanical, Electrical, Analogous system, Electromechanical system, hydraulic and pneumatic transfer function by block diagram, reduction technique, signal flow graphs techniques, Meson's gain formula for signal flow graph.	8	CO1 CO2
2	Basic control action & Industrial automatic controller: On/Off or two position, proportional, integral, proportional-Integral, proportional-derivative and proportional-integral-derivative control action. Pneumatic controller: Pneumatic amplifiers, pneumatic proportional controller, pneumatic derivative and integral control action, PID controller, PI controller action.	7	CO3
3	Hydraulic controller: Advantage and disadvantage of Hydraulic controllers, Hydraulic integral controller, proportional controller, Hydraulic PI controller, hydraulic PD controller. Comparison between pneumatic and hydraulic systems Electronic controller: On/Off or two position, proportional, integral, proportional-integral, proportional-derivative and proportional-integral-derivative, design and consideration.	7	CO4 CO5
4	Control valve: Type and characteristics, control valve sizing, selection	6	CO6

criteria concept. Calculation of control valve size, positioner, necessity	
type & effects on performance of control valve. Pneumatic control	
valve characteristics, Auxiliary process components: Hydraulic pumps	
& power supply, Hydraulic servomotor, Hydraulic integrator,	
Amplidyne.	

Reference Books:

- 1. Process Control and Instrument Technology by C.D.Jhonson.
- 2. Instrumentation for Process Measurement and Control By N.A.Anderson
- 3. Automatic Control Engineering by Raven
- 4. Automatic Control System by C.Kuo
- 5. Modern Control Engineering by Katsuhiko & Ogata
- 6 Control System by Nagrath & Gopal

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Program Name: B. Tech.-Electrical and Instrumentation Engineering **Course Code:** \mathbf{C} $\mathbf{T} \mid \mathbf{P}$ L Course Name: Electrical Machines - I EI-PC-208 0 1 4 IInd Year **Contact hours per week:** (4Hrs) **Year and Semester IVth Semester** Exam: (3 Hrs) **Pre-requisite of Evaluation Basic Electrical Engg CIE: 40** course **SEE: 60 Course Objectives:** 1. To introduce students with the fundamentals of energy conversion. 2. To familiarize and gain knowledge about DC generators and DC motors construction, working, staring and performance. 3. To have good understanding of single phase transformers based on working and operation under different loading conditions. 4. To introduce open circuit, short circuit, transmission, hybrid parameters and their interrelationship. 5. To gain analytical skills based on operation of three phase transformers. **Course Outcomes:** On completion of the course, student would be able to: CO₁ Acquire knowledge about the fundamental principles and electromagnetic energy conversion. Acquire knowledge about the constructional details and principle of operation of dc CO₂

	machines, starting and speed control, including numerical problems.
CO3	Acquire knowledge about testing and applications of dc machines
CO4	Acquire knowledge about the constructional details, principle of operation, testing and applications of transformers.
CO5	Acquire knowledge about the constructional details, operation, testing, Analytical capability, and applications of single and 3 phase transformers.
CO6	Operate single phase and three phase transformers in parallel sharing the load. And Numerical analysis of this operation.

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	Cos
1	Principles of Electro-mechanical Energy Conversion: Introduction, Review of magnetic system, Force and torque in magnetic field system, Energy balance equation, Energy conversion via electrical field, Determination of the Force and Torque from energy and co-energy, Generation of EMF in Machines.	5	CO1, CO2
2	DC Machines-I: Principle, Construction, and Classification of DC generators, EMF equation of generator, Armature winding, Armature reaction, Commutation, Performance characteristics of DC generators, and applications.	8	CO2
3	DC Machines-II: Principle, Construction, and Classification of DC motor, back emf, power equation, condition for maximum efficiency, armature torque and shaft torque, losses and efficiency, power stages, Performance characteristics of DC motors, Starting of DC motors; 3 point and 4 point starters, Speed control of DC motors; Field control, Armature control and Voltage control (Ward Leonard method); Efficiency and Testing of DC machines (Hopkinson's and Swinburne's Test).	9	CO2, CO3.
4	Single Phase Transformer: Construction & Principle, Ideal and practical transformer, shifting impedances, exact and approximate equivalent circuit, resistive, inductive and capacitive loading with phasor diagrams, losses in transformers. Efficiency and condition for maximum efficiency, voltage regulation, Testing of Transformers-O.C. and S.C. tests, Polarity test, Sumpner's test, parallel operation and load sharing, Auto Transformer- Single phase autotransformers, merits and de-merits and applications.	10	CO4,
5	Three Phase Transformers: Construction, Three phase transformer, phasor groups and their connections, open delta connection, three phase to 2 phase conversion, Three winding transformers from three single phase transformers. Parallel operation of three phase transformers.	6	CO5, CO6

Text Books:

- 1. Electrical Machines", I J Nagrath& D.P. Kothari, Tata McGraw Hill
- 2. Electrical Machines", Rajendra Prasad, PHI
- 3. Electrical Machines", S K Sahadev, Cambridge University Press.
- 4. Electrical Machinery", P S Bimbhra, Khanna Publisher.

Reference Books:

1. Electric Machinery, AE Fitggerald, C. Kingsley Jr and Umans, McGraw Hill, International.

- 2. Electrical Technology, H. Cotton, CBS Publication.
- 3. The Performance and Design of AC machines, M G Say, Pit man& Sons.
- 4. Generalized Theory, P S Bimbhra, Khanna Publishers

Note for Examiner(s): Question paper will comprise three sections,

- Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in
- 2. Attempt/answer two questions each out of the Section -B and Section -C. All questions will carry 12 marks.

		ani Name: D. TechElectrical and my	strumentation Engin			-	
			L	T	P	C	
EI-OE-2	EI-OE-210 (i) Digital Techniques 2				1	0	3
Year ar	Year and 2 nd Year Contact hours per week: (:(3	Hrs	;)	
Semeste	er	(IV th Semester)	Exam: (3 Hrs)				
Pre-req	uisite of	EI-ES-108: Basic Electronics	Evalua	tion			
course		Engineering IInd Semester	CIE: 40		SEE	: 6	0
Course	Objective	es:					
1. To in	npart the b	pasic concepts of Digital Electronics.					
2. To d	esign and	study various logic circuits.					
3. To st	tudy vario	us switching applications.					
4. To la	ay the foun	dation for the courses in electronics rel	ated to microprocesso	rs an	d		
micr	ocomputer	·s.					
Course	Outcome	s: On completion of the course, student	would be able to:				
CO1	Understa	nd the basic concepts of Boolean theory	and concepts of logic	gate	es in	di	gital
	electronic	es.					
CO2	Understa	nd the concept of sequential and combine	national logical circuit	•			
CO3	Develop	design capability in synchronous and as	synchronous sequentia	l circ	cuits		
CO4	Design of	f memory cells and different memory ci	ircuits. Classify different	ent se	emic	one	ductor
	memories	S.					
Module	e	COURSE SYLLABU	S		Hrs	,	COs
No	CONTENTS OF MODULE			COS			
	Number system and codes, Boolean relations, sum of products						
		d, algebraic simplification, k-Maps, K					
1	-	addition, binary subtraction, Gates: 0			7		CO1
1		(enable) operation, XOR circuits,			,	, 0	
		rgan's Laws, Logic Hardware: DTL,		OS,			
		Logic and their characteristics, Dyna					
2	Binary	Adders (Half Adder, Full adder,)). Arithmetic function	ons	7		CO2

	(True/Complement, Zero/One Element, Binary Subtraction, Digital Comparator), Tristate logic and its uses in computers, Flip flops: RS Latches, Level clocking (Clocked SR flip flop), D latch, Edge triggered JK Flip Flop, JK Master Slave flip flop, T type Flip Flop.		
3	Decoder, Encoders, Multiplexers, Demultiplexures Registers, parallel and Shift Registers, MOS Shift registers, synchronous & Asynchronous counters, up/down counters, Applications of Counters.	5	CO2 CO3
4	A/D & D/A converters and their design. Digital storage devices: ROM, RAM, EPROM, EEPROM, MOS ROM, ROM Applications	5	CO4

Reference Books:

- Digital Electronics by Gothman, Prentice-Hall
- Digital Principals & Applications by Malvino& Leach, TMH 2.
- System Design by Sonde, TMH 3.
- 4. Digital Computer Electronics by A.P.Malvino, TMH
- Integrated Electronics by Millman&Halkias, McGraw Hill 5.

Note for Examiner(s): Question paper will comprise three sections,

- Section-A will be compulsory and comprise 4-short answer type questions uniformly 1. spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- Section A is compulsory and attempt/answer all the four questions carrying 12 marks 1.
- 2. Attempt/answer two questions each out of the Section – B and Section – C. All questions will carry 12 marks.

Course Code: Course Name: Open Elective – II		$ \mathbf{L} \mathbf{T} \mathbf{P} \mathbf{C}$		
EI-OE-210	(ii) Computer Organization		2 1 0 3	
Year and	2 nd Year	Contact hours pe	er week: (3 Hrs)	
Semester	(IV th Semester)	Exam: (3 Hrs)		
	Brief knowledge in the following:	Evalu	uation	
Pre-requisite of	Logic Circuit Design, Sequential			
course	Circuits, Fundamental programming	CIE: 40	SEE: 60	
	skills			
Course Objective	es:			
1. Understand	the basics of computer organization: struc	cture and operation	of computers and	
their periph	erals.			
2. Understand	the concepts of programs as sequences or	r machine instruction	ns.	
3. Expose diffe	erent ways of communicating with I/O de	vices and standard l	I/O interfaces.	
4. Describe hierarchical memory systems including cache memories and virtual memory.				
5. Describe arithmetic and logical operations with integer and floating-point operands.				
6. Understand	basic processing unit and organization of	simple processor, c	concept of	
			•	

p	ipelining and other large computing systems.			
Course	e Outcomes: On completion of the course, student would be able to:			
CO1	The basic structure of computers & machine instructions and programs, Addressing			
	Modes, Assembly Language, Stacks, Queues and Subroutines. Input/output			
	Organization such as accessing I/O Devices, Interrupts and Memory system			
CO2	Some Fundamental Concepts of Basic Processing Unit organization and execution of			
	instruction, buses, buses peripheral devices etc.			
CO3	Apply the knowledge gained in the design of Computer.			
CO4	Analyse and design arithmetic and logical units			
CO5	Design and evaluate performance of memory systems			
CO6	Understand the importance of life-long learning			

Module	le COURSE SYLLABUS		COs
No	CONTENTS OF MODULE	Hrs	COS
	Basic Structure of Computers: Basic Operational Concepts, Bus		
	Structures, Performance – Processor Clock, Basic Performance		
	Equation and Measurement. Machine Instructions and Programs:		CO1,
1	Memory Location and Addresses, Memory Operations, Instructions	7	CO1,
	and Instruction Sequencing, Addressing Modes, Assembly Language,		CO2
	Basic Input and Output Operations, Stacks and Queues, Subroutines,		
	Additional Instructions, Encoding of Machine Instructions.		
	Input/Output Organization: Accessing I/O Devices, Interrupts –		
2	Interrupt Hardware, Enabling and Disabling Interrupts, Handling	6	CO2,
2	Multiple Devices, Controlling Device Requests, Exceptions, Direct	U	CO3
	Memory Access, Buses, Interface Circuits,		
	Memory System: Basic Concepts, Semiconductor RAM Memories,		CO2,
3	Read Only Memories, Speed, Size, and Cost, Cache Memories –	7	CO ₂ ,
3	Mapping Functions, Replacement Algorithms, Performance	'	CO3,
	Considerations, Virtual Memories, and Secondary Storage.		COS
	Basic Processing Unit: Some Fundamental Concepts, Execution of a		CO3,
4	Complete Instruction, Multiple Bus Organization, Hard-wired Control,	6	CO4,
	Micro programmed Control.		CO ₆

Text Books:

1. Carl Hamacher, Zvonko Vranesic, Safwat Zaky: Computer Organization, 5th Edition, Tata McGraw Hill, 2002.

Reference Books:

- 1. William Stallings: Computer Organization & Architecture, 9th Edition, Pearson, 2015.
- 2. Patterson and Hennessy: Computer Organization & Design: The Hardware/Software Interface, Fourth Edition, Morgan Kaufmann Publishers, 2012.
- 3. J.P. Hayes: Computer Architecture and Organization, TMH
- 4. Microprocessor and Interfacing –Douglas V. Hall, TMGH 2nd edition

Note for Examiner(s): Question paper will comprise three sections,

- Section-A will be compulsory and comprise 4-short answer type questions uniformly 1. spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.

Section-C will comprise 4-questions uniformly spread to the entire syllabus and **3.** questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- Attempt/answer two questions each out of the Section B and Section C. All 2. questions will carry 12 marks.

Trogram Name: B. Teen:-Electrical and instrumentation Engineering							
Course	Code:	Course Name: Project Planning Estimation and			P	C	
EI-HSM	-212	Assessment		2 0	0	2	
Year an	d	2 nd Year	Contact hours per week: (2Hrs)				
Semeste	r	(IV th Semester)	Exam: (3 Hrs)				
Pre-requ	uisite of	N.T.C.1	Evalua	tion			
course		Nil	CIE: 40	SEE: 60			
Course	Objective	es:					
1. Hov	v to prepa	re project proposal and appraisal					
2. Hov	v to make	market survey and demand analysis					
3. Hov	v to make	technical analysis					
4. Hov	v to make	finance planning					
5. Hoe	to achiev	ve project objectives and policies					
Course	Outcome	s: On completion of the course, stude	nt would be able to:				
CO1	Project appraisal documentation						
CO2	Based on make market survey and demand analysis, to give demand forecast						
CO3	Choice of Technology						
	Cost of the project and means of finance						
	To develop tools to arrive at project objectives						

Module			Cog
No			Cos
1	Project Development Cycle: Pre-investment phase, implementation phase, operational phase. Aspects of Appraisal: Market Appraisal, Technical Appraisal, Financial Appraisal, Economic Appraisal. Objectives of investment decision making. Scouting for project ideas; Preliminary Screening, compatibility with the promoter, consistency with governmental prioritize, availability of inputs, Adequacy of the market, Reasonableness of cost, Acceptability of Risk Level.	6	CO1
2	Market and Demand Analysis: Information required for Market and Demand Analysis, Secondary sources of information, Market Survey - Steps in sample survey, Demand Forecasting, Uncertainty in Demand forecasting, Method of Forecasting, Environmental Changes, coping with uncertainties. Technical Analysis: Material and inputs; Product Technology; Choice of Technology, Acquiring Technology, Appropriateness, of Technology, Product Mix, Plant Capacity, Location of site.		CO2
3	Financial Estimates: Cost of Project, Main Components, Means	6	CO3

	of financing, Planning the Capital structure of a new company, Norms of the Controller of Capital issue, Norms and requirements of All India Financial Institutions, Stock Exchange stipulation, Difficulty in raising External Finance, Designing the capital structure.		CO4
4	Project Planning & Control: Functions of Planning, Areas of planning, Project objectives and policies, life cycle of a project, Tools of Planning, Hierarchy of plans; Project Control- Reasons for ineffective control, variance Analysis Approach, Performance Analysis, Modern Approach to Control.	6	CO5
5			

Reference Books:

- Project Preparation, Appraisal, Budgeting Implementation by Prasanna Chandra, Tata Mc-Graw Hill. (2017)
- 2. O.P. Khanna – Industrial Engineering and Management – Dhanpat Rai and Sons, 2001
- S. Elion Elements of Production planning and control Macmillan Co. 2007 3.
- I.M. Pandey Financial Management Vikas Publishing Co. 4.
- E.S. Baffa Modern production management John Wiley and Sons. 2008 5.
- I.W.Burr Engineering Statistics and Quality Control McGraw Hill, 2011 6.
- 7. A.J. Ducan – Quality control and industrial statistics – Richard.D.Irwing Inc.

Note for Examiner(s): Question paper will comprise three sections,

- Section-A will be compulsory and comprise 4-short answer type questions uniformly 1. spread to the entire syllabus.
- Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Program Name: B. Tech.-Electrical and Instrumentation Engineering

Course Code: EI-PRPC-10	Course Name: Power Electron	L T P C 0 0 2 1			
Year and	2 nd Year	ear Contact hours per week: (2Hrs)			
Semester	IV th Semester	Exam: (3hrs.)			
	Brief knowledge of in the following	Evaluation			
Pre-requisite of	topics: Basic Electrical and				
course	Electronics engineering,	CIE: 20	SEE: 30		
Course	Semiconductor devices, Digital	CIE. 20	SEE. JU		
	Electronics, rectifiers.				
Commo Obligations					

Course Objectives:

1. Understand the Construction, principles and Characteristics of Power Devices Such as SCR, IGBT, MosFET etc.

2. Und	2. Understand the concepts of SCR triggering circuits and its firing techniques.				
	lerstand different types of supplies used for turning on of SCRs.				
4. Und	lerstand the output characteristics of converters at different firing angles and different				
type	es of loadings.				
Course	Outcomes: On completion of the course, student would be able to:				
CO1	To understand the Construction, principles and Characteristics of Power Devices.				
CO2	To understand the various types of SCR triggering circuits and its firing techniques.				
CO3	To understand different methods of turning on of SCRs.				
CO4	CO4 To understand the output characteristics of converters at different firing angles and				
	different types of loadings.				

Expt.	COURSE SYLLABUS	COs
No	CONTENTS OF MODULE	COS
	LIST OF EXPERIMENTS STUDY EXPERIMENTS:	
1.	To Study the characteristics of SCR. find out the holding and latching current.	
2.	To plot the output characteristics of MOSFET	
3.	To plot the output characteristics of IGBT.	
4.	To trigger the SCR with DC triggering	
5.	To trigger the SCR with μ- controller based firing circuit.	
6.	To synchronize UJT firing circuit.	
7.	To perform the time delay with the help of UJT.	
8. t	To trigger single phase converter at different firing angles.	
9.	To study the resistance R and resistance-capacitance RC triggering of SCR.	
10.	To trigger SCR with digital circuit.	
11.	To turn on SCR using different methods.	
	SIMULATION EXPERIMENTS:	
1.	Single Phase Half wave controlled converter with R,RL&RLE Load (for	CO1,
1.	firing angles 30,60,90) with/without FD	CO2,
2.	Single Phase Half controlled converter with R,RL&RLE Load (for firing	CO3,
۷.	angles 30,60,90)with/without FD	CO4
3.	Single Phase Full controlled converter with R,RL&RLE Load (for firing	
J.	angles 30,60,90)with/without FD	
4.	Three Phase semi controlled converter with R,RL&RLE Load	
5.	Three Phase full controlled converter with R,RL&RLE Load	
6.	Single phase AC Voltage Controller with R&RL Loads	
7.	Boost converter and buck converter with open loop and closed loop operations	
8.	Single Phase cyclo converter	
	HARDWARE EXPERIMENTS:	
1.	Thyristorised drive for PMDC motor with speed measurement and Single	
	Phase Half controlled rectifier and full controlled rectifier	
2.	Three Phase input Thyristorised drive for Dc Motor with closed loop control	_
3.	Single Phase Series Inverter	
4.	Single Phase Parallel Inverter	

REFERENCE BOOKS:

- 1. Modern Power Devices by B.Jayant Balica, New Age Inter.
- 2. Power Electronics by P.C. Sen (TMH)
- 3. An Introduction to Thyristors and Their Applications by M. Ramamurthy (EWP)
- 4. Power electronics by Ned Mohan and Robins, John Wiley and Sons

- 5. Thyristor Phase Controlled converters and Cyclo-converters by B.R.Pelly6. Power Electronics by Vendem Subrahmanyam, New Age International

Course Code:	e Code: Course Name: Electrical Measurements &		L T P C			
EI-PRPC-12	EI-PRPC-12 Instrumentation Lab		0 0 2 1			
Year and	2 nd Year	Contact hours p	oer week: (2Hrs)			
Semester						
	Brief knowledge of in the following	Eval	luation			
Pre-requisite of	topics: Basic Electrical and Electronics					
course	engineering, Semiconductor devices,	CIE: 20	SEE: 30			
	Digital Electronics, rectifiers.					
Course Objective	Course Objectives:					
1. Understa	nd the Construction and principles of Constr	ruction and working	ng principles of			
wattmete	wattmeter and energy meters					
2. Understar	nd the concepts of measurements of high and	d low resistances.				
3. Understa	nd the null deflection and implement it in C	Г & РТ.				
Course Outcom	es: On completion of the course, student wo	ould be able to:				
CO1 To unde	rstand the Construction and working princip	oles of wattmeter a	and energy meters.			
CO2 To unde	To understand the methods to measure high and low resistances					
CO3 To unde	To understand how to implement null deflection and in CT & PT.					
CO4 To unde	To understand the displacement measurements in LVDT.					

Expt.	COURSE SYLLABUS	COs			
No	CONTENTS OF MODULE				
	LIST OF EXPERIMENTS STUDY EXPERIMENTS:				
1.	To calibrate D.C. Energy Meter at different loads.				
2.	To study the error in wattmeter at various p.f,s (power factors)				
3.	To measure resistance of the order of 5/10 ohm using (a) Ammeter, Voltmeter method. (b) Method of substitution (c) Carrey foster bridge.				
4.	To measure the inductance and resistance of given inductor at different audio frequencies 200 Hz to 10Kz, using Maxwell's inductance, capacitance bridge, Hays Bridge.				
5.	To measure low resistance using Kelvin's Double Bridge.				
6.	To determine the current ratio and phase angle of the given current transformer at different nominal current ratio using direct deflection method.	CO1,			
7.	To study Lloyd fisher square and separate hysterises and eddy current losses of the specimen in the square.	CO2, CO3,			
	Calibration of D.C. Voltmeter 0-300 V and Ammeter 0-10 mA using Crompton potentiometer.	CO4			
8.	Measurement of displacement with the help of LVDT.				
9.	Dielectric oil testing using H.T. testing Kit.				
10.	Calibration and Testing of single phase energy Meter.				
11.	Measurement of 3 - Phase reactive power with single-phase wattmeter.				
12.	Measure the capacitance using Schering bridge and find out the balance equation.				
13.	Measure the self-inductance using Anderson bridge and find out the balance equation.				

14.	Resistance strain gauge – strain measurements and Calibration.	
15.	C.T. testing using mutual Inductor – Measurement of % ratio error and phase	
	angle of given CT by Null method. PT testing by comparison – V. G. as Null detector – Measurement of % ratio	
16.	error and phase angle of the given PT.	

REFERENCE BOOKS:

1. A Course in Elect. & Electronic Measurement & Instrumentation by A. K. Sawhney; Khanna Pub.

REFERENCE BOOKS:

- 1. Electrical Measurments by E.W. Golding
- 2. Electronic & Elect. Measurment&Instrumention by J.B.Gupta; Kataria& Sons.
- 3. Electronic Instrumentation & Measurment Technique, W.D. Cooper & A.D. Helfrick.
- 4. Measuring Systems by E.O. Doeblin; TMH.

Program Name: B. TechElectrical and Instrumentation Engineering						
Course Co	de:	Course Name: Open Elective-II Lab.			P	C
EI-PROE-1	14	(i) Digital Techniques			2	1
Year and		2 nd Year	Contact hours per we	eek: (2	Hrs)	,
Semester		IV th Semester	Exam: (3 hrs.)			
Pre-requis	ite of	Dogio Electronica	Evalua	tion		
course		Basic Electronics	CIE: 20	SE	E: 3	0
Course Ob	jective	es:				
1. To imp	art the	basic practical aspects of Digital Elec	etronics.			
2. To mak	o make a differentiation between the Analog Electronics and Digital electronics through					
practica	practical modes.					
3. To lay 1	o lay the foundation for the courses in electronics related to microprocessors,					
microco	microcomputers and computers which are more advanced courses based on digital					
electron	nics and	d the revolution in electronics				
Course Ou	itcome	s: On completion of the course, stude	ent would be able to:			
CO1 W	ell vers	se with the fundamentals and the para	meters of digital compo	nents re	latec	l to
the	their fabrication and internal circuitry.					
CO ₂ To	To design and study various logic circuits.					
		design capability in synchronous and	asynchronous sequentia	ıl circui	ts.	

Expt.	COURSE SYLLABUS	COs
No	CONTENTS OF MODULE	COS
1	Design and study Diode logic circuit AND and OR gate and verify the truth	
1	table.	
2	Design and study DTL circuit NAND and NOR gate and verify the truth table.	
3	Design and study TTL NAND gate Circuit and verify the truth table.	
4	Draw EX-OR and EX-NOR logic circuit with the help of 7400 and verify its	
4	truth table.	
5	Draw the circuit of half adder and full adder and verify its truth table.	CO1,
6	Draw the SR and D flip flop and verify the truth table with the help of 7400.	CO2,
7	Draw the JK Flip flop and JK Master slave flip flop with 7400 and verify the	CO3
/	truth table.	
8	Draw the Parallel in Parallel out registers with 7476 and verify its operation	

9	Draw the shift registers with 7476 and verify its operation.	
10	Draw the circuit of synchronous counter with 7476 and perform the up	
10	counting.	
11	Draw the circuit of asynchronous counter with 7476 and perform the up	
	counting.	
10	Draw the circuit of asynchronous counter with 7476 and perform the down	
12	counting.	
13	Draw the mode 10 asynchronous up counter with 7476.	

Trogram Name. D. TechElectrical and first differentiation Engineering						
Course C	ode:	Course Name: Open Elective-II Lal	b.	L T P C		
EI-PROE	-14	(ii) Computer Organization		0 0 2 1		
Year and	Year and 2 nd Year Contact hours per week: (2Hrs)					
Semester	•	IV th Semester	Exam: (3hrs.)			
		Brief knowledge of in the	Evalu	ation		
Pre-requi	isite of	following topics: Logic Circuit				
course		Design, Sequential Circuits,	CIE: 20	SEE: 30		
		Fundamental programming skills				
Course O	bjective	es:				
1. Under	stand the	e basics of computer organization: stru	ucture and operation o	f computers and		
their p	eriphera	ıls.				
2. Under	stand the	e concepts of programs as sequences of	or machine instruction	S.		
3. Expos	e differe	ent ways of communicating with I/O d	levices and standard I/	O interfaces.		
4. Descri	ibe hiera	rchical memory systems including car	che memories and virt	ual memory.		
5. Descri	ibe arithi	metic and logical operations with inte	ger and floating-point	operands.		
6. Under	stand ba	sic processing unit and organization of	of simple processor, co	oncept of pipelining		
and of	her large	e computing systems.				
Course O	utcome	s: On completion of the course, stude	nt would be able to:			
CO1 T	The basic	e structure of computers & machine in	structions and program	ns, Addressing		
N	Modes, A	Assembly Language, Stacks, Queues a	and Subroutines. Input	t/output		
C	Organiza	tion such as accessing I/O Devices, In	nterrupts and Memory	system		
CO2 S	Some Fu	ndamental Concepts of Basic Processi	ing Unit organization a	and execution of		
	nstructio	n, buses, buses peripheral devices etc	•			
CO ₃ A	Apply the	e knowledge gained in the design of C	Computer.			
CO4 A	Analyse and design arithmetic and logical units					
CO5	Design ar	nd evaluate performance of memory s	systems			

Expt.	COURSE SYLLABUS	COa
No	CONTENTS OF MODULE	COs
	Exercises in Micro Processor programming:	
1	Write the working of 8085 simulator GNUsim8085 and basic architecture of	
1	8085 along with small introduction.	CO1,
2	Study the complete instruction set of 8085 and write the instructions in the	CO2,
	instruction set of 8085 along with examples.	CO3 ,
3	Write an assembly language code in GNUsim8085 to implement data transfer	CO4
3	instruction.	

Understand the importance of life-long learning

CO₆

4	Write an assembly language code in GNUsim8085 to store numbers in reverse order in memory location.
5	Write an assembly language code in GNUsim8085 to implement arithmetic instruction.
6	Write an assembly language code in GNUsim8085 to add two numbers using lxi instruction.
7	Write an assembly language code in GNUsim8085 to add two 8 bit numbers stored in memory and also storing the carry.
8	Write an assembly language code in GNUsim8085 to find the factorial of a number.
9	Write an assembly language code in GNUsim8085 to implement logical instructions.
10	Write an assembly language code in GNUsim8085 to implement stack and branch instructions.
	Write assembly language programs for the following using GNU
	Assembler.
	Write assembly language programs to evaluate the expressions:
	i) a = b + c - d * e
11	ii) $z = x * y + w - v + u / k$
11	a. Considering 8-bit, 16 bit and 32 bit binary numbers as b, c, d, e. b. Considering 2 digit, 4 digit and 8 digit BCD numbers.
	Take the input in consecutive memory locations and also Display the results by
	using "int xx" of 8086. Validate program for the boundary conditions.
	Write an ALP of 8086 to take N numbers as input. And do the following
12	operations on them.
	a. Arrange in ascending and descending order.
	Write an ALP of 8086 to take N numbers as input. And do the following
	operations on them.
12	a. Find max and minimum
13	b. Find average Considering 8-bit, 16 bit binary numbers and 2 digit, 4digit and 8 digit BCD
	numbers. Display the results by using "int xx" of 8086. Validate program for
	the boundary conditions.
	Write an ALP of 8086 to take a string of as input (in 'C' format) and do the
	following Operations on it.
	a. Find the length
14	b. Find it is Palindrome or n.
	Considering 8-bit, 16 bit binary numbers and 2 digit, 4digit and 8 digit BCD
	numbers. Display the results by using "int xx" of 8086. Validate program for
	the boundary conditions. Write an ALP of 8086 to take a string of as input (in 'C' format) and do the
15	following Operations on it.
13	a. Find whether given string substring or not.
	Write an ALP of 8086 to take a string of as input (in 'C' format) and do the
	following Operations on it
16	a. Find the Armstrong number
	b. Find the Fibonacci series for n numbers
	Display the results by using "int xx" of 8086.
17	Write the ALP to implement the above operations as procedures and call from

	the main procedure.	
10	Write an ALP of 8086 to find the factorial of a given number as a Procedure	
10	and call from the main program which display the result.	

REFERENCE BOOKS:

- 1. Switching theory and logic design –A. Anand Kumar PHI, 2013
- 2. Advanced microprocessor & Peripherals-A. K. Ray and K. M. Bherchandavi, TMH, 2nd edition.
- 3. Switching and Finite Automatic theory-Zvi Kohavi, Niraj K.Jha Cambridge, 3rd edition
- 4. Digital Design Morris Mano, PHI, 3rd edition
- 5. Microprocessor and Interfacing –Douglas V. Hall, TMGH 2nd edition

1 10gram 1 tame: D: 1 cen; Electrical and instrumentation Engineering						
Course Code: EI-PRPC-16	Course Name: ELECTRICAL MACHINES-I LAB		L	T 0	P 3	C 1.5
Year and						
Semester	IV th Semester	Exam: (3hrs.)			`	ĺ
Pre-requisite	Pasia Floatrical Frag	Evalu	ıatioı	n		
of course	Basic Electrical Engg	CIE: 30		SEI	E : 4 :	5
Course Objecti	ves:					
1. To have	practical knowledge about working of DC	machines.				
2. To be ab	le to test DC machines for their performance	e.				
3. To have	practical knowledge of working of single a	nd three phase trans	form	ers.		
4. To be ab	le to conduct experimentation on single and	d three phase transfo	rmer	S.		
Course Outcome	es: On completion of the course, student wo	ould be able to:				
CO1 have so	und practical understanding of DC generate	ors and DC motors.				
CO2 conduct experimentation on DC machines under different operating conditions.						
CO3 have pra	O3 have practical understanding of single phase and three phase transformers.					
CO4 conduct	various tests on single and three phase tran	sformers.				

Expt.	COURSE SYLLABUS	Cos
No	CONTENTS OF MODULE	Cos
1	Measurement of induced emf and magnetising current under open circuit	
1	condition in D.C. generators.	
	Determination of the relationship between terminal voltage and load current	
2	keeping speed constant for(a) Separately excited generator keeping excitation	
	constant (b) D.C. shunt generator.	
3	To measure the variation in no load speed of a separately excited d.c. motor for	
3	the variation in (a) Armature circuit resistance(b) Field circuit resistance.	CO1,
4.	To study the working of DC motor starters.	CO2,
5	Speed control of DC shunt motor using (a) armature control (b) field control.	CO3,
6	To conduct brake test on dc shunt motor.	CO4
7	To Perform Load test on a single phase transformer.	
8	To perform Open circuit and short circuit tests on a single phase transformer	
0	and hence find Equivalent circuit, voltage regulation and efficiency.	
9	To find the efficiency and voltage regulation of single phase transformer under	
9	different loading Conditions	
10	To perform parallel operation of two single phase transformers.	
11	Polarity test and 3-phase connections of single phase transformers.	

B. Tech Electrical and Instrumentation Engineering SYLLABI for EXAMINATIONS B. Tech. 3rd YEAR

Program Name: B. Tech.-Electrical and Instrumentation Engineering

Course	e Code: Course Name: Open Elective-III		L	T	P	C	
EI-OE-	301	(i) Environment Monitoring Instrumenta	ation	3	1	0	4
Year an	nd	3 rd Year Contact hours per week: (4Hrs)				Hrs)	
Semest	er	V th Semester	Exam: (3hrs.)				
Pre-rec	quisite of	NIL	Eva	luat	ion		
course		NIL	CIE: 40		CI	E: 6	0
Course	Objective	es:					
1. To u	understand	I the concept of pollution monitoring					
2. To l	Understand	d the concepts of Air pollution					
3. To s	study the v	various air pollution monitoring instrumen	ts and methods				
4. To s	study wate	r pollution and its monitoring equipment					
Course	Outcome	s:On completion of the course, student wo	ould be able to:				
CO1	Identify s	sources of air and water pollution and their	r effects				
CO2	CO2 Sample and analyze air pollutants						
CO3	O3 Understand the air quality monitoring instruments						
CO4	Sample and analyze water borne pollutants						
CO5	Understa	Understand the water quality monitoring instruments					

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Air and water Pollution: Sources & Effects: Definition and concentrations, classification, emission sources, Air pollution standards, sources of pollutions, effects of Air pollution, Sources of contamination of surface and ground water.	9	CO1
2	Air Pollution Sampling and Measurements: Ambient air sampling, Collection of gaseous air pollutants, Collection of particulate pollutants, stack sampling, Analysis of Air pollutants.	9	CO1, CO2
3	Air Pollution Monitoring Instruments: Photometry, Mass spectrometry, NMR, X-ray Fluorescence, Infra-red spectrometry, Flame photometry, Atomic absorption spectroscopy, chromatography, Coulometry etc. for measurement of SO2, Nitrogen oxides, carbon monoxide, hydrocarbons and particulate matter.	9	CO2, CO3
4	Water Pollution sampling and Measurements and Monitoring Instruments: Sampling and Analysis, Samplers-Bailers, Heavy metal and trace metal analyzers, pH meters, Resistivity meters, Induced Polarization (IP) Meter for monitoring of industrial contamination. Waste water management and recycling equipment.	9	CO1, CO4, CO5

Recommended Books:

- 1. A Text Book in Environmental Pollution and control, Bhatia H.S., Galgotia Publication
- 2. Environmental Engineering and Management, Dhameja S.K., S.K Kataria (2000)
- 3. Air Pollution, Rao M.N. and Rao H.V., Tata McGraw Hill (2004)
- 4. Environmental Pollution Control, Rao. C.S., New Age International (P) Limited, Publishers (2006) 2nd ed.
- 5. Environmental Pollution Analysis, S M Khopkar, New Age International.
- 6. Industrial Pollution, V P Kudesa, PragatiPrakashan
- 7. Ground Water Hydrology, David Keith Todd, Wiley Publications

Note for Examiner(s): Question paper will comprise three sections,

- Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section – A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code:	Course Name: Open Elective-III		L T P C
EI-OE-301	(ii) Electromagnetic Filed Theory		3 1 - 4
Year and	3 rd Yr.	Contact hours per w	reek: (4Hrs)
Semester	5 th Semester	Exam: (3 Hrs)	
Pre-requisite of	NIL	Evalua	ation
course	NIL	CIE: 40	SEE: 60
Course Objective	es:		
1. To introduce t	the basic mathematical concepts relate	ed to electromagnetic ve	ector fields.
2. To impart kno	wledge on the concepts of electrostati	ics, electrical potential,	energy density
and their app	lications.		
3. To impart kno	wledge on the concepts of magnetosta	atics, magnetic flux der	nsity, scalar and
vector potentia	al and its applications		
4. To impart kno	wledge on the concepts of Faraday's	law, induced emf and N	Maxwell's
equations.			
5. To impart know	wledge on the concepts of Concepts of	f electromagnetic wave	es and Pointing
vector.			
6. To acquaint m	nathematically with transmission lines	circuits and their chara	acteristics.
Course Outcome	es: On completion of the course, stude	nt would be able to:	
CO1 Have a go	ood understanding of various principle	es and phenomenon of	electrostatics
through a	analytical illustrations.	_	
CO2 Gain sou	nd knowledge of magnetostatics in ter	rms of magnetic field, f	flux density,

	current density, and time varying equations (Maxwell's equations).
CO3	Understand and apply Maxwell's equations for time varying fields.
CO4	Understand and explain the characteristics, propagation of EM waves under different
	media and conditions.
CO5	Have knowledge of transmission times in terms of Characteristics Impedance,
	Propagation Constant, Phase and Group Velocities, Input Impedance Relations through
	illustrations.

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Electrostatics: Coulomb's Law, Electric Field Intensity - Fields due to Different Charge Distributions, Electric Flux Density, Gauss Law and Applications, Electric Potential, Relations Between E and V, Maxwell's Two Equations for Electrostatic Fields, Energy Density, Illustrative Problems, Convection and Conduction Current, Dielectric Constant, Isotropic and Homogeneous Dielectrics, Continuity Equation, Relaxation Time.	8	CO1
2	Magnetostatics: Biot - Savart's Law , Ampere's Circuital Law and Applications, Magnetic Flux Density, Maxwell's Two Equations for Magnetostatic Fields, Magnetic Scalar and Vector Potentials, Forces due to Magnetic Fields, Ampere's Force Law, Inductance and Magnetic Energy, Illustrative Problem.	6	CO2
3	Time Varying Fields (Maxwell's equations): Ampere's Law and Displacement Current Density, Maxwell's Equations in Different Forms and Word Statements, Conditions at a Boundary Surface: Dielectric - Dielectric and Dielectric - Conductor Interfaces, Illustrative Problems	6	CO3
4	EM Wave Characteristics Wave Equations for Conducting and Perfect Dielectric Media, Uniform Plane Waves - Definition, All Relations Between E & H, Sinusoidal Variations, Wave Propagation in Lossless and Conducting Media, Conductors & Dielectrics - Characterization, Wave Propagation in Good Conductors and Good Dielectrics, Polarization, Illustrative Problems. Reflection and Refraction of Plane Waves - Normal and Oblique Incidence for both perfect Conductor and perfect Dielectrics, Brewster Angle, Critical Angle and Total Internal Reflection, Surface Impedance, Poynting Vector and Poynting Theorem - Applications, Power Loss in a Plane Conductor., Illustrative Problems.	10	CO4
5	Transmission Lines Types, Parameters, Transmission Line Equations, Primary & Secondary Constants, Expressions for Characteristics Impedance, Propagation Constant, Phase and Group Velocities, Infinite Line Concepts, Losslessness/Low Loss Characterization, Input Impedance Relations, SC and OC Lines, Reflection Coefficient,Illustrative Problems.	6	CO5

Text Books:

1. Electromagnetism – Theory and Applications, Ashutosh Pramanik, , PHI Learning Private Limited, New Delhi, Second Edition-2009.

- 2. Engineering Electro-magnetics : E. C. Jordan.
- 3. Electromagnetic Field Theory (including Antennaes and wave propagation, K.A. Gangadhar, P.M. Ramanthan 16th Edition, Khanna Publications, 2007.

Reference Books:

- 1. Field & Wave Electromagnetic: Cheng, Pearson Education
- 2. Principles of Electromagnetics', Mathew N. O. Sadiku, 4th Edition, Oxford University Press Inc. First India edition, 2009.
- 3. Electromagnetics: Edminister, Schaum series, 2nd Ed.

Note for Examiner(s): Question paper will comprise three sections,

- Section-A will be compulsory and comprise 4-short answer type questions uniformly 1. spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section – A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section – B and Section – C. All questions will carry 12 marks.

Course Co	ırse Code: Course Name: Open Elective-III			T	P	C
EI-OE-301	(iii) Mathematics—III	3 1 0			4	
Year and	3 rd Year	Contact hours per week: (4 Hrs)				rs)
Semester	5 th Semester	Exam: (3 Hrs)				
	The course assume prior knowledge of	Eval	uatio	n		
Pre-requisi	ite Infinite series, Trigonometric relations,					
of course	Partial Differentiation, Probability	CIE: 40		SE	E: 6	0
	concepts					
Course Ob	jectives:					
9. To und	derstand power series and possible application for	or solving different	tial eq	uatio	on	
10. To kno	ow and understand the Fourier series expansions	and its utilities.				
11. To gai	n knowledge on complex domains and evaluate	residues of series e	xpans	sions	in	
comple	ex domains.					
12. To exp	blore and analyze Probability distributions and pr	obe its utilities in	variou	ıs sit	uatio	ns.
Course Ou	tcomes: On completion of the course, student w	ould be able to:				
CO1	CO1 Understand the fundamental of series expansions.					
CO2 A	Apply the series expansions to solve various Mathematical problem situations.					
CO ₃ U	Understand and analyze complex functions handling and its applications to solve					
v	various problems.					

Students should be able to use his knowledge of probability to analyze and apply to CO₄ communicate in technical ways.

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
110			
1	Bessel functions: series solution of Bessel differential equation, Bessel function of first kind $Jn(x)$, recurrence relations. Legendre Polynomials: Legendre differential equation, Legendre polynomials $P_n(x)$ as solution of Legendre differential equation for $(n>0)$, recurrence relations.	10	CO1, CO2
2	Fourier Series: Euler's formulae, conditions for Fourier expansions, Fourier expansion of functions having points of discontinuity, change of interval, odd & even functions, half range series. Fourier Transforms: Fourier Integrals, Fourier transforms, Fourier cosine and sine transforms, Properties of Fourier Transforms: convolution theorem, Parseval's identity, relation between Fourier and Laplace transforms	8	CO1, CO2
3	Function of a complex variables: Cauchy-Riemann equations, necessary and sufficient conditions for a function to be analytic, harmonic functions, Taylor and Laurent series, singular points, residues, evaluation of residues at poles, and poles of m th order, Cauchy's residue theorem, the Cauchy's principle value, evaluation of definite integrals.	10	CO1, CO2, CO3
4	Probability Distributions: Probability, Bayes theorem, Discrete & Continuous probability distributions, discrete random variable, probability function, distribution function, Mathematical expectation, expectation of a sum of random variables, expectation of product of independent variables, covariance, Moment generating function, probability generating function.	8	CO1, CO2, CO4

TEXT BOOKS:

- Advanced Engineering Mathematics by E. Kreyszig. 10th Edition, John Wiley
- Higher Engineering Mathematics by B.S. Grewal. 43rd Edition, Khanna Publications 2.
- Schaum's Outline of Complex Variables by Murray R. Spiegel, 2nd Edition, McGraw-**3.** Hill Education
- Probability and Statistics for Engineers by J. Ravichandran, Wiley India Publication. 4.

REFERENCE BOOKS:

- Engineering Mathematics Part-I: S.S. Sastry, 4th Edition, PHI. 1.
- Advanced Engineering Mathematics: R.K. Jain, S.R.K. Iyengar, 3rd Edition, Narosa 2. **Publications**
- Probability and Statistics for Engineers by Richard A Johnson, 9th Edition, PHI **3.**

Note for Examiner(s): Question paper will comprise three sections,

Section-A will be compulsory and comprise 4-short answer type questions uniformly 1. spread to the entire syllabus.

- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- Section-C will comprise 4-questions uniformly spread to the entire syllabus and **3.** questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section – A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section – B and Section – C. All questions will carry 12 marks.

Course Cod	e: Course Na	me: Open Elective-III	L T P			
EI-OE-301	(iv) Energy	Efficient Systems	3 1 0			
Year and	3 rd Year		Contact hours p	oer week: (4Hrs)		
Semester	(V th Semes	ter)	Exam: (3 Hrs)			
Pre-requisit	Brief know	edge of in the following	Eva	luation		
_	topics: Elec	trical Machines, Electrica	CIE. 40	CEE. (O		
course	Power Syste	em and Generation.	CIE: 40	SEE: 60		
Course Obj	ctives:					
1. To intro	luce the concept of	of single phase and three p	hase motors.			
2. To intro	luce the concept of	of Energy efficient machin	es and Economics of	f Power factor		
improve	nents.					
3. To study	the concept of E	nergy efficient lighting an	l Economics of Ener	gy power		
generati	on.					
4. To study	the concept of ec	onomics of electrical ener	gy distribution and e	electrical drives.		
Course Out	omes: On comple	etion of the course, studen	t would be able to:			
CO1 To	amiliarize withth	e concept of single phase	and three phase moto	ors.		
CO2 To 1	nderstand the con	cept of Energy efficient n	achines and Econon	nics of Power factor		
imp	ovements.					
CO3 To	amiliarize with th	e concept of Energy effic	ent lighting and Eco	nomics of Energy		
	er generation.	1 00				
		cept of economics of elec	rical energy distribu	tion and electrical		
driv		•				

Module	COURSE SYLLABUS	Hrs	COs
No	CONTENTS OF MODULE	шѕ	COS
1	THREE PHASE INDUCTION MOTROS: Cage motors-equivalent circuit-speed-torque characteristics-performance characteristics voltage unbalance-over motoring-slip ring induction motor characteristics multi speed motors. SINGLE PHASE INDUCTION MOTORS: Starting & running performance-split phase-capacitor type motor-characteristics reluctance motor.	7	CO1
2	ENERGY EFFICIENT MOTORS: Constructional details-factors affecting	8	CO2

	efficiency-losses distribution-characteristics calculation of pay back period. ECONOMICS OF POWER FACTOR IMPROVEMENT: Simple pay back method-return on investment-life cycle analysis.		
3	ENERGY EFFICIENT LIGHTING: Terminology-cosine law of illumination-types of lamps-characteristics-design of illumination systems-good lighting practice-lighting control-steps for lighting energy conservation. ECONOMICS OF ELECTRICAL ENERGY GENERATION:Definitions-connected load, maximum demand-demand factor-curve-base load and peck load.	11	CO3
4	ECONOMICS OF ELECTRICAL ENERGY DISTRIBUTION: Electrical load analysis-type of consumers& tariffs-line losses-corner losses- types of distribution systems- Kevin's law-loss load factor. ECONOMICS OF ELECTRICAL DRIVES: Selection of motors- types of loads-energy consumption during starting of ac and dc motors braking of motors-plugging-regenerative braking.	10	CO4

Text Books:

- 1. Electrical Machinery: Fitzerland, Kingsley, Kusko-MC Graw Hill Ltd.
- 2. Energy-Efficient Electrical motors: John C.Andreas-Marcel Decker Inc.
- 3. Electrical Technology: Edward Hughes-ElLBS. Energy Management and good lighting practice: Fuel Efficiency Booklet 12-eeo.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code: EI-PC-303	Course Name: Power Electronics-II		L 3	T 1	P 0	C 4
Year and	3 rd Year Contact hours per		r we	ek:	(4F	Irs)
Semester	(V th Semester)	Exam: (3 Hrs)				
	Brief knowledge of in the following	Evaluation				
Pre-requisite of course	topics: Power Electronics I, Basic Electrical and Electronics engineering, Semiconductor devices, Digital Electronics, rectifiers.	CIE: 40		SEI	E: 6	0
Course Objectives:						

1. To	introduce the concept of Choppers.
2. To	introduce the concept of Inverters and types of inverters.
3. To	study the modulation & harmonics and techniques to remove harmonics.
4. To	study various types of chopper drives and its applications.
Course	• Outcomes: On completion of the course, student would be able to:
CO1	To Familiarize with control strategies of choppers, types of choppers.
CO2	To understand the working of Inverters.
CO3	To Familiarize with inverters, types of choppers and their mode of angles of operations.
CO4	To understand the applications of choppers and at different stages.

Module	COURSE SYLLABUS	Hrs	COa
No	CONTENTS OF MODULE	пгѕ	COs
1	Choppers: Principle of choppers, Control strategies; Constant frequency system and Variable frequency system. Step-up choppers, Types of chopper Circuits; First Quadrant or Type-A choppers, Second-Quadrant or Type-b choppers, Two-Quadrant Type-a Chopper or Type-C chopper, Two-Quadrant Type-b Chopper or Type-D chopper, Four-Quadrant Type-a Chopper or Type-E chopper.	7	CO1
2	Inverters: operating Principle of Single Phase Voltage source inverter; Single –Phase bridge inverter, Force-commutated thyristor inverter; Modified Mcmurray-Bedford Half-bridge Inverter, Modified Mcmurray-Bedford Full-bridge Inverter, Three Phase Bridge Inverter; Three –Phase 180 ^o Mode VSI and Three –Phase 120 ^o Mode VSI.	8	CO2
3	Modulation and Harmonics; Pulse Width Modulated Inverter; Single-Phase Modulation, Multiple Phase Modulation, Sinusoidal Pulse Modulation (Sin M), Reduction Of Harmonics in the inverter output Voltage; Harmonics Reduction by PWM, Harmonics Reduction by Transformer connection, Harmonics Reduction by Stepped wave Inverter.	11	CO3
4	Chopper Drives and Applications: Thyristor Chopper Circuits; Voltage commutated choppers, Current-commutated choppers and Load commutated choppers. Chopper Drives; Power Control or Motoring Control. Regenerative-Breaking control, Two Quadrant chopper control and Four Quadrant Chopper control, Static Kramer Drives, Static Scherbius Drive. (No quantitative analysis)	10	CO4

Text Books:

- 1. Modern Power Devices by B.Jayant Balica, New Age Inter.
- 2. Power Electronics by P.C. Sen (TMH)
- 3. An Introduction to Thyristors and Their Applications by M. Ramamurthy (EWP)
- 4. Power electronics by Ned Mohan and Robins, John Wiley and Sons
- 5. Power Electronics by M. Rashid (PHI)
- 6. Thyristor Phase Controlled converters and Cyclo-converters by B.R.Pelly
- 7. Power Electronics by Vendem Subrahmanyam, New Age International

Note for Examiner(s): Question paper will comprise three sections,

1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.

- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code:	Course Name: Program Elective-	I	L T P C		
EI-PE-305	(i) Microprocessors		3 1 - 4		
Year and	3 rd Yr.	Contact hours per week: (4Hrs)			
Semester	5 th Semester	Exam: (3 Hrs)			
Pre-requisite of	EI-OE-210 DIGITAL	Evalu	ation		
course	TECHNIQUES IV th Semester	CIE: 40	SEE: 60		
Course Objectiv	ves:				
1. To equip the	students with architecture and workin	g of basic microproces	ssors.		
2. To make the	students understand the instructions se	ets of basic microproce	essors and various		
	nguage programs.				
3. To impart th	e knowledge of various programmable	interfacing chips.			
4. To design an	nd study the various instrumentation sy	stems with programm	able chips.		
Course Outcom	es: On completion of the course, stude	ent would be able to:			
CO1 Underst	and the basic of the internal organisation	on of 8086 Microproce	essor.		
CO2 Underst	and different addressing modes and ins	structions of 8086, des	ign and develop		
assembl	y language programs using software in	terrupts, subroutines,	macros.		
CO3 Underst	CO3 Understand to interface memory and I/O devices with 8086 through programmable				
interfac	interface chips				
CO4 Underst	O4 Understand interrupt structure in 8086 and few case studies using interfacing chips				
useful in	n instrumentation systems.				

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Introduction and Evolution of microprocessors, Introduction to Microcomputer systems, 8086 Microprocessor - Architecture and signals, Pin diagram, Memory organisation,, Minimum mode 8086 system and Timing diagrams, Maximum Mode 8086 system and Timing diagrams.	8	CO1
2	8086 Addressing Modes, 8086 Instruction set and Assembler Directives - Assembly Language Programming, Basic interfacing concepts in a microprocessor, Peripheral and Memory mapped I/O, PPI 8255, Modes of operation – Mode-0 and BSR Mode	8	CO2

3	Block diagram, Control word format and modes of operation of Keyboard displace interface 8279 , DMA controller 8257 and Programmable interval timer 8253, Basic concepts of Serial Communication interface chip (e.g.8251)	8	CO2 CO3
4	Interrupts study - Types of Interrupts and Interrupt Service Routine. Handling Interrupts in 8086, Interrupt programming, Programmable Interrupt Controller - 8259 – Architecture only. Programming and applications Case studies using interface chips: Traffic Light control, Interfacing Keyboard display and and temperature Controller using 8255.	8	CO2 CO3 CO4

Reference Books:

- 1. Microprocessor Architecture Programming and Applications by Gaonkar, Penram International
- Microprocessor system: The 8086/8088 family IInd ed. By Yu.Cheng & Gibson 2.
- Microprocessors and interfacing by D.V.Hall 3.
- Bhurchandi and Ray, Advanced Microprocessors and Peripherals, Third Edition 4. McGraw Hill.

Note for Examiner(s): Question paper will comprise three sections,

- Section-A will be compulsory and comprise 4-short answer type questions uniformly 1. spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- Section-C will comprise 4-questions uniformly spread to the entire syllabus and 3. questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section – A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- Attempt/answer two questions each out of the Section B and Section C. All 2. questions will carry 12 marks.

Course Code:	Course Name: Program Elective-II		L T P C		
EI-PE-305	(ii) Analog and Digital Com	munication	3 1 - 4		
Year and	3 rd Yr.	Contact hours per week: (4Hrs)			
Semester	5 th Semester	Exam: (3 Hrs)			
Pre-requisite of	NIL	Evaluation			
course	NIL	CIE: 40	SEE: 60		
Course Objective	Course Objectives:				
1. To introduce students with the need for electronic communication.					
2. To familiarize	e with analog modulation and its forn	nats.			
3. To have understanding of angle modulation and its types.					
4. To have knowledge of pulse modulation and digital modulation.					
5. To gain analytical skills based information theory.					

6. To	have basic knowledge about source coding and error controlling codes.
Course	Outcomes: On completion of the course, student would be able to:
CO1	Acquire knowledge about the analog modulation and its different formats including
	power and current relations in and AM wave.
CO2	Have good understanding of angle modulation including frequency modulation and
	phase modulation and respective demodulation techniques.
CO3	Acquire knowledge about pulse analog modulation and digital modulation and
	respective demodulation techniques.
CO4	To have acquaint about the basics of information theory and associated codes.
CO5	Acquire basic knowledge about source coding and error control coding techniques
	together with solving simple numerical problems.
CO6	

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Amplitude Modulation: Need for modulation, Amplitude Modulation - Time and frequency domain description, single tone modulation, power relations in AM waves, Generation of AM waves, Detection of AM Waves - Envelope detector, DSBSC modulation, Generation of DSBSC Waves - Balanced Modulators, SSB modulation and demodulation.	7	CO1
2	Angle Modulation: Basic concepts of Phase Modulation, Frequency Modulation: Single tonefrequency modulation, Spectrum Analysis of Sinusoidal FM Wave, Narrow band FM and Wide band FM, Transmission bandwidth of FM Wave, Generation of FM Signal, Demodulation of FM, Comparison of FM and AM.,	7	CO2
3	Pulse Modulation: PCM Generation and Reconstruction, Differential Pulse code modulation, Delta Modulation and Adaptive Delta Modulation. Digital Modulation Techniques: ASK- Modulator, Coherent ASK Detector, FSK- Modulator, Non- Coherent FSK Detector, BPSK- Modulator, Coherent BPSK Detection. Principles of QPSK, Differential PSK.	10	CO3
4	Information Theory: Information, Average Information, Mutual Information, Entropy, Information Sources, Communication Channels, Channel Models, Channel Matrix, Joint probability Matrix, Binary Symmetric Channel, Channel Capacity.	7	CO4
5	Source Coding: Source coding theorem, Prefix Codes, Krafts inequality, Shannon's Encoding Algorithm Shannon Fano Encoding Algorithm, Huffman codes. Basics of Error Control coding:Longitudinal Redundancy Check (LRC), Vertical Redundancy Check (VRC), linear block codes, cyclic codes.	7	CO5

Text Books:

- 1. Communication systems, Sanjay Sharma, Katson, Publications
- 2. Modern Digital and Analog Communication Systems, B P Lathi, Zhi Ding, H M Gupta, Oxford publishers.

- 3. Electronics & Communication System, George Kennedy and Bernard Davis, TMH 2004 **Reference Books:**
- 1. Principles of Communication Systems" Herbert Taub, Donald L Schilling, Goutam Saha, 3rd Edition, McGraw-Hill, 2008.
- 2. Electronic Communications" Dennis Roddy and John Coolean, 4th Edition, PEA,

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks
- 2. Attempt/answer two questions each out of the Section -B and Section -C. All questions will carry 12 marks.

Course Code:	se Code: Course Name: Program Elective-II		LTPC		
EI-PE-305	(iii) Switchgear and Protecti	on	3 1 0 4		
Year and	3 rd Year	Contact hours per w	reek: (4Hrs)		
Semester	(V th Semester)	Exam: (3 Hrs)			
Pre-requisite	Brief knowledge of in the	Evalua	ntion		
_	following topics: Electrical	CIE: 40	SEE: 60		
course	Machines, Power Electronics.	CIE: 40	SEE: 00		
Course Object	tives:				
1. To introdu	ice the concept of Electric Protection.				
2. To Famili	arize with Circuits Breakers and Lightni	ng Arresters.			
3. To unders	tand the Protective relays.				
4. To study t	he protection schemes.				
Course Outco	mes: On completion of the course, stud	ent would be able to:			
CO1 To Fa	CO1 To Familiarize with Switches and Fuses.				
CO2 To un	O2 To understand the Circuits Breakers and Lightning Arresters.				
CO3 To un	To understand the Protective relays.				
CO4 To un	Γο understand the protection schemes.				

Module	COURSE SYLLABUS		COs	
No	CONTENTS OF MODULE			
1	SWITCHES AND FUSES:Introduction, energy management of	7	CO1	
1	power system, definition of switchgear, switches - isolating, load	,	COI	

	breaking and earthing. Introduction to fuse, fuse law, cut -off characteristics,: Time current characteristics, fuse material, HRC fuse, liquid fuse, Application of fuse PRINCIPLES OF CIRCUIT BREAKERS: Introduction, requirement of a circuit breakers, difference between an isolator and circuit breaker, basic principle of operation of a circuit breaker, phenomena of arc, properties of arc, initiation and maintenance of arc, arc interruption theories - slepian's theory and energy balance theory, Restriking voltage, recovery voltage, Rate of rise of Restriking voltage, DC circuit breaking, AC circuit breaking, current chopping, capacitance switching, resistance switching, Rating of Circuit breakers.		
2	CIRCUITS BREAKERS LIGHTNING ARRESTERS: CIRCUITS BREAKERS: Air Circuit breakers – Air break and Air blast Circuit breakers, oil Circuit breakers - Single break, double break, minimum OCB, SF6 breaker - Preparation of SF6 gas, Puffer and non-Puffer type of SF6 breakers. Vacuum circuit breakers - principle of operation and constructional details. Advantages and disadvantages of different types of Circuit breakers, Testing of Circuit breakers, Unit testing, synthetic testing, substitution test, compensation test and capacitance test. LIGHTNING ARRESTERS: Causes of over voltages – internal and external, lightning, working principle of different types of lightning arresters. Shield wires.	7	CO2
3	PROTECTIVE RELAYING:Requirement of Protective Relaying, Zones of protection, primary and backup protection, Essential qualities of Protective Relaying, Classification of Protective Relays. INDUCTION TYPE RELAY:Non-directional and directional over current relays, IDMT and Directional characteristics. Differential relay – Principle of operation, percentage differential relay, bias characteristics, distance relay – Three stepped distance protection, Impedance relay, Reactance relay, Mho relay, Buchholz relay, Negative Sequence relay, Microprocessor based over current relay – block diagram approach.	10	CO3
4	PROTECTION SCHEMES:Generator Protection - Merz price protection, prime mover faults, stator and rotor faults, protection against abnormal conditions — unbalanced loading, loss of excitation, over speeding. Transformer Protection - Differential protection, differential relay with harmonic restraint, Inter turn faults Induction motor protection - protection against electrical faults such as phase fault, ground fault, and abnormal operating conditions such as single phasing, phase reversal, over load.	12	CO4

REFERENCE BOOKS:

- 1. Chakraborti, A., Soni, M.L., Gupta, P.V. and Bhatnagar, U.S., a Text Book on Power System Engineering, DhanpatRai and Co. (P) Ltd. (2008).
- 2. Pathinkar, Y.G. and Bhide, S.R., Fundamentals of Power System Protection, PHI Learning Pvt. Limited (2008).
- 3. Rao, S.S., Switchgear and Protection, Khanna Publishers (2007).

- 4. Deshpande, M.V., Switchgear and Protection, Tata McGraw-Hill (2005).
- 5. Elmore, W.A., Protective Relaying Theory and Applications, ABB Power T and D Company Inc. (2003).

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course	Code:	Course Name: Power System - II		L T P C	
EI-PC-3	307	•		3 1 - 4	
Year ar	ıd	3 rd year	Contact hours per v	week: (4Hrs)	
Semest	er	5 th Semester	Exam: (3hrs.)		
Pre-rec	uisite of	Basic Electrical Engineering,	Evalu	ation	
course		Power System-I	CIE: 40	SEE: 60	
Course	Objective	es:			
1. To s	tudy the c	oncept of corona and its impact in trai	nsmission line.		
2. To s	tudy the c	onstruction, features and types of und	erground cables.		
3. To i	ntroduce t	he concept of per unit system to study	different faults in pov	wer system.	
4. To s	tudy the b	ehavior of travelling waves on transm	nission lines.		
5. To s	tudy the c	oncept of power system stability and a	methods to improve st	ability.	
Course	Outcome	s: On completion of the course, stude	nt would be able to:		
CO1	To under	stand the concept of corona and its im	pact in transmission 1	ine.	
CO2	To under	stand the construction, features and ty	pes of underground ca	ables.	
CO3	Understand and implement the per-unit system and utilize it for fault analysis purpose.				
CO4	To analyse the impact of travelling waves on transmission lines.				
CO5		nd the problem of power system sta	bility and its impact	on the system. The	
	methods	to improve stability.			

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Corona: Phenomenon of corona, disruptive critical voltage, visual critical voltage, corona loss, radio interference.	9	CO1, CO2

	Underground Cables: Classification and construction, insulation resistance, capacitance, capacitance determination, power factor in cables, capacitance grading, use of inter-sheaths, losses, heat dissipation and temperature rise in cables, current rating, comparison with overhead lines.		
2	Per Unit System: Change of base, per unit quantities in three phase system, selection of base values, base quantities in terms of KV and MVA, per unit load impendence, advantages of per unit representation, one-line diagrams, preparation of impendence and reactance diagrams. Fault Analysis: Transients on a transmission line, short circuit of synchronous machine at no load and on full load, Symmetrical component transformation, phase shift in star-delta transformation, sequence impedances, Single line to ground fault, line to line fault, double line to ground fault, open conductor fault.	8	CO3
3	Travelling Waves on Transmission Line: Lumped and Distributed Parameters – Wave Equation – Reflection, Refraction, Behaviour of Travelling waves at the line terminations – Lattice Diagrams – Attenuation and Distortion – Multi-conductor system and Velocity wave. Transients of Transmission lines: Transmission-line transients, Transient Analysis: Travelling Waves, reflections and refraction of waves.	9	CO4
4	Power Systems Stability: Definitions: angular stability- steady state stability, dynamic stability, transient stability, mechanics of angular momentum, swing equation, equal area criteria, critical clearing angle, solution of swing equation, stability study in multi-machine system, Technique of improving transient stability, Voltage stability, Voltage collapse, V-P and V-Q curves.	8	CO5

Suggested Text / Reference Books:

- 1. John J. Grainger, William D. Stevenson, "Power System Analysis", McGraw-Hill
- 2. B.Ram, D.N.Vishvakarma, "Power System protection and switchgear", TMH.
- 3. B. M. Weedy, B. J. Cory, "Electric Power Systems", John Wiley& Sons.
- 4. I.J. Nagrath and D.P. Kothari, "Power System Engg", TMH.
- 5. Soni, Gupta and Bhatnagar, "A course in Electrical Power", DhanpatRai& Sons.
- 6. K.R. Padiyar, "Power System Dynamics, Stability and Control", B. S. Publications, 2002.
- 7. P. Kundur, "Power System Stability and Control", McGraw Hill, 1995.
- 8. P. Sauer and M. A. Pai, "Power System Dynamics and Stability", Prentice Hall, 1997...

Note for Examiner(s): Question paper will comprise three sections,

- Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- Section A is compulsory and attempt/answer all the four questions carrying 12 1. marks in total.
- Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code: EI-PC-309 Course Name: Linear Automatic Control System		ontrol System	L T P C 3 1 0 4			
	Year and 3rd Year Contact hours per week: (4Hrs			eek: (4Hrs)		
Semeste	er	(V th Semester)	Exam: (3 Hrs)	` ,		
Pre-req	uisite of	C414	Evalua	ation		
course	-	Control system components	CIE: 40	SEE: 60		
Course	Objective	es:				
1. Stud	ly the time	e response of various types (0, 1, 2, 3,	etc.) of system Execute	e time response		
anal	ysis of a so	econd order control system using MA	TLAB/ simulation soft	ware		
	•	oility analysis of Linear system, Analy Locus, Bode plot and Nyquist plot.	ze and interpret stabilit	ty of the system		
		ad, Lead-Lag compensators and verif	y experimental results u	using MATLAB.		
	• •	cept of state, state variables and various				
	-	ity and observability, pole placement				
Course	Outcome	s: On completion of the course, stude	nt would be able to:			
CO1	Ability t	o derive Mathematical Modeling vari	ous types (0, 1, 2, 3, etc	c.) of system and		
	anayze t	heir time responses		•		
CO2	Able to A	Analyze the effect of P, PI, PD and Pl	D controllers on a cont	rol system and		
	design su	itable controller for a typical process				
CO3	Ability to	Analyze and interpret stability of the	e systemthroughRoot I	Locus, Bode plot		
	and Nyquist plot.					
CO4		design lead, lag, lead-lag compensator	rs using time domain ar	nd frequency		
		analysis techniques.				
CO5		ty to understand concept of state, state	e variables and the design	gn output feedback		
	controller in state space.					

Module	COURSE SYLLABUS	Hrs	COs
No	CONTENTS OF MODULE	шѕ	COS
1	TIME DOMAIN ANALYSIS: Standard test signal (step, ramp, impulse, parabolic) time response of various types (0, 1, 2, 3, etc.) of system. Steady state error analysis, Design consideration of 2 nd order system, design of higher order system, performance indices.	9	CO1 CO2
2	STABILITY OF A CONTROL SYSTEM: Concept of stability, necessary conditions of stability, Hurwitz Stability criterion, Routh stability criterion, relative stability analysis, more on the Routh stability criterion, The Root locus technique: The root locus concept construction of root loci, root contours, system with transportation Lag.	9	CO3 CO4
3	FREQUENCY DOMAIN ANALYSIS: Correlation between time and frequency response, polar plots, bode plots, all- pass and minimum-	10	CO3 CO4

	phase system, experimental determination of transfer functions, log magnitudeversus phase plots. Stability in frequency domain: Nyquist stability criterion, assessment of relativestability using Nyquist criterion, closed-loop frequency response.		
4	STATE VARIABLE ANALYSIS AND DESIGN: Concept of state, state variables and state models, state models for linear continuous time system, diagonization, solution of state equations, concept of controllability and observability, pole placement by state feedback.	10	CO5

Reference Books:

- 1. Automatic Control System By Kuo
- 2. Feedback Control System By D'Azzo and Houpis
- 3. Modern Control Engineering By Oagata
- 4. Control Systems Engineering By Nagrath & Gopal.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code: EI-PRPC-17	Course Name Power Electronics Lab - II				
Year and	3rd Year	Contact hours per week: (3Hrs)			
Semester	V th Semester	Exam: (3hrs.)			
	Brief knowledge of in the following	Evalı	uation		
Pre-requisite	topics: Basic Electrical and Electronics				
of course	engineering, Semiconductor devices,	CIE: 30	SEE: 45		
	Digital Electronics, rectifiers.				
Course Objectiv	res:				
1. Understand	operation of different types of choppers.				
2. Understand	the operation of series and parallel inverter	S.			
3. Understand	half & full wave Single phase and three ph	ase converters.			
4. Understand	the concept of Dual Converter.				
5. Understand the motor control					
Course Outcomes: On completion of the course, student would be able to:					
CO1 To under	rstand the operation of John's and Morgon	's of choppers.			

CO2	To understand the operation of series and parallel inverters.
CO3	To understand the output characteristics of half & full wave Single phase and three
	phase converters.
CO4	To understand the significance and operation of Dual Converter.
CO5	To understand the motor control.

Expt.	COURSE SYLLABUS	COs
No	CONTENTS OF MODULE	
	LIST OF EXPERIMENTS STUDY EXPERIMENTS:	
1.	To Study the parallel inverter.	
2.	To study John's Chopper	
3.	To study the three phase full controlled converter.	
4.	To study the Morgon.s Chopper.	
5.	To study the three phase half controlled converter.	
6.	To Study the series inverter.	
7.	To study dual converter.	
8.	To study the single phase half and full controlled converter.	
9.	To study speed control of DC motor.	
10.	To study half controlled bridge converter under reactive load.	
	SIMULATION EXPERIMENTS:	
11.	Single Phase Half wave controlled converter with R,RL&RLE Load (for	CO1,
11.	firing angles 30,60,90) with/without FD	CO2,
12.	Single Phase Half controlled converter with R,RL&RLE Load (for firing	CO2,
12.	angles 30,60,90) with/without FD	CO3,
13.	Single Phase Full controlled converter with R,RL&RLE Load (for firing	04
13.	angles 30,60,90) with/without FD	
14.	Three Phase semi controlled converter with R,RL&RLE Load	
15.	Three Phase full controlled converter with R,RL&RLE Load	
16.	Single phase AC Voltage Controller with R&RL Loads	
17.	John's Chopper	
18.	Morgon.s Chopper	
	HARDWARE EXPERIMENTS:	
19.	Thyristorised drive for PMDC motor with speed measurement and Single	
17.	Phase Half controlled rectifier and full controlled rectifier	
20.	Three Phase input Thyristorised drive for Dc Motor with closed loop control	
21.	Single Phase Series Inverter	
22.	Single Phase Parallel Inverter	

REFERENCE BOOKS:

- Modern Power Devices by B.Jayant Balica, New Age Inter. 1.
- Power Electronics by P.C. Sen (TMH) 2.
- An Introduction to Thyristors and Their Applications by M. Ramamurthy (EWP) 3.
- 4.
- Power electronics by Ned Mohan and Robins, John Wiley and Sons Thyristor Phase Controlled converters and Cyclo-converters by B.R.Pelly 5.
- Power Electronics by Vendem Subrahmanyam, New Age International 6.

Course	e Code:	am Name. B. TechElectrical an		L	T	P	С
EI-PRPC		Course Name: Power System-II LAB		0	0	3	1.5
Year a	nd	3rdYear	Contact hours per	week	: (31	Hrs))
Semest	ter	5th Semester	Exam: (3hrs.)		`	,	
Pre-re	quisite of	Basic Electrical Engineering	Eval	uatio	n		
course	-	Lab, Power System-I Lab	CIE: 30		SE	E: 4	1 5
Course	Objective	es:					
To stuc	ly the work	ing operation of relays and its main	components.				
To fam	iliarize with	h the power system elements, device	es, equipments and ap	plicat	ions	•	
To stuc	ly different	type of transmission cables and the	eir applications.				
To Fan	niliarize wit	th the safety rules for power system	laboratory.				
Course	Outcomes:	On completion of the course, stud	ent would be able to:				
CO1	Impart t	he practical knowledge of basic of	equipments of power s	systen	n and	d its	
	operatio						
CO2	Ability t	to analyze the performance as well	as handling of electric	al ele	men	ts an	ıd
		ents like underground cables, insul					
CO3	Acknow	ledge the operation and main featu	res of protective relay	S			
CO4	_	skills to use power system elemen	ts and devices in diffe	rent te	echn	olog	ical
	field.						1
Expt.		COURSE SYI					COs
No		CONTENTS OF					COS
1		e diagram of electrical power flow		ubsta	tion.		_
2		and designing of Earthing / Ground					_
		jui-potential curve and voltage grad	lient in				
3		vo/three core cable					
		ngle-core cable.					- 001
4		the different parts of a power c	able and measuremen	t of			CO1
		resistance of a cable.					CO2
5		the core to core & core to sheath ca		ase ca	able.		CO3 CO4
6		he operating characteristics of IDM					
7		he operating characteristics of Diff					<u> </u>
8		he operating characteristics of nega	<u> </u>				_
9		he operating characteristics of IDM					_
10		burden effect on the performance of					_
11		he sequence components of current		sform	ers a	and	
		ransformer and compare their resu					_
12	To determ	nine the earth resistance using Meg	ger.				

Reference books:

- 1. Power System Engg: I.J.Nagrath and D.P.Kothari (TMH)
- 2. A Course in Electrical Power: Gupta, Soni & Bhatnagar (Dhanpat Rai & Sons).
- 3. Electric Power System: B.M.Weedy, John Wiley & Sons.
- 4. Transmission & Distribution of Electrical Engineering: Westing House & Oxford Univ. Press, New Delhi.

Course Code:	Course Name: Program Elective	e- II Lab (i)	L	T	P	C
EI-PRPE-21	Microprocessors lab.		0	0	3	1.5
Year and	3 rd Year	Contact hours per we	ek:	(3Hrs	s) E	xam:
Semester	V th Semester	(3hrs.)				
Pre-requisite	EI-PROE-14, Digital Techniques	Evalua	tion	1		
of course	Lab.	CIE: 30		SEE	: 45	
Course Object	ives:					
1. Understand	the basics of microprocessors, archite	ecture and operation of n	nicro	proc	essor	s and
their periph	erals.					
2. Understand	the concepts of machine instructions,	assembly language and	prog	grams	S.	
3. Expose diff	Ferent ways of communicating with I/O	O devices and standard I	O ir	iterfa	ces.	
4. Analyze an	d design microprocessor based instrur	nentation system.				
Course Outco	mes: On completion of the course, stu	dent would be able to:				
CO1 Get fa	miliarized with the microprocessor base	sed system.				
CO2 Create						ns,
use of	use of directives and others.					
CO3 Work	Work on the ALPs involving the peripheral chips interface.					
CO4 Design	and develop programs for microproc	essor based instrumentat	tion	syste	m.	

Expt.	COURSE SYLLABUS	COa
No	CONTENTS OF MODULE	COs
1	Write the working of 8086 and basic architecture of 8086 along with small	
	introduction	
2	Study the complete instruction set of 8086 and write the instructions with	
	examples.	
3	Write the note on assembly directives in 8086 with few examples.	
4	Write an ALP for 16 bit arithmetic operations for 8086 (using various	
4	addressing modes)	
5	Write an ALP of 8086 to take N numbers as input and arrange in ascending and	
3	descending order.	
6	Write an ALP of 8086 to take N numbers as input and find max and minimum	CO1,
U	number.	CO2,
7	Write an ALP of 8086 to take N numbers as input and find average.	CO3 ,
8	Program for searching for a number or character in a string for 8086.	CO4
9	Program for digital clock design using 8086	
10	Interfacing ADC and DAC to 8086.	
11	Parallel communication between two microprocessors using 8255.	
12	Serial communication between two microprocessor kits using 8251.	
13	Interfacing and programming of 8086 and to control stepper motor	

Course Code:	Course Name: Program Elective –II LAB	L	T	P	C
EI-PRPE-21	(ii) Analog and Digital Communication Lab	0	0	3	1.5

Year a	ınd	III ^{ed} Year	Contact hours per week: (3Hrs)				
Semes	ter	V th Semester	Exam: (3hrs.)				
Pre-requisite		Pagia Flactuanias Enga	Evaluation				
of cou	rse	Basic Electronics Engg	CIE: 30	SEE: 45			
Course	e Objectiv	ves:					
1. To	familiariz	e the students practically about different t	ypes of communication	on systems.			
2. To	make stud	ents able to work on electronic circuits us	sed in communication	engineering.			
3. To	3. To have knowledge about the analog and digital communication systems and also be able to						
per	perform experimentation on various techniques.						
Course	Course Outcomes: On completion of the course, student would be able to:						
CO1	CO1 Able to perform experimentation on analog communication techniques and able to						
	analyze the results.						
CO2	Able to perform experimentation on pulse and digital communication, modulation and						
	demodulation techniques.						
CO3	To have practical knowledge about delta modulation and demodulation.						

Expt.	COURSE SYLLABUS	Cos
No	CONTENTS OF MODULE	
1	Analog Communication Concepts and Circuit Board Familiarization	
	To study the function of Amplitude Modulation & Demodulation (under	
2	modulation, perfect modulation & over modulation) and also to calculate the	
	modulation index.	
3	To study the working of the Balanced Modulator and demodulator.	
4.	To study frequency modulation and demodulation techniques.	CO1
5	Study of 4 Channel Analog Multiplexing and De multiplexing Techniques.	CO1,
6	To study the frequency division multiplexing and De multiplexing Techniques.	CO ₂ ,
7	To study the Pulse amplitude modulation & demodulation Techniques.	CO3,
8	To study the Pulse Width Modulation (PWM) and Demodulation Techniques	
9	To study the generation Pulse Position Modulation (PPM) and Demodulation.	
10	To study ASK Signal Generation and Asynchronous Detection.	
11	To study FSK Signal Generation, Asynchronous Detection, Synchronous	
11	Detection.	
12	To study PSK Signal Generation and Synchronous Detection.	
13	To study pulse code modulation and demodulation.	
14.	To study Delta modulation and demodulation.	
15.	To different gain pattern on antenna training system kit.	

Course Code:	Course Name: Program Elective-II Lab			T	P	C
EI-PRPE-21	(Switch Gear and Protection)			-	3	1.5
Year and	3 rd Yr. Contact hours per week: (3Hrs)					
Semester	5 th Semester Exam: (3 Hrs)					
	Brief knowledge of in the	Evaluation				
Pre-requisite of	following topics: Basic Electrical					
course	and Electronics engineering,	CIE: 30		SE	E: 45	5
	Semiconductor devices, Digital					

	Electronics, rectifiers.					
Course	e Objectives:					
4.	4. Understand the Construction and principles of Construction and working principles of					
	various types of relays					
5.	Understand the concepts of fuses.					
6.	Understand the null deflection and implement it in CT & PT.					
Course	Course Outcomes: On completion of the course, student would be able to:					
CO1	Identify various types of faults in Power system					
CO2	Explain working of different types of circuit breakers in power system.					
CO3	Explain working of different types of relays in power system.					
CO4	Maintain the protection of transmission line and feeder from various faults					
CO5	Protect transformer, alternator, motor and bus bar					
CO6	Protect power system against over voltages					

Event No	COURSE SYLLABUS	COs
Expt. No	CONTENTS OF MODULE	COS
	LIST OF EXPERIMENTS STUDY EXPERIMENTS:	
17.	Check the Polarity of Current Transformer and Potential	
18.	Transformer and connect it with the relay.	
19.	Principle of working, construction and operation of electromagnetic induction (shaded pole, watt-hour meter and induction cup), Thermal relay.	
20.	Principle of working, construction and operation of Distance relay	
21.	Principle of working, construction and operation of Directional relay	CO1, CO2,
22. t	Find the fusing factor of a given fusing material.	CO2,
23.	Dismantle a Vacuum circuit breaker.	CO3,
24.	Identify the various components of SF6 circuit breaker.	CO4
25.	Working principle of arc quenching in HVDC circuit breaker	
26.	Test overload relay and plot Time-Current characteristic	
27.	C.T. testing using mutual Inductor – Measurement of % ratio error and	
21.	phase angle of given CT by Null method.	
28.	PT testing by comparison – V. G. as Null detector – Measurement of %	
20.	ratio error and phase angle of the given PT.	

REFERENCE BOOKS:

2. A Course in Elect. & Electronic Measurement & Instrumentation by A. K. Sawhney; Khanna Pub. **REFERENCE BOOKS:**

- 1. Electrical Measurments by E.W. Golding
- 2. Electronic & Elect. Measurment&Instrumention by J.B.Gupta; Kataria& Sons.
- 3. Electronic Instrumentation & Measurment Technique, W.D. Cooper & A.D. Helfrick.
- 4. Measuring Systems by E.O. Doeblin; TMH.

				1	ı		
Course Code: Course Name: Control System Lab.			L	T	P	<u>C</u>	
EI-PRPC-	EI-PRPC-23		0	0	3	1.5	
Year and		3 rd Year	Contact hours per v	rs per week: (3Hrs)			
Semester		V th Semester	Exam: (3hrs.)				
Pre-requ	isite of	Control components	Evalu	uation			
course		engineering	CIE: 30	SEE: 45			
Course C	bjectives	:					
1. Study	the time r	response of various types (0, 1, 2, 3,	etc.) of system Execut	te tir	ne re	espo	nse
analys	is of a var	rious order control system.					
2. To stu	dy and tui	ned the different modes of Linear of	ontroller(PID)				
3. To stu	dy the per	rformance characteristics of a D.C.	Motor Speed and angu	ılar _l	osit	ion (Control
Syster	n.						
4. To Re	lay contro	ol system					
5. To Co	mpensatio	on Design study and designing cont	roller for different phy	sics	varia	ables	S
contro	1						
6. To Stu	ıdy Digita	l control System with programming	g skill				
Course O	utcomes:	On completion of the course, stude	nt would be able to:				
CO1	Ability to derive the response of a variety of simulated linear systems and to correlate						
	the studies with theoretical results.						
CO2 Ability to analyze and tuned the different modes of Linear controller(PID) ar				and a	able to		
	design co	ntroller for different Linear process	3				
CO3	Ability to	understand DC, AC, stepper moto	rs and implements the	ir ap	plic	atior	in in
	control sy	rstem					
CO4 Ability to Design and develop digital control system of a simulated system u					ısing	g an 8-	
	bit microc	computer with development of prog	ramming skill				

Expt.	COURSE SYLLABUS	COs		
No	CONTENTS OF MODULE			
1	To Study Potentiometric Error Detector :- To study the performance			
1	characteristics of an angular position error detector using potentiometers			
2	To Study PID control Trainer: To study the performance characteristics of an			
	analog PID controller using simulated systems.			
3	To Study Linear Systems Simulator: - To study the response of a variety of			
3	simulated linear systems and to correlate the studies with theoretical results.			
4	To Study DC Motor speed Control: - To study the performance characteristics			
4	of a D.C. Motor Speed Control System.	CO1		
5	To Study DC Position Control: - To study the performance characteristics of a	CO1, CO2,		
3	d.c. motor angular position control system.	CO ₂ ,		
6	To Study Stepper Motor Trainer: - To study the operation of a Stepper Motor.	CO3,		
7	To Study Digital control System: to study of digital control system of a	CO4		
,	simulated system using an 8-bit microcomputer			
8	Relay control system: study of relay control system and to observe the effect			
0	of dead zone and hysteresis on stability			
9	Compensation Design: To design, implement and study the effect of different			
,	cascade compensation network for a given system			
10	To Study PID Temperature Control Trainer			
11	To Study Synchro Devices			

12	To Study AC Motor Study Trainer	
13	To Study DC Motor study Trainer	
14	To Study Light Intensity Control	

		am Name. D. TechElectrical and mist	umentation Engi										
Course		Course Name: Program Elective-III		L	T	P	C						
EI-PE-	302	(i) Electrical Machine Design		2	1	-	3						
Year a	nd	3 rd Yr.	Contact hours pe	er we	ek: (3H	rs)						
Semest	er	6 th Semester	Exam: (3 Hrs)										
Pre-rec	quisite of	EI-PC-208:Electrical Machines-I	Eval	uatio	n								
course		EI-PC-304: Electrical Machines-II	CIE: 40		SEE	: 60	1						
Course	Objective	es:											
1. To 1	familiarize	the students about design and materials u	sed in electrical ma	achin	es.								
2. To 0	design the	DC machines and its parts as per given da	ıta.										
3. To (design sing	gle phase and three phase transformer base	ed on given parame	eters.									
4. To 0	design ind	uction motor as per given parameters and	loading conditions										
5. To 0	design syn	chronous machines as per given paramete	ers.										
Course	Outcome	s: On completion of the course, student w	ould be able to:										
CO1	Identify	and list, limitations, modern trends in	design, manufact	uring	of	elec	trical						
	machines	and properties of materials used in the ele	ectrical machines.										
CO2	Derive th	ne output equation of DC machine, discu	ass selection of spe	ecific	loac	ling	s and						
	magnetic	circuits of DC machines, design the field	windings of DC n	nachi	ne, ai	nd d	esign						
	the stator	and armature circuits of a DC machine.	_										
CO3	Derive th	ne output equations of transformer, discu	ss selection of spe	cific	load	ings	, and						
	design of	transformer based on given parameters.											
CO4	Develop	the output equation of induction motor,	discuss selection of	of spe	cific	loa	dings						
and magnetic circuits of induction motor, and designthe stator and rotor circuits of					of an								
	induction motor.												
CO5	Formulat	e the output equation of alternator and	d design the slots	and	wir	nding	gs of						
	Synchron	nous machine.											

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	Cos
1	Fundamental Aspects of Electrical Machine Design: Design of Machines, Design Factors, Limitations in design, Modern Trends in design, Electrical Engineering Materials: Desirability of Conducting Materials, Comparison of aluminum and Copper wires. Ferromagnetic Materials: Soft Magnetic materials – Solid Core Materials, Electrical Sheet and Strip, Cold Rolled Grain Oriented Steel. Insulating Materials: Desirable Properties, Temperature Rise and Insulating Materials, Classification of Insulating materials based on Thermal Consideration.	3	CO1
2	Design of DC Machines: Output Equation, Choice of Number of Poles, Main Dimensions of armature, Design of Armature Slot Dimensions, Commutator and Brushes. Estimation of Ampere Turns for the Magnetic Circuit. Dimensions of Yoke, Main Pole and Air Gap, Design of Shunt	5	CO2

	and Series Field Windings.		
3	Design of Transformers: Output Equations of Single Phase and Three Phase Transformers, Choice of Specific Loadings, Expression for Volts/Turn, Determination of Main Dimensions of the Core, Estimation of Number of Turns and Conductor Cross Sectional area of Primary and Secondary Windings, No Load Current. Expression for the Leakage Reactance of core type transformer with concentric coils, and calculation of Voltage Regulation. Design of Tank and Cooling (Round and Rectangular) Tubes.	8	CO3
4	Design of Three Phase Induction Motors: Output Equation, Choice of Specific Loadings, Main Dimensions of Stator. Design of stator slots and Winding, Choice of Length Air Gap, Estimation of Number of Slots for Squirrel Cage Rotor. Design of Rotor Bars and End Ring. Design of Slip Ring rotor. Estimation of No Load Current and Leakage Reactance.	5	CO4
5	Design of Three Phase Synchronous Machines: Output Equation, Choice of Specific Loadings, Short Circuit Ratio, Main Dimensions of Stator. Design of stator slots and Winding. Design of Salient and non-salient Pole Rotors. Magnetic Circuit and Field Winding.	5	CO5

Text Books:

- 1. A course in Electrical Machine design A.K.Sawhney DhanpatRai 6th Edition, 2013.
- 2. Performance and Design of Alternating Current Machines M.G. Say CBS Publisher 3rd Edition, 2002
- 3. Design Data Handbook A. Sanmugasundaram Et al New Age International 1st Edition,

Reference Books:

- 1. Electric Machinery, AE Fitggerald, C. Kingsley Jr and Umans, McGraw Hill, International.
- 2. Electrical Technology", H. Cotton, CBS Publication.
- 3. The Performance and Design of AC machines", M G Say, Pitman& Sons.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Program Name: B. Tech.-Electrical and Instrumentation Engineering

Course Code:		Course N	ame: I	Program	Elective-	III	L	T	P	C
EI -PE-30	EI –PE-302 (ii) Mechanical Measurements in Instrumentation		2	1	0	3				
Year and		3 rd Year				Contact hours per w	eek:	(3 I	Hrs.)	
Semester		VIth Sem	ester			Exam: (3 Hrs.)				
Pre-requi	site of	NIL				Evalua	ation			
course		NIL			CIE: 40			SE	E: 60)
Course O	bjectives	s:								
1. To	introduc	ce techniqu	ies and	instrume	entation us	ed in mechanical meast	urem	ent		
2. Im	parting tl	he princip	les of n	neasurem	nent which	include the working m	echa	nisn	ı of	
var	rious sens	sors and d	evices							
3. To	highligh	nt the impo	ortance	of measu	arement of	non-electric quantities	in in	stru	ment	ation
Course O	utcomes	: On comp	oletion	of the co	urse, stude	ent would be able to:				
CO1 A	CO1 Apply methods of measurement for various physical quantities									
CO2 Se	Select appropriate device for the measurement of physical parameters									
CO3 Ju	Justify the use of particular device through characteristics and performance									
CO4 D	esign a r	neasureme	ent syst	em using	g acquired	knowledge base				

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Introduction, Significance of mechanical measurements. Pressure measurement – pressure measurement terminology, Manometers – U tube manometer, bell type manometer, inclined tube manometer, Ring Balance manometer, Micromanometer. Bell gauges – balanced lever gauge, beam bell gauge, spring balanced bell gauge. Bourdon tube and its types, bellows and diaphragms	9	CO1, CO2, CO3
2	Measurement of torque – torque reaction method, strain gauge torque meter, stroboscopic method, inductance torque meter, Digital torque meter, magneto-strictive torque meter. Measurement of Angular velocity – Mechanical tachometers, Electrical tachometers, digital tachometers, stroboscopic tachometers. Measurement of Vibration.	9	CO1, CO2, CO3
3	Temperature measurements – liquid in glass thermometer, pressure gauge thermometer, liquid filled systems, gas filled systems and liquid vapor filled systems thermometer, static errors in filled systems thermometers, speed of response of filled systems. Bimetallic thermometers, Thermocouples – working principle, thermoelectric laws, series and parallel connection of thermocouples.	9	CO1, CO2, CO3

Text Books:

- 1. A course in mechanical measurements and instrumentation, A. K. Swahney, Dhanpatrai and Company, 2017
- 2. Mechanical Measurements and control, D.S. Kumar, Metropolitan Book Co. Pvt. Ltd., 2015
- 3. Measurement Systems, E. O. Doeblin, McGraw Hill, 2020

Note for Examiner(s):

Question paper will comprise three sections,

- Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- Section-B will comprise 4-questions uniformly spread to the entire syllabus and 2. questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- Section-C will comprise 4-questions uniformly spread to the entire syllabus and **3.** questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- Attempt/answer two questions each out of the Section B and Section C. All 2. questions will carry 12 marks.

Course (Code:	Course Name: Program Elective-	III	L T P C	
EI-PE-30	02	(iii) Electric and Hybrid Vehicles		2 1 - 3	
Year and	d	3 rd year	Contact hours per v	veek: (3Hrs)	
Semeste	r	6 th Semester	Exam: (3hrs.)		
Pre-requ	uisite of	Electrical Machines, Power	Evalua	ation	
course		Electronics, Basic Science	CIE: 40	SEE: 60	
		Engineering			
Course (Objective	es:			
1. To in	troduce tl	he upcoming technology of electric ar	nd hybrid system		
2. To st	udy the b	asics theory, operation and modeling	of electric Hybrid syst	em.	
3. To st	udy differ	rent topologies of electric Hybrid syst	em		
4. To st	udy electi	ric propulsion system in electric hybri	d system		
Course (Outcome	s: On completion of the course, stude	nt would be able to:		
CO1	To famili	arize with upcoming technology of el	ectric and hybrid syste	em	
CO2	To under	stand the basics theory, operation and	modeling of electric H	Hybrid system.	
CO3	To under	rstand and analyze different drive train	n topologies electric of	Hybrid system.	
CO4	O4 To learn the role of electric propulsion system in electric hybrid system andits				
	application	on.			
CO5	To impar	t basic technical knowledge of elect	ric hybrid vehicle sys	tem and apply it to	
	technolog	gical fields.			

odule No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Introduction: Introduction to hybrid electric vehicles: history of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Conventional vehicles: basics of vehicle performance, vehicle power source characterization, transmission characteristics, and mathematical	7	CO1, CO2

	models to describe vehicle performance.		
2	Hybrid Electric Drive: Hybrid electric drive-trains: basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis.	7	CO3
3	Electric Propulsion Unit: Introduction to electric components used in hybrid and electric vehicles, configuration and control of DC motor drives, configuration and control of induction motor drives, configuration and control of permanent magnet motor drives, configuration and control of switch reluctance motor drives, drive system efficiency.	7	CO4
4	Case Studies: Design of a hybrid electric vehicle (HEV), design of a battery electric vehicle (BEV).	5	CO5

Suggested Text / Reference Books:

- Iqbal Hussein, "Electric and Hybrid Vehicles, Design Fundamentals", CRC Press, 2003.
- MehrdadEhsani, YimiGao, E Sebastian Gay, Ali Emadi, "Modern Electric, Hybrid Electric and Fuel Cell VehiclesFundamentals", Theory and Design, CRC Press, 2004.
- James Larminie, John Lowry, "Electric Vehicle Technology Explained", Wiley, 2003.

Note for Examiner(s): Question paper will comprise three sections,

- Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section - B and Section - C. All questions will carry 12 marks.

Course Code: EI-PC-304	Course Name: Electrical Machines	urse Name: Electrical Machines-II				
Year and	3 rd Yr.	Contact hours per week: (4Hrs)				
Semester	6 th Semester	Exam: (3 Hrs)				
Pre-requisite of	equisite of NIL Eva		tion			
course	NIL	CIE: 40	SEE: 60			
Course Objective	es:					
1. To study three	phase induction motors and its assoc	iated numerical probler	ns and			
applications.						
2. To study single phase and factional horse power motors.						
3. To have know	3. To have knowledge of three phase synchronous generators.					

4. To	gain knowledge about three phase synchronous motors
•	
Course	Outcomes: On completion of the course, student would be able to:
CO1	Have theoretical as well as analytical knowledge of three phase synchronous motors in
	terms of working, testing and operation.
CO2	Understand single phase induction motors and special (FHP) motors and their
	applications.
CO3	Explain the working and operation of three phase alternator under different loading
	conditions, synchronization, parallel operation and load sharing and related phasor
	diagrams.
CO4	Acquire knowledge about the constructional details and principle of operation of
	synchronous motors, excitations (under, normal and over), effect of variation of
	excitation under constant load and V curves, inverted V curves, associated numerical
	problems.

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Three Phase Induction Machines: Constructional details, Types of rotors, Principle of operation, Slip, cogging and crawling, Equivalent circuit, Torque-Slip characteristics, Condition for maximum torque, Losses and efficiency, Load test, No load and blocked rotor tests, Separation of losses, Double cage induction motors, Induction generators, Need for starting – Types of starters – DOL, Rotor resistance, Autotransformer and Star delta starters, Speed control, Voltage control, Frequency control and pole changing Cascaded connection-V/f control.	12	CO1
2	Single Phase Induction Motors: Constructional details of single phase induction motor, Double field revolving theory and operation – Equivalent circuit, Starting methods of single-phase induction motors, Capacitor-start capacitor run Induction motor, Shaded pole induction motor, Repulsion motor, Hysteresis motor, AC series motor.	6	CO2
3	Synchronous Generators: Constructional details – Types of rotors – winding factors- emf equation – Synchronous reactance – Armature reaction, Synchronizing and parallel operation – Synchronizing torque -Change of excitation and mechanical input- Voltage regulation – EMF, MMF, ZPF, steady state power- angle characteristics – Two reaction theory –slip test -short circuit transients.	10	CO3
4	Synchronous Motors: Principle of operation, Torque equation, Operation on infinite bus bars, V and Inverted V curves, Power input and power developed equations, Starting methods, Current loci for constant power input, constant excitation and constant power developed-Hunting, natural frequency of oscillations, damper windings- synchronous condenser.	10	CO4

Text Books:

- 1. A course in Electrical Machine design A.K.Sawhney DhanpatRai 6th Edition, 2013.
- 2. Performance and Design of Alternating Current Machines M.G. Say CBS Publisher 3rd Edition, 2002

- 3. Design Data Handbook A. Sanmugasundaram Et al New Age International 1st Edition, **Reference Books:**
- 1. Electric Machinery", AE Fitggerald, C. Kingsley Jr and Umans, McGraw Hill, International.
- 2. Electrical Technology", H. Cotton, CBS Publication.
- 3. The Performance and Design of AC machines", M G Say, Pitman& Sons. **Note for Examiner(s)**: Question paper will comprise three sections,
- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code: EI-PC-306	Course Name: Power Plant Engineering.		L T P C 2 1 0 3		
Year and	3 rd Year	Contact hours per week: (3Hrs)			
Semester	(VI th Semester)	Exam: (3 Hrs)			
	Brief knowledge of in the	Evalua	ntion		
Pre-requisite of	following topics: Electrical				
course	Machines, Electrical Power	CIE: 40	SEE: 60		
Course	System and Generation, Power	CIE. 40	SEE. OU		
	System Engineering.				
Course Objectiv	es:				
1. To introduce	the concept of trends in power Genera	tion.			
2. To introduce	the Techniques of load forecasting and	d Generation planning.			
3. To study the o	concept types of energy sources.				
4. To study the o	concept of Energy Conservation and M	Ianagement.			
Course Outcome	es: On completion of the course, stude	ent would be able to:			
CO1 To Fami	liarize with available Energy sources a	and trends in power Ge	neration.		
CO2 To under	Γο understand different types of loads, load forecasting and Generation planning.				
CO3 To Fami	To Familiarize with the Conventional and Non-Conventional types of energy sources.				
CO4 To under	rstand the concept of Energy managen	nent, Energy Auditing o	etc.		

Module	COURSE SYLLABUS	Hrs	COs	
--------	-----------------	-----	-----	--

No	CONTENTS OF MODULE		
1	INTRODUCTION : Energy sources, their availability, Recent trends in Power Generation, Interconnected Generation of Power Plants.	7	I
2	POWER GENERATION PLANNING : Load forecasting, load curves, load duration curve, Base load and Peak load Power Plants, connected Load, maximum demand, demand factor, Group diversity factor, load factor, significance of load factor, plant factor, capacity factor, selection of unit size, No. of Units, reserves, cost of power generation, Depreciation, tariff.	7	П
3	CONVENTIONAL ENERGY SOURCES: Selection of site, capacity calculations, classification, Schematic diagram and working of Thermal Power Stations, Hydro Electric Plant, Nuclear Power Plant and Diesel Power Stations. NON-CONVENTIONAL ENERGY SOURCES: Wind, Solar, Tidal, Ocean, and Geothermal sources of Energy, fuel cell, Magneto Hydro Dynamic (MHD) system.	7	Ш
4	ELECTRIC ENERGY CONSERVATION & MANAGEMENT: Energy management, Energy Audit, Energy Efficient Motors, Co-generation.	7	IV

TEXT BOOKS:

- Electric Power Generation, B.R.Gupta
- Power Generation, Operation and Control, Wood and Wollenberg, John Wiley & Sons, 1984.

REFERENCE BOOKS:

- A Course in Electric Power System, Soni, Gupta, Bhatnagar, Dhanpat Rai & Sons
- Power System Engineering, Nagrath & Kothari, Tata Mc-Graw Hill, New Delhi
- 3. Power Plant Engg: G.D. Rai
- Electric Power: S.L. Uppal (Khanna Publishing)

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course C		Course Name: Digital Signal Proce	<u> </u>	T	T	P	С
		8 8 8					
EI-PC-30						4	
Year and		3 rd year	Contact hours per w	eek:	(4H	(Irs	
Semester	,	6 th Semester	Exam: (3hrs.)				
Pre-requ	isite of	Mathematics	Evalua	ation			
course			CIE: 40		SEI	E: 60)
Course O	bjective	es:					
1. To stu	dy the b	asic of Z transform and its application	in LTI discrete-time s	ysten	ns.		
2. To stu	dy the D	Discrete linear Time Invariant systems	in Z domain and in fre	quen	cy d	loma	in.
3. To stu	udy diff	erent structure realization of Finite	Impulse Response s	ysten	ns a	and	Finite
Impul	se Respo	onse systems.					
4. To stu	ady the	basic of Discrete-Fourier Transform	n (DFT), Fast Fourier	r Tra	nsfo	orm	(FFT)
algorit	thms and	l its application.					
5. To stu	dy the d	igital filters for filtering applications.					
Course O	utcome	s: On completion of the course, stude	nt would be able to:				
CO1 T	o learn	the basic of Z transform and its applic	ation in LTI discrete-ti	ime s	yste	ms.	
CO ₂ T	o analy:	ze the Discrete linear Time Invarian	t systems in Z domain	n and	in	freq	uency
d	lomain.						
CO ₃ T	o under	stand the different structure realizatio	n of Finite Impulse Res	spons	se sy	sten	ns and
F	inite Im	pulse Response systems.	-	_	•		
CO ₄ T	o learn	the basic of Discrete-Fourier Transfo	f Discrete-Fourier Transform (DFT), Fast Fourier Transform (FFT)				
a	lgorithm	as and its applications.	•				. ,
1		n digital filters for filtering application	ns.				

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Discrete Time Systems &Analysis of LTI System: Discrete system and its types, Z-transform and its properties, inverse Z-transform, region of convergence and its properties, Z-Domain analysis of Linear Time Invariant systems: transient and steady-state response, causality and stability. Frequency domain analysis of Linear Time Invariant systems: Frequency domain characteristics of LTI systems and frequency response of LTI systems.	9	CO1, CO2
2	Structure Realization of Discrete Time Systems: Introduction to structure realization and factor influencing structure realization, Structure realization of Finite Impulse Response (FIR) system: Direct form, transposed form, cascade form, frequency selective form and lattice form. Structure realization of Infinite Impulse Response (IIR) system: Direct form-I, Direct form-II, cascade form, parallel form and lattice form.		CO3
3	Discrete and Fast Fourier Transform (DFT & FFT): Discrete Fourier Transform (DFT), Inverse Discrete Fourier Transform (IDFT), relationship between DFT and Z-transform, Fast Fourier Transform: Decimation-in-time (DIT) FFT algorithm, decimation-in-frequency (DIF) FFT algorithm, Radix-2 FFT algorithms, linear filtering approach: Goertzel algorithm and Chirp z-transform algorithm, Quantization effect	9	CO4

	in computations, Effect of word length in digital filter.	
4	Digital Filter Design: Characteristics and properties of digital filter, FIR digital filter design by using Fourier series method, Use of window functions method, frequency sampling method. Design of IIR filter from analog filter: Approximations of derivatives method, Impulse Invariant method, Bilinear - transformation method.	CO5

Suggested Text / Reference Books:

- 1. John G. ProakisandDimitris G. Manolakis, "Digital Signal Processing", PHI Pub.
- 2. Allan Y. Oppenhein& Ronald W. Schater, "Digital Signal Processing", PHI, 2004.
- 3. J. R. Jhohnson, "Introduction to Digital Signal Processing", PHI, 2000.
- 4. B. Somanthan Nair, "Digital Signal Processing: Theory, Analysis & Digital Filter Design", PHI, 2004
- 5. Sanjit K. Mitra, "DSP a Computer based approach", TMH, 2nd Ed., 2001.
- 6. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", PHI, Second Edition,
- 7. S. Salivahanan, C. Gnanapriya, "Digital Signal Processing", McGraw Hill.
- 8. S. Sridhar, "Digital Image Processing", Oxford, 2011.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code:	Course Name: Microcontroller & Embedded System L T P C				
EI-PC-310		3 1			
Year and	3 rd Year	Contact hours per week: (4Hrs)			
Semester	VI th Semester	Exam: (3 Hrs)			
Pre-requisite of	Digital logic Circuits,	Evaluation			
course	microprocessors	CIE: 40 SEE: 60			
Course Objective	es:				
1. In depth study	1. In depth study of 8051 Architectures and programming of microcontrollers: embedded				
system applica	pplications.				
2. Use of assemb	oler directives and programming in as	sembly language using	Assembler		

3. Thi	s course concerns with Embedded systems basic knowledge: embedded architectures:				
4. To	analyze and design the RTOS and applications.				
Course	Outcomes: On completion of the course, student would be able to:				
CO1	Understand the fundamental concepts of Microcontroller Organization and Architecture				
	(Intel 8051), Data Representation and Memory Usage				
CO ₂	Apply the basic programming skills of microcontrollers for Problem Solving and				
	Algorithm Development, Assembling/Compiling and Execution				
CO3	Understand the basic of Embedded system, Understand the Embedded Product				
	Development Life Cycle, Design embedded system in RTOS				
CO4	Illustrate and design the hardware using Embedded System.				
CO5	Apply various algorithms in solving sorting problems.				
CO6	After study of this course it is expected that students will be able to develop interface for				
	real time industrial process and write programs for different applications, Further it is				
	expected that students will be able to do of their own for higher processors and				
	microcontrollers.				

Module			COs
No			COS
1	Microcontrollers:- Introduction; comparison of microprocessors & microcontrollers; A survey of microcontrollers, Architecture of 8051: Input/Output Pins; Ports and Circuits; External memory; counter & timers; serial data input/output; & Interrupts. Addressing modes, 8051 Instruction Set – Data movement Instruction, arithmetic instruction, Logic instruction, Branch group Instruction	9	CO1, CO2
2	8051 software and programming memory interfacing and address decoding, programming Input/ Output port/ timer/ ADC/DAC, Serial data communication controller and interrupts controller for different application with respect to instrumentation & control.	9	CO2, CO3
3	Introduction to Embedded Systems – The build process for embedded systems- Structural units in Embedded processor, selection of processor & memory devices- DMA – Memory management methods-Timer and Counting devices, Memory Devices, Processor and Memory Selection, Memory Map and Applications, Memory Blocks for Different Structures.	9	CO2, CO3, CO5
4	Watchdog Timer, Real Time Clock, In circuit emulator, Target Hardware Debugging.Embedded Networking – Introduction – I/O Device Ports & Buses – Serial Bus communication protocols – RS232 standard – RS422 – RS485 – CAN Bus -Serial Peripheral Interface (SPI) –Inter Integrated Circuits (I2C) – need for device drivers	9	CO3, CO4, CO6

Text Books:

- 1. Embedded System Design Frank Vahid, Tony Givargis, John Wiley.
- 2. The 8051 Microcontroller Architecture Programming & Application by Kenneth J. Ayala, Penram Inter.
- 3. The 8051 Microcontroller and Embedded Systems- Muhammad Ali Mazidi; Pearson **Education India**

- 4. Programming and Customizing the 8051 Microcontroller by Fredko Mike, TMH
- 5. Embedded Systems Architecture, Programming, and Design by Raj Kamal, TMH

REFERENCE BOOKS:

- 1. Microcontroller Architecture, Programming, Interfacing and System Design by Raj Kamal, Pearson Education India
- 2. Design with Micro-controllers by John. B. Pitman, Mc-Graw Hill
- 3. Introduction to Embedded Systems Shibu K.V, Mc Graw Hill

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in
- 2. Attempt/answer two questions each out of the Section -B and Section -C. All questions will carry 12 marks.

Course Code: EI-PRPC-18	Course Name: Electrical Machines Lab-II		L T P C - 3 1.5			
Year and	3 rd Yr.	Contact hours per v	week: (3Hrs)			
Semester	6 th Semester	Exam: (3 Hrs)				
Pre-requisite of	NIL	Evalu	ation			
course	NIL	CIE: 30	SEE: 45			
Course Objectiv	es:					
1. To familiariz	e the students practically about worki	ng and operation of th	ree phase induction			
motors						
2. To provide h	ands on experimentation on single pha	ase induction motors.				
3. To explain pr	ractically the operation of three phase	alternator along with 1	performing standard			
test on it.						
4. To know the	working and starting of three phase sy	nchronous motors.				
Course Outcome	Course Outcomes: On completion of the course, student would be able to:					
CO1 Work pr	ractically on three phase and single ph	nase induction motors				
CO2 Operate	and test three phase synchronous gene	erators (alternators).				
CO3 Operate	and test three phase synchronous mot	ors.				

Expt. No.	COURSE SYLLABUS CONTENTS OF MODULE	COs
1	To perform load test on three-phase squirrel cage induction motor	CO1,

2	To perform load test on three-phase slip ring induction motor	CO2,
3	To perform No-load & blocked rotor test on three-phase induction motor	CO3,
4.	To perform load test on single-phase induction motor	
5	To perform No-load & Blocked rotor test on single-phase induction motor	
6	To study and implement Starting methods on single-phase induction motor	
7	To Study and Measure Synchronous Impedance and Short circuit ratio of Synchronous Generator.	
8	To perform O.C. test on synchronous generator and determine the full load regulation of a three phase synchronous generator by synchronous impedance method	
9	To conduct the process of synchronization of two Three Phase Alternators, by a) Synchroscope Method b) Three dark lamp Method c) Two bright one dark lamp Method	
10	To study Load sharing between two Three Phase alternators in parallel operation condition.	
10	To plot and analyse V- Curve of synchronous motor.	
11	To plot and analyse inverted V curves of synchronous motor.	

Course Code: EI-PRPC-20	Course Name:Micro-controller La	Course Name: Micro-controller Lab			
Year and	3 rd Year	Contact hours per week: (3Hrs)			
Semester	VI th Semester	Exam: (3hrs.)			
Pre-requisite o	f Digital logic Circuits,	Evalua	ation		
course	microprocessors	CIE: 30	SEE: 45		
Course Object	ves:				
1. To provide	n depth knowledge of 8051 and assemb	oly language programm	ning		
2. To learn how	w to interface devices with different mo	dules on a microcontro	oller.		
3. To expertise	working with Keil compiler and embe	nbedded C programming.			
4. To impart th	e I/O interfacing concepts for developi	ng real time embedded	systems.		
5. To encourage	ge the students in building real time app	lications.			
Course Outcor	nes: On completion of the course, stude	ent would be able to			
CO1 Familia	Familiarize with the assembly level programming using lob kits.				
CO2 Familia	Familiarize with the Keil and Embedded Workbench tools.				
CO3 Design	circuits for various applications using	cations using microcontrollers.			
CO4 Apply	he concepts on real-project design and	l development			

Expt.	COURSE SYLLABUS	COa
No	CONTENTS OF MODULE	COs
	Programming	
1	Data Transfer - Block move, Exchange, Sorting, Finding largest element in an array.	CO1,
2	Arithmetic Instructions - Addition/subtraction, multiplication and division, square, Cube(16 bits Arithmetic operations – bit addressable).	CO2, CO3, CO4
3	Timers/Counters.	CO4

4	Boolean & Logical Instructions (Bit manipulations).
5	Conditional CALL & RETURN.
6	Code conversion: BCD – ASCII; ASCII – Decimal; Decimal - ASCII;
7	HEX - Decimal and Decimal - HEX.
8	Programs to generate delay, Programs using serial port and on-Chip timer
	/Counter.
	Interfacing
9	Simple Calculator using 6 digit seven segment displays and Hex Keyboard
<i>J</i>	interface to 8051.
10	Alphanumeric LCD panel and Hex keypad input interface to 8051.
11	External ADC and Temperature control interface to 8051.
12	Generate different waveforms Sine, Square, Triangular, Ramp etc. using DAC
12	interface to 8051; change the frequency and amplitude.
13	Stepper and DC motor control interface to 8051.
14	Elevator interface design and testing using 8051.

Note:

- 1. For Programming exercise is to be done on both 8051 & simulator.
- 2. For interfacing Write C and ALP programs to interface 8051 chip to Interfacing modules to develop single chip solutions.

Text Books:

- 1. Embedded System Design Frank Vahid, Tony Givargis, John Wiley.
- 2. The 8051 Microcontroller Architecture Programming & Application by Kenneth J. Ayala, Penram Inter.
- 3. The 8051 Microcontroller and Embedded Systems- Muhammad Ali Mazidi; Pearson **Education India**
- 4. Programming and Customizing the 8051 Microcontroller by Fredko Mike, TMH
- 5. Embedded Systems Architecture, Programming, and Design by Raj Kamal, TMH

REFERENCE BOOKS:

- 1. Microcontroller Architecture, Programming, Interfacing and System Design by Raj Kamal, Pearson Education India
- 2. Design with Micro-controllers by John. B. Pitman, Mc-Graw Hill
- 3. Introduction to Embedded Systems Shibu K.V, Mc Graw Hill

Course Code: EI-PRPC-22	Course Name: Digital Signal Processing Lab		L 0	T 0	P 3	C 1.5
Year and	3 rd Year	Contact hours per week: (3Hrs))	
Semester	5 th Semester	Exam: (3hrs.)				
Pre-requisite of	Knowledge of programming and	Evaluation				
course	Mathematics	CIE: 30 SEE: 45			15	
Course Objective	s:					
1. To study the fu	1. To study the fundamentals of MATLAB programming in digital signal processing.					
2. To study the mathematical concept of discrete system and implement it in MATLAB						
programming.						

3. To u	tilize MATLAB programming for the analysis of discrete systems.
4. To u	tilize MATLAB programming for the design digital filters.
Course C	Dutcomes: On completion of the course, student would be able to:
CO1	To introduce the MATLAB programming in discrete signal and system.
CO2	Ability to use MATLAB programming to get solutions of mathematical of discrete
	system.
CO3	To develop a skill to do the analysis of discrete systems by MATLAB programming.
CO4	To develop a skill to do the design digital filters by MATLAB programming.

Expt.	COURSE SYLLABUS	COa
No	CONTENTS OF MODULE	COs
1	Develop a program to represents basic elementary discrete signals.	
2	Develop a program P to calculate the convolution and correlation of two	
	discrete signals.	
3	Develop a program to determine Z-transform and inverse z-transformof given	
	discrete signal.	
4	Develop a program to determine Fast Fourier transform of given discrete	CO1
4	signal.	CO2
5	Develop a program to describe discrete LTI system in Z-domain and draw its	CO3
<i>J</i>	plot pole-zero.	CO4
6	Develop a program to determine the impulse response and step response of	
0	given LTI discrete system.	
7	Develop a program to determine the Frequency response of Discrete LTI	
,	system.	
8	Develop a program to describe a digital filter and determine its output	
0	response.	
9	Develop a program to design a FIR filter by using window techniques.	
10	To design analog filter (low-pass, high pass, band-pass, band-stop)	
11	Develop a program to design a Butterworth IIR filter.	
12	To develop a program for computing direct forms realization values of IIR	
1.2	digital filter	
13	To develop a program for computing parallel realization values of IIR digital	
13	filter	
14	To develop a program for computing direct form realization values of FIR	
14	digital filter	

B. Tech Electrical and Instrumentation Engineering SYLLABI for EXAMINATIONS B. Tech. 4th YEAR

Course Code:	Course Name: Open Elective IV		L T P C			
EI-OE-401	(i) Computer Graphics and CAD/C	CAM	3 1 0 4			
Year and	4 th Year	Contact hours per w				
Semester	VII th Semester	Exam: (3 Hrs)				
Pre-requisite of	Programing in C. Canaral Math	Evalua	ation			
course	Programing in C, General Math	CIE: 40	SEE: 60			
Course Objectiv	es:					
1. To learn and	understand Graphics fundamentals.					
2. To develop th	e algorithm design capability for crea	ting different 2-D and 3	3-D graphical			
objects To lea	arn creation of animated scenes for vir	tual objects creations				
3. To further the	acquired knowledge to utilize it in di	fferent research works	on Pattern			
Recognition a	and Image Processing.					
4. To learn and	understand Graphics fundamentals.					
Course Outcome	es: On completion of the course, stude	ent would be able to:				
CO1 Understa	and how to write algorithms for genera	ating different 2-D and	3-D graphical			
objects.						
CO2 Apply th	e knowledge to create and filling poly	gon (solid area fill),				
CO3 Impleme	Implement the different techniques of 2-D					
CO4 Impleme	Implement different line and polygon clipping algorithms,					
CO5 Draw dif	Draw different types of projections in 3-D vector algebra, different 3-D transformation					
techniqu	techniques, curves and surfaces and rendering methods					
CO6 Animate	scenes entertainment and apply the ki	nowledge to research w	ork.			

Module	COURSE SYLLABUS CONTENTS OF MODULE		COs
No			
1	Introduction of computer Graphics and its applications, Overview of Graphics systems, Video display devices, Raster scan display, Raster scan systems, video controller, Raster scan display processor, Random scan display, random scan systems, color CRT monitor, Flat panel display, Interactive input devices, Logical classification of input devices, Keyboard, mouse, Trackball and spaceball, Joysticks, Image scanner, Light pens, Graphics software, Coordinates representations, Graphics primitives and functions.	9	CO1, CO2
2	Points and lines, Line drawing algorithms, midpoint circle and ellipse algorithms. Filled area primitives: scan line polygon fill algorithm, boundary-fill and flood fill algorithms. Translation, scaling, rotation, reflection and shear transformations, matrix representations and homogeneous coordinates, composite transforms, transformation between coordinate systems. 2-D Viewing: The viewing pipeline, viewing coordinate reference frame, window to viewport coordinate transformation, viewing functions, Cohen-Sutherland and Cyrus beck line clipping algorithms	9	CO2, CO3, CO5
3	Polygon surfaces, quadric surfaces, spline representation, Hermite	9	CO3,

	Curve, Bezier Curve and BSpline curves, Bezier and B-Spline surfaces, sweep representations, 3-D Geometric Transformations: Translation, Rotation, Scaling, Reflection and Shear transformations, composite transformations, 3-D viewing, viewing pipeline, viewing coordinates, view volume and general projection transforms and clipping.		CO4
4	Classification, back-face detection, depth-buffer, scan line, depth sorting, BSP- tree methods, are subdivision and octree methods Illumination models and surface rendering methods: Basic illumination models, polygon rendering methods. Design of animation sequence general computer animation functions, raster animation, computer animation languages, key frame systems, motion specifications.	9	CO4, CO6

TEXT BOOKS

- COMPUTER GRAPHICS C VERSION by Donald Hearn and M. Pauline Baker, Pearsosn Education.
- Principles of Interactive Graphics, Neuman and Sproul, TMH
- Computer Graphics second edition "Zhigand Xiang, Roy Plastock, Schaum's outlines Tata McGraw Hill Edition.

REFERENCE BOOKS

- Computer Graphics Principles & Practice", Second Edition in C, Foley, VanDam, Feiner and Hughes, Pearson Education.
- Procedural Elements for Computer Graphics, David F Rogers, Tata McGraw Hill, 2nd 2. edition.
- 3. An Integrated Introduction to Computer Graphics and Geometric Modelling, R. Goldman, CRC Press, Taylor & Francis Group.

Note for Examiner(s): Question paper will comprise three sections,

- Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- Section A is compulsory and attempt/answer all the four questions carrying 12 marks
- 2. Attempt/answer two questions each out of the Section – B and Section – C. All questions will carry 12 marks.

	1 1 og 1 am 1 (amer 2) 1 cent 21 cent and 1 mor amentation 2 mg meeting					
Course Code:	Course Name: Open Elective-IV		L	T	P	C
EI-OE-401	(ii) IoT and It's Applications	3 1 0				4
Year and	4 st Year	Contact hours per week: (4 Hrs.))
Semester	VII th Semester	Exam: (3 Hrs.)				
Pre-requisite of	Microprocessor, Microcontrollers	Evaluation				
course	and Embedded Systems	CIE: 40		SE	E: 60)

Cours	se Objectives:				
	1. To understand what Internet of Things is.				
2. In tl	nis course, student will explore various components of Internet of things such as Sensors,				
inte	rnetworking and cyber space.				
3. In tl	ne end they will also be able to design and implement IoT circuits and solutions.				
Course	e Outcomes: On completion of the course, student would be able to:				
CO1	Identify the main components of Internet of Things.				
CO2	Program the sensors and controller as part of IOT.				
CO3	Assess different Internet of Things technologies and their applications.				
CO4	Design a component or a product applying all the relevant standards and within realistic				
	constraints.				
CO5	Identify a suitable hardware and software solution for the given electrical and				
	instrumentation problems.				
CO6	Execute their electrical and instrumentation product ideas into a real-time working				
	model.				

Modu	COURSE SYLLABUS	Hrs	COs
le No	CONTENTS OF MODULE	1113	COS
1	INTRODUCTION TO INTERNET OF THINGS: Definition & Characteristics of IoT - Challenges and Issues - Physical Design of IoT, Logical Design of IoT - IoT Functional Blocks, Security. COMPONENTS IN INTERNET OF THINGS: Control Units - Communication modules -Bluetooth - Zigbee -Wifi - GPS- IOT Protocols (IPv6, 6LoWPAN, RPL, CoAP), MQTT, Wired Communication, Power Sources. Current trends in IoT.	9	CO1, CO2
2	PROGRAMMING THE MICROCONTROLLER FOR IOT: Introduction of Raspberry Pi 3 B+ - About Raspberry version and processor, specification, pin details, features. Raspberry OS, IP configuration, Wi-Fi configuration, supporting package installation. Basic Linux commands, basic python programming, web server installation, Basic HTML and PHP, connecting My SQL data base. Different type of IoT Gate way	9	CO2, CO3
3	HARDWARE INTERFACING: Working principles of sensors – IOT deployment for Raspberry Pi – Reading from Sensors, Communication: Connecting microcontroller with mobile devices – communication through Bluetooth, Wi-Fi and USB - Contiki OS. Camera interface, Think speck IoT platform, Android interface with IoT.	9	CO2, CO3
4	RESOURCE MANAGEMENT IN IOT: Clustering, Clustering for Scalability, Clustering Protocols for IoT - From the internet of things to the web of things - The Future Web of Things - Set up cloud environment - Cloud access from sensors- Data Analytics for IOT- Case studies- Open Source 'e-Health sensor platform' - 'Be Close Elderly monitoring' - Other recent projects. IOT APPLICATIONS: Business models for the internet of things, Home energy management, home automation etc.	10	CO2, CO3, CO4, CO5, CO6

Text Books:

1. Architecting the Internet of Things, Dieter Uckelmann et.al Springer, 2011

2. Internet of Things – A Hand-on Approach, ArshdeepBahga and Vijay Madisetti, Universities press, 2015

Reference Books:

- 1. Building Internet of Things with the Arduino, CharalamposDoukas, Create space, April 2002.
- 2. Internet of Things: From research and innovation to market deployment, Dr. Ovidiu Vermesan and Dr. Peter Friess. River Publishers 2014.
- 3. 8051 Microcontroller: An Application Based Introduction, David Calcutt, Fred Hassan, Newness, 2008.
- 4. Contiki: The open source for IOT, www.contiki-os.org
- 5. Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-on-Approach)", 1st Edition, VPT, 2014
- 6. Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", 1st Edition, Apress Publications, 2013
- 7. CunoPfister, Getting Started with the Internet of Things, O"Reilly Media, 2011, ISBN: 978-1-4493-9357-1

List of Open Source Software/learning website:

- 1. https://github.com/connectIOT/iottoolkit
- 2. https://www.arduino.cc/
- 3. Contiki (Open source IoT operating system)
- 4. https://www.ubuntupit.com/best-iot-operating-system-for-your-iot-devices/
- 5. Arduino (open source IoT project)
- 6. IoT Toolkit (smart object API gateway service reference implementation)
- 7. Zetta (Based on Node.js, Zetta can create IoT servers that link to various devices and sensors)

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code:	Course Name: Program Elective-IV		L T P C		
EI-PE-403	(i) Bio Medical Instrumentation 2 1 0		2 1 0 3		
Year and	4 th Year	Contact hours per week: (3Hrs)			
Semester	(VII th Semester)	Exam: (3 Hrs)			
Pre-requisite of	Brief knowledge of in the	Evaluation			
_	following topics: Physics, Basic	CIE: 40	SEE: 60		
course	Electrical Engg.	CIE: 40	SEE: 00		
Course Objectives:					
1. To introduce the concept of Bio Medical Instrumentation.					

2. To i	To introduce Bio Potential Electrodes and Biomedical Recorders.			
3. To i	3. To introduce the Heart Sound and Ultrasound.			
4. To s	4. To study the Imaging System.			
Course	Course Outcomes: On completion of the course, student would be able to:			
CO1	To Familiarize with Bio Medical Instrumentation.			
CO2	To understand with Bio Potential Electrodes and Biomedical Recorders.			
CO3	CO3 To understand the Heart Sound and Ultrasound.			
CO4	To understand the Imaging System.			

Module	COURSE SYLLABUS	Hrs	COs
No	CONTENTS OF MODULE	1113	CO5
1	Introduction; Bio-electric potential and electrode: Instrumentation system, Living Instrumentation system, Bio-metric, the anatomy of nervous system, origin of bio-potentials, resting and action potentials, propagation of action potentials, the Bio-electric potentials.		I
2	Bio-potential electrode and Biomedical recorders: Bio-potential electrode: Microelectrodes, skin surface electrode, Needle electrodes. EEG: Electrode for EEG, Block diagram of EEG Machine, EMG Recording, pre amplifier for EMG, EMG recording method.	7	п
3	Heart Sound Monitoring and Ultrasonic Imaging system: Basic functioning of heart, Electrocardiograph Block diagram of ECG, ISOLATION AMPLIFIER, the ECG leads, Microprocessor based ECG Machine, PCG, Microphones for PCG, amplifier for PCG, Physics of ultrasonic waves, Biological effect of ultrasound.	6	III
4	Imaging System: X-ray Machine and Computed Tomography: X-ray machine, X-ray image Intensifier T.V. system, X-ray computed Tomography (CT Scanner). NMR imaging system: Imager system. Application of NMR Imaging, Advantage & disadvantage of NMR Imaging system	6	IV

REFERENCE BOOKS:

- 1. Introduction to Biomedical Equipment Technology By Carr & Brown.
- 2. Biomedical Instrumentation and Measurement by Cromwell, PHI.
- 3. Handbook of Biomedical Instrumentation by R.S.Khandpur, TMH.

Note for Examiner(s): Question paper will comprise three sections,

- Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working
- Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Program Name: B. Tech.-Electrical and Instrumentation Engineering

	ogram Name: D. TechElectrical and		LTPC
Course Code	Course Name: Program Elective-	Course Name: Program Elective- IV	
EI-PE-403	(ii) Reliability Engineering	(ii) Reliability Engineering 2 1 - 3	
Year and	4 th year	Contact hours per v	week: (3Hrs)
Semester	7 th Semester	Exam: (3hrs.)	
Pre-requisite	of Basic Engineering Mathematics	Evalu	ation
course		CIE: 40	SEE: 60
Course Object	tives:		
1. To study	he basic concept of reliability, maintaina	bility and availability	engineering.
2. To study	the evaluation techniques of engineer	ing models and relia	bility improvement
methods.			
3. To study	he concept of fault tree analysis and opti	mization techniques.	
4. To study	evaluation modesl for reliability, maintain	nability, availability tes	sting.
5. To study	he applications of fuzzy theory and neur	al networks to reliabili	ty engineering,
Course Outco	mes: On completion of the course, stude	ent would be able to:	
CO1 To und	erstand the basic concept of reliability, r	naintainability and ava	ilability
engine	ering.	•	·
CO2 To uno	e e		
improv	ement methods.	-	-
CO3 To lear	n the fault tree analysis and optimization	techniques.	
	to do testing and evaluate the reliability	•	ability of
_	engineering models.		
	ly the applications of fuzzy theory and no	eural networks to relial	bility engineering,
232 23866	J III II II III III III III III III III	11 00	,

Modu le No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Review of basic concepts in reliability engineering, reliability function, different reliability models etc., and reliability evaluation techniques for complex system: Non path set and cutest approaches, path set and cut set approaches, different reliability measures and performance indices, modeling and reliability evaluation of system subjected to common cause failures.	7	CO1
2	Reliability improvement, Reliability allocation/apportionment and redundancy optimization techniques, Fault tree analysis.	7	CO2, CO3
3	Maintainability Analysis: measure of system performance, types of maintenance, reliability centered maintenance, reliability and availability evaluation of engineering systems using Markov models. Reliability testing, Design for reliability and maintainability.	7	CO1, CO4
4	Applications of fuzzy theory and neural networks to reliability engineering, Typical reliability case studies.	7	CO5

Suggested Text / Reference Books:

- 1. M.L Shooman, "Probabilistic reliability- an engineering approach" RE Krieger Pub, 1990.
- 2. K.K Aggarwal, "Reliability Engineering" Springer Pub, 1993.
- 3. E. Balaguruswamy, "Reliability Engineering" McGraw hill, 2002.
- 4. R. Ramakumar, "Engineering Reliability" Prentice, NJ, 1993.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Program Name: B. TechElectrical and Instrumentation Engineering				
Course Coo	de:	Course Name: Program Elective -	· IV	L T P C
EI-PE-403		(iii) Wind and Solar Energy Systems 2 1 - 3		
Year and		4th year	Contact hours per	week: (3Hrs)
Semester		7th Semester	Exam: (3hrs.)	
Pre-requisi	ite of	Electrical Machines, Power	Evalu	ation
course		Electronics, Basic Science	CIE: 40	SEE: 60
		Engineering		
Course Ob	jective	es:		
1. To famil	iarize	the energy scenario and the consequ	ent growth of the pov	wer generation from
renewabl	e wind	d and solar energy sources.		
2. To study	the ba	sic science of wind and solar energies	S.	
3. To study	the wi	ind and solar energy conversion system	ms for electrical power	er system.
4. To studyi	integra	ation issues of the wind and solar gene	eration.	
Course Ou	tcome	s: On completion of the course, stude	nt would be able to:	
CO1 Un	dersta	nd the energy scenario and the con	sequent growth of th	ne power generation
fro	m rene	ewable wind and solar energy sources		_
CO2 Un	dersta	nd the basic science of wind and solar	energies.	
CO3 Un	dersta	nd the wind and solar energy conversi	ion systems for electri	ical power system.
		stand the power electronic interfaces for wind and solar generation.		
		tand the issues related to the grid-integration of solar and wind energy systems.		
L				

Modu le No.	COURSE SYLLABUS CONTENTS OF MODULE		COs
1	Wind Energy Systems: Historical developments of Wind Energy, energy and power in wind, wind energy dynamics, power extracted, axial thrust on turbines, torque, maximum power and Beltz coefficient, wind turbine operational characteristic, site selection. Wind energy conversion system, basic integration issues related to wind power, status of Wind power in India.	7	CO1, CO2
2	Wind Energy Conversion Systems: HAWT and VAWT constructions, basic rotor differences, relative merits and operational difficulties, lift and drag turbines, upwind and down wind machines. Basic components, fixed and variable speeds systems, type of generators used-D.C.,	7	CO3, CO4, CO5

	induction and synchronous machines; grid, standalone, and hybrid schemes.		
3	Solar Energy Systems: Fundamentals of solar cell, semiconductors as basis for solar cells materials and properties, P-N junction, sources of losses and prevention, estimating power and energy demand, site selection, land requirements, choice of modules, economic comparison, balance of systems. Overview of different types of solar cells/panels. Photovoltaic industries in India and world.	7	CO1, CO2
4	Solar PV Power Plants System: Array design, inverter types and characteristics, power conditioning system: working algorithms, performance analysis; design of stand alone, hybrid and grid interactive plants, commissioning of solar PV plant.	7	CO3, CO4, CO5

Suggested Text / Reference Books:

- 1. T. Ackermann, "Wind Power in Power Systems", John Wiley and Sons Ltd., 2005.
- 2. G. M. Masters, "Renewable and Efficient Electric Power Systems", John Wiley and Sons,
- S. P. Sukhatme, "Solar Energy: Principles of Thermal Collection and Storage", McGraw Hill, 1984.
- 4. H. Siegfried and R. Waddington, "Grid integration of wind energy conversion systems" John Wiley and Sons Ltd., 2006.
- 5. G. N. Tiwari and M. K. Ghosal, "Renewable Energy Applications", Narosa Publications,
- 6. J. A. Duffie and W. A. Beckman, "Solar Engineering of Thermal Processes", John Wiley & Sons, 1991.
- 7. V. Yaramasu and B.Wu, "Model Predictive Control of Wind Energy Conversion Systems", Wiley- IEEE Press, 2016.
- 8. L. L. Freris, "Wind Energy Conversion System", Prentice Hall, (U.K.) 1990.
- Thomas Ackermann, "Wind Power in Power System", John Wiley & Sons Ltd., 2005.
- 10. SuneelDeambi, "Photovoltaic System Design: Procedures, Tools and Applications", CRC Press 2016.
- 11. A. Freundlich, P. Verlinden, WvanSark, "Photovoltaic Solar Energy: From Fundamentals to Applications", John Wiley & Sons Ltd. 2017.
- 12. Md. Rabiul Islam, FazRahman, Wei Xu, "Advances in Solar Photovoltaic Power Plants", Springer-Verlag Berlin Heidelberg, 2016.

Note for Examiner(s): Question paper will comprise three sections,

- Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

1. Section – A is compulsory and attempt/answer all the four questions carrying 12 marks in total.

2. Attempt/answer two questions each out of the Section - B and Section - C. All questions will carry 12 marks.

Course	Code:	Course Name: Program Elective -	e – IV L T P C		C	
EI-PE-40)3	(iv) POWER QUALITY AND FAC	CTS 2 1 0 3		3	
Year an	d	IV th Year	Contact hours per	oer week: (3Hrs)		s)
Semeste	r	VIIth Semester]	Exam: (3 Hrs)		rs)
		EI-PC-202 POWER	Evalu	ation	1	
Pre-requisite of		ELECTRONICS-I				
course	118116 01	EI-PC-303 POWER	CIE: 40		SEE:	60
course		ELECTRONICS-II	CIE. 40		SEE.	UU
		EI-PC-307 POWER SYSTEM-II				
Course	Objective	es:				
To introd	duce stude	ents about the power quality and its cla	assification.			
To learn	the stude	nts about voltage profile under differe	nt types of events.			
To give l	orief idea	of integration of distributed generation	on.			
To introd	duce the s	tudents about FACTS and FACTS bas	sed controllers.			
To give a	a brief kn	owledge about series and shunt compe	ensation.			
Course	Outcome	s: On completion of the course, studer	nt would be able to:			
CO1	To unde	erstand the term power quality and i	ts related issues like	volta	ige unl	balance,
	voltage s	sag/swell, harmonics etc.				
CO2	To learn	n about different voltage profiles i	under the events of	volt	age sa	g/swell,
	transient	ts, harmonic distortion, intra-harmonic	es etc.			
CO3	To have	a brief idea of distributed generation a	and its impact on pow	er qu	ality.	
CO4	Learn ab	about the FACTS and basics of FACTS controllers.				
CO5	Know a	bout the need of compensation and achieving it through static compensation;				
	static ser	static series and shunt compensation.				
Module		COURSE SYLLABUS GOVERNMENT COS Hrs Cos				
No		CONTENTS OF MODULE		1115	Cus	
	Introdu	action: Power quality-voltage qualit	y, power quality ter	ms,		
	-	quality evaluation procedures term	. 0			CO1,
1		of power quality problems, transien			5	CO2
		n, short duration voltage variation	ons, voltage imbala	nce,		002
	1	rm distortion.				
		e sags and interruptions: Sources of				
		ing voltage sag performance, fun	damental principles	of		
		on, motor starting sags.			_	
_		ent over voltages: Fundamentals of			7	CO2,
2		on, voltage harmonic indexes, h				CO2
		rcial loads, harmonic sources from Ir	idustrial loads, effect	s of		
		ic distortion, intra harmonics.	P4 DC + 1 1			
		uted generation and power qua		gies,		
		e to utility system, power quality issue				
2	FACTS	-	stem Consideration		o	CO4,
3		ission Interconnections, Flow of Po	ower in an AC Syst	em,	8	CO5
	Power I	Flow and Dynamic Stability				

	Basic Types of FACTS Controllers, Brief Description and Definitions of FACTS Controllers, Static Shunt Compensators: Objectives of Shunt Compensation - Midpoint Voltage Regulation for Line Segmentation, End of Line Voltage Support to Prevent Voltage Instability, Improvement of Transient Stability Thyristor Controlled Reactor.		
4	Static Series Compensators: Objectives of Series Compensation, Concept of Series Capacitive Compensation, Voltage Stability, Improvement of Transient Stability. GTO Thyristor-Controlled Series Capacitor, Thyristor-Switched Series Capacitor, Thyristor-Controlled Series Capacitor, The Static synchronous Series Compensator.	6	CO5

Text Books:

- 1. Narain G. Hingorani & Laszlo Gyugyi Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems Wiley
- 2. Arinthom Ghosh & Gerard Ledwich, Power Quality Enhancement Using Custom Power Devices Kluwer Academic Publishers
- 3. C. Sankaran, Power Quality CRC Press
- 4. S. Sivanagaraju& S. Satyanarayana, Electric Power Transmission and Distribution, Pearson Education

Reference Books:

- 1. Roger C Dugan, McGrahan, Santoso&Beaty, Electrical Power System Quality McGraw Hill
- 2. Power quality in power systems and electrical machines Ewald F Fuchs, Mohammad, A.S., Masoum Academic Press, Elsevier 2009.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code: EI-PC-405	Course Name: Electric Drives		L T P 3 1 0	C 4
Year and	4 TH Year Contact hours per week: (4Hrs)			
Semester	(VII th Semester) Exam: (3 Hrs)			
Pre-requisite of	Brief knowledge of in the	Evaluation		
course	following topics: Electrical Machines, Power Electronics.	CIE: 40	SEE: 60)

Course Objectives:		
. To introduce the concept of types of Electric Drives.		
2. To introduce the DC Motor Drives.		
3. To introduce the AC Motor Drives.		
4. To study the Motor power rating.		
5. To implement Traction Drives.		
Course Outcomes: On completion of the course, student would be able to:		
To Familiarize with Dynamics and Control of Electric Drives.		
To understand efficient speed control techniques in DC Motor Drives.		
CO3 To understand efficient speed control techniques in AC Motor Drives.		
To understand the significance and selection of power rating.		
CO5 To familiarization of Load and choice of traction for suitable load.		

Module	COURSE SYLLABUS	Hrs	COs
No	CONTENTS OF MODULE	пг	COS
1	Electrical Drives: Introduction, advantages, choice of electrical drives, status of ac and dc drives. Dynamics of Electrical Drives: Fundamental torque equations, multiquadrant operation, equivalent values of drive parameters, load torque components, types of loads, steady state stability, load equalization. Control of Electrical Drives: Modes of operation, closed loop control of drives, sensing of current and speed.	7	CO1
2	DC Motor Drives: Speed-torque characteristics of different types of dc motors, starting, types of braking, transient analysis, speed control methods, static control of dc motors. Converter fed dc drive & chopper fed dc drive.	7	CO2
3	Induction motor Drives: Characteristics, analysis and performance, starting methods, braking methods, transient analysis, methods of speed control, vector control. Static control techniques- stator frequency control, stator voltage control, rotor resistance control. Static Scherbius system & static Kramer system.	10	CO3
4	Selection of motor power rating: Heating and cooling, determination of motor rating, continuous, short time and intermittent duties, determination of moment of inertia of the flywheel. Traction Drives: Nature of traction load, important features of traction drives, static control of traction drives; comparison between ac and dc tractions.	12	CO4

TEXT BOOKS:

Fundamentals of Electrical Drives, G.K.Dubey, Narosa Publishing House

REFERENCE BOOKS:

- 1. Power Semiconductor controlled drives, G.K.Dubey, Prentice Hall.
- 2. Electric Drives: V.Subrahmaniyam TMH
- 3. Electric Drives: Leonard, Narosa Pub.
- 4. Electric Drives: Diwan

Note for Examiner(s): Question paper will comprise three sections,

1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.

- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Program Nama: R. Tach, Floctrical and Instrumentation Engineering

	Prog	ram Name: B. TechElectrical and li	istrumentation Engin	eern	ng		
Course (Code:	Course Name: Advance Process Dyna	amics and Control	L	T	P	C
EI-PC-40	07			3	1	0	4
Year an	d	4 th year	Contact hours per w	eek:	(4H	rs)	
Semeste	r	VIII th Semester	Exam: (3 Hrs)				
Pre-requ	uisite	EI-PC-309 Linear Automatic	Evalua	tion			
of cours	e	Control System	CIE: 40		SE	E: 60)
Course (Objectiv	ves:					
5. Acqu	iire knov	wledge Process dynamics and various for	orms of mathematical m	ode	ls to	expr	ess
them	l						
6. To u	nderstan	d the multiloop systems					
7. To de	evelop k	nowledge about controller tuning					
8. To de	evelop u	nderstanding about PI diagrams					
9. To an	nalyze sa	amples data control systems					
Course (Outcom	es: On completion of the course, studer	it would be able to:				
CO1	Formu	late mathematical model of various syst	ems				
CO2	Design	and develop multiloop control systems	}				
CO3	Compu	ate the tuning parameters of controllers					
CO4	Constr	uct PI diagrams			-	-	•
CO5	Develo	pp the sample data control systems					

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs.	COs
1	Need of mathematical modelling, lumped and distributed parameters, state variables and state equations of chemical processes, mathematical modelling of CSTR, interacting system and non-interacting system. Control of jacketed kettle systems, dynamic response of gas absorber, heat conduction into solids, heat exchanger.	10	CO1
2	Review and limitation of single loop control, need of multi loops, cascade, selective override, auctioneering, split range, feed forward, feed forward feedback, adaptive, inferential, ratio control, Selfadaptive control: MRAC, TR.		CO1, CO2
3	Tuning of PID controller, Zeigler – Nichols methods, Process reaction curve, Ultimate gain and period method, quarter decay ratio advance method of tuning, IAE, ISE, IATE tuning of controllers. Effect of measurement and transportation lag on process response, Effect of	8	CO1, CO3

	disturbances.		
4	Standard Instrumentation Symbols for Devices, Signal Types, Representation of a Process Control Loop using PI diagram. Sampling, open loop and closed loop response, Stability, sampled data control of first order process with transport lag, Design of sampled data controllers.	10	CO4, CO5

Text books:

- 1. Stephanopoulos, G., Chemical Process Control, Prentice—Hall of India Private Limited (1983).
- 2. Johnson, C.D., Process Control Instrumentation Technology, Prentice–Hall of India Private Limited (1992).
- 3. Process Systems Analysis and Control, D. R. Coughanour, McGrawHill

Reference books:

- 1. Liptak, B.G., Instrument Engineers Handbook, Butterworth, Heinemann (2002)
- 2. Seborg, D.E. and Edgar, T., Process Dynamics and Control, John Wiley and Sons (1989).

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code: EI-PRPC-27	Course Name: Electric Drives Lab		L T 0 0	P 3	C 1.5
Year and	4 th Year	Contact hours p	per wee	k: (3	Hrs)
Semester	VII th Semester	Exam: (3hrs.)			
	Brief knowledge of in the following	Eval	luation		
Pre-requisite of	topics: Basic Electrical and Electronics				
course	engineering, Semiconductor devices,	CIE: 30	SE	E: 4	5
	Digital Electronics, rectifiers.				
Course Objectiv	es:				
1. Understand t	he Chopper Control Drives				
2. Understand t	he concepts of Cyclocontroller based control	ol.			
3. Understand t	he concept of Electric Breaking.				
4. Understand (Current Source Inverter.				
Course Outcome	es: On completion of the course, student wo	ould be able to:			
CO1 To under	estand the concept of chopper control DC m	otors.			
CO2 To under	estand the cyclocontroller bases Induction M	Iotor Control			
CO3 To under	rstand how to implement electric Breaking u	using Induction M	otor.		

CO4 To understand the current Source Inverter and Voltage Source Inverters for Induction motor Control.

Expt.	COURSE SYLLABUS	COg
No	CONTENTS OF MODULE	COs
	LIST OF EXPERIMENTS STUDY EXPERIMENTS:	
1.	Study of Chopper controller of DC Series motor	
2.	Study of Chopper controller of SE DC Series motor trainer	CO1
3.	Study of half wave cycloconverter with IM	CO1,
4.	Study of DC dynamic breaking 3-phase slippering IM	CO2,
5.	VSI Controlled IM chopper trainer	CO3,
6.	Study of Self-controlled synchronous motor	CO4
7.	To Study Current Source Inverter controlled IM	
8.	To study Voltage Source Inverter Controlled IM	

TEXT BOOKS:

1. Fundamentals of Electrical Drives, G.K. Dubey, Narosa Publishing House

REFERENCE BOOKS:

- 1. Power Semiconductor controlled drives, G.K. Dubey, Prentice Hall.
- 2. Electric Drives: V. Subrahmaniyam TMH
- 3. Electric Drives: Leonard, Narosa Pub.
- 4. Electric Drives: Diwan

Course Code:	Course Name: Open Elective IV	Lab.	L T P C
EI-PROE-29	(i) Computer Graphics and CAD/C	CAM	0 0 3 1.5
Year and	4 th Year	Contact hours per	week: (3Hrs)
Semester	VII th Semester	Exam: (3hrs.)	
Pre-requisite	Of Programing in C. Ganaral Math	Evalu	ation
Year and Semester VII th Semester Exam: (3hrs.) Pre-requisite of course Objectives: 5. To learn and understand fundamentals of Graphics programming 6. How to design and develop the algorithm for creating different 2-D and 3-D graphical and procedure to create animated scenes for virtual objects. 7. To further the acquired knowledge to utilize it in different research works on Pattern Recognition and Image Processing. Course Outcomes: On completion of the course, student would be able to CO1 Write algorithms for generating different 2-D and 3-D graphical objects.	SEE: 45		
Course Object	tives:		
5. To learn a	d understand fundamentals of Graphics	programming	
6. How to de	ign and develop the algorithm for creati	ng different 2-D and 3	3-D graphical objects
and proced	ure to create animated scenes for virtual	objects.	
7. To further	he acquired knowledge to utilize it in di	fferent research works	s on Pattern
Recognition	n and Image Processing.		
Course Outco	mes: On completion of the course, stude	ent would be able to	
CO1 Write	algorithms for generating different 2-D	and 3-D graphical obje	ects.
CO2 Imple	ment various 2D and 3D transformations	3	
CO3 Desig	n various types of graphical animation a	nd complex designs	
CO4 Apply	the concepts on real- project design and	l development	

Expt.	COURSE SYLLABUS	COa
No	CONTENTS OF MODULE	COs
1	Study of Fundamental Graphics Functions.	CO1,
2	Implementation of Line drawing algorithms: DDA Algorithm, Bresenham's	CO2,
2	Algorithm	CO3,
3	Implementation of Circle drawing algorithms: Bresenham's Algorithm, Mid-	CO4

	Point Algorithm.	
4	Ellipse Generation Algorithm	
5	Creating various types of texts and fonts	
6	Creating two dimensional objects	
7	Programs using 2-D transformations in C.	
8	Programs to study 3-D transformations in C.	
9	Implement Polygon filling algorithms [Flood-Fill Algorithm] in C.	
10	Programs to study window to viewport transformations in C.	
11	Program for Cohen Sutherland Line clipping algorithm in C.	
12	Write a program to implement Cohen Sutherland line clipping algorithm	
13	Write a program to draw Bezier curve.	
14	Key Frame Animation	

Text Books:

- 1. Procedural Elements for Computer Graphics, David F Rogers, Tata McGraw Hill, 2nd
- 2. An Integrated Introduction to Computer Graphics and Geometric Modelling, R. Goldman, CRC Press, Taylor & Francis Group.

Course Code:	Course Name: Open Elective- IV	ab.	L T P C
EI-PROE-29	EI-PROE-29 (ii) IoTand Its Application Lab		0 0 3 1.5
Year and	4 th Year	Contact hours per w	eek: (3 Hrs.)
Semester	VII th Semester	Exam: (3 hrs.)	
Pre-requisite	of Microprocessor, Microcontrollers	Evalua	tion
course	and Embedded Systems	CIE: 30	SEE: 45
1. Course Ob	jectives:		
2. To understa	and what Internet of Things is.		
3. In this cour	se, student will explore various compon	ents of Internet of thing	s such as Sensors,
internetwo	king and cyber space.		
4. In the end t	hey will also be able to design and impl	ement IoT circuits and s	solutions.
Course Outco	nes: On completion of the course, stude	ent would be able to:	
CO1 Under	stand general concepts of Internet of Th	ings (IoT)	
CO2 Recog	nize various devices, sensors and applic	ations	
CO3 Apply	Analyze and Evaluate various design	concept to IoT solutions	3
CO4 Create	IoT solutions using sensors, actuators a	and Devices	

Expt.	COURSE SYLLABUS	COs
No	CONTENTS OF MODULE	COS
1	Introduction to various sensors and various actuators & its Application (Students have to prepare Report for the same). Perform Experiment using Arduino Uno to measure the distance of any object using Ultrasonic Sensor. a) PIR Motion Sensor. b) Rain Drop Sensor. c) Moisture Sensor. d) Temperature Sensor. e) Touch Sensor.	CO1, CO2, CO3, CO4

	f) Infrared Sensor.	
	g) Servo Moto.	
	h) RFID Sensor.	
	i) Bluetooth Module.	
	j) Wi-Fi Module.	
2	Demonstrate NodeMCU and its working	
3	Getting Started with (ESP8266 Wi-Fi SoC	
4	Hands-on with on-board peripherals of ESP8266	
5	Demonstrate Arduino and its pins.	
6	Perform Experiment using Arduino Uno to measure the distance of any object	
6	using Ultrasonic Sensor.	
7	Create a circuit using Arduino and sensors. Perform experiment using Arduino	
/	Uno to Learn Working of Servo Motor	
8	Creating a webpage and display the values available through Arduino.	
9	Demonstration of Setup & Working of Raspberry Pi. (Students have to prepare	
9	the Report for the same.).	
	OPEN Ended problem: Students are required to submit an IOT based project	
10	using the Microcontroller or a Raspberry Pi and connecting various sensors and	
10	actuators.	
	The data for the same should be displayed via a webpage or a web app.	

Supplementary Resources: Students will use supplementary resources such as online videos, NPTEL videos, e-courses, Virtual Laboratory

References: Web

- a) https://www.udemy.com/course/internet-of-things-iot-for-beginners-getting-started/
- b) https://playground.arduino.cc/Projects/Ideas/
- c) https://runtimeprojects.com/
- d) https://www.megunolink.com/articles/arduino-garage-door-opener/
- e) https://www.willward1.com/arduino-wifi-tutorial/
- f) https://www.makeuseof.com/tag/pi-overdose-heres-5-raspberry-pi-alternatives/
- g) https://www.electronicshub.org/arduino-project-ideas/
- h) http://homeautomationserver.com/
- i) http://toptechboy.com/arduino-lessons/
- j) https://www.eprolabs.com/

YouTube

- a) https://www.youtube.com/watch?v=dC2GdEWHRxQ&list=PLy6JR9IR8VKOZBpDcETs
- b) https://www.youtube.com/watch?v=kLd_JyvKV4Y
- c) https://www.youtube.com/watch?v=TkA2LJctU1c

Course Code:	Course Name: Open Elective-V		L	T	P	С
EI-OE-402	(i) Artificial Intelligence		2	1	0	3
Year and	4 th Year Contact hours per week: (3Hrs			3Hrs)		
Semester	VIII th Semester	Exam: (3 Hrs)				
Due requisite of	The course assume prior knowledge	Evaluation				
Pre-requisite of course	of basic programming, management skills.	CIE: 40			SE	EE: 60
Course Objectives:						

1. To explore the ba	sics of Artificial Intelligence.				
2. To introduce the co	oncepts of a Rational Intelligent Agent and that can be designed to solve				
problems.					
3. To gain knowledge	on blind and heuristic search in AI.				
4. To create an under	standing of the basic issues of knowledge representation and Logic.				
5. To be able to design	n expert systems with intelligence.				
Course Outcomes: On	n completion of the course, student would be able to:				
CO1 Recognize tl	ne role of AI to solve real world problems				
CO2 Explain and	CO2 Explain and implement representation of knowledge, problem solving methods in AI.				
CO3 Know how to build simple knowledge-based systems.					
CO4 Solve compl	Solve complex engineering and real-world problems using AI.				

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Introduction: History, the turning test, overview of AI applications, problem & problem spaces, problems characteristics.	7	CO1, CO2
2	Knowledge Representation Logic: Proportional & first order prediction logic, inference rules, resolution limitation of logic. Production system: Definition & history, examples of search in production system, advantages.	9	CO1, CO2, CO3
3	Search: Informal and informal, algorithms of depth 1st, breadth 1st, hill climbing, best 1 st search; Game playing: minimax search, alpha and beta pruning, forward and backward reasoning.	9	CO2, CO3, CO4
4	Expert system: Introduction & examples, architecture (rule based system), development, knowledge engineering process, limitations.	7	CO3, CO4

TEXT BOOKS

- 1. A.I by Elaine Tich, Kevin Knoght, Shiv Sankar B Nair, 3rd Edition, McGraw Hill Education
- 2. Artificial Intelligence: A Modern approach by Stuart J Russel, Peter Norvig, 3rd edition, Pearson
- 3. Introduction to Artificial Intelligence & Expert systems by Dass W. Patterson, PHI Publications.
- 4. PROLOG Programming for Artificial Intelligence, Ivan Bratko, 4th Edition, Addison-Wesley Educational Publishers Inc

REFERENCE BOOKS

A.I: an engineering approach by Robert J. Schlkoff, McGraw Hill.

Note for Examiner(s): Question paper will comprise three sections,

- Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

Section – A is compulsory and attempt/answer all the four questions carrying 12 marks in

2. Attempt/answer two questions each out of the Section - B and Section - C. All questions will carry 12 marks.

Program Name: B. Tech.-Electrical and Instrumentation Engineering

Cours	e Code:	Course Name: Open Elective-V		L	T	P	С
EI-OE	2-402	(ii) Robotics	(ii) Robotics		1	0	3
Year a	and	4 th Year	Contact hours per week: (3Hrs)				
Semes	ster	VIII th Semester	Exam: (3 Hrs)				
Pre-re	equisite	General Mathematics, Computer	Eval	uatio	n		
of cou	rse	Graphics	CIE: 40		SEE:	60	
Cours	e Objecti	ves:					
		he student's knowledge in various i	robot structures and the	ir wo	rkspace	.	
		student's skills in performing spatia					ody
	otions.	1 5 1			`		•
3. To	develops	student's skills in perform kinematic	cs analysis of robot sys	tems.			
		he student with knowledge of the si				opera	ation
	robotic sy		•			•	
		he student with some knowledge an	d analysis skills associ	ated v	vith tra	jector	y
	anning.		•		•	,	•
6. To	provide t	he student with some knowledge ar	nd skills associated with	ı robo	t contr	ol	
Cours	e Outcon	nes: On completion of the course, st	udent would be able to):			
CO1	Outline t	he structure of a typical robotic sys	tem, understand its link	and	joint pa	rame	ters,
	and perfe	orm robot kinematics.			_		
CO ₂	Identify	the geometric parameters of a robot	by applying the know	ledge	of robo	t	
	kinemati	cs and generalized differential mod	el of the robot.	_			
CO3	Analyse	planar and spatial parallel robots in	context to its forward	and in	verse		
	kinemati	cs, and evaluate its singularity, con-	dition number and man	euver	ability.		
CO4	Identify	the dynamic parameters of a robot b	by applying the knowle	dge o	f gener	al for	m of
	dynamic	equation of motion.					
CO5	Identify the independent joint control and torque						
CO6	Design a	robotic manipulator and evaluate it	ts primary and seconda	ry wo	rkspace	e	
	Evaluate	the performance of a robot.	e performance of a robot.				

Module	COURSE SYLLABUS	Hrs	COs
No	CONTENTS OF MODULE	шѕ	COS
1	Introduction to Robotics, terminology and definitions, Classification: Cylindrical, Spherical, Revolute, Rectangular; Work volume, Robot drive systems, Precision of movement – Spatial resolution, Accuracy, Repeatability. End effectors – Tools and grippers Components of Robotic Systems: Actuators, Sensors, Controllers, and Manipulators.	7	CO1, CO2, CO3
2	Position and Orientation: Description & frames, Rotation, Homogeneous transform, Translations, Transformation matrix. Robot Arm Kinematics: Introduction to Robot Arm Kinematics, Homogeneous Coordinate transformations, Direct & Inverse Kinematics, Composite Homogeneous transformation matrix.	7	CO2, CO3

Program Name: B. Tech.-Electrical and Instrumentation Engineering (from 2020 - 21 for UTD Only) 141

3	Link, joint and parameters: DenavitHarten Berg Notation, D-H Matrix, Kinematic equations. Exercises on Direct & Inverse Kinematics up to six degree of freedom Robots.		CO2, CO3, CO5
4	Manipulator Dynamics : Euler-Lagrange Equation, KE and PE Expressions, Equations of motion, Newton-Euler transformation, some examples; Independent Joint control: Actuator Dynamics, set point tracking, Trajectory Interpolation	7	CO3, CO4

Text Book:

- 1. **Robotics control sensing Vision and Intelligence** K.S.Fu, R.C.Gonzalez, C.S.G. Lee, McGraw Hill, 1987.
- 2. **Robot Technology Fundamentals -** James G.Keramas, Cengage learning
- 3. Robot and Controls By Mittal and Nagarath, Tata McGraw-Hill, 2003
- 4. Introduction to Robotics: Mechanics and control By J. J. Craig, AddisionWeslay Pub. Co.
- 5. Robot Dynamics and Control, By W. Sponge & M. Vidyasagar, John Wiley and Sons, New York, 1989.

Reference Books:

- 1. Bruno Siciliano and OussamaKhatib, Handbook of Robotics, Springer, 2016.
- 2. S. K. Saha, Introduction to Robotics, McGraw Hill Education, 2008.
- 3. P. Marlett, Parallel Robots, Springer, 2006.
- 4. Harry Asada & Slottine "Robot Analysis & Control", Wiley Publications, 2014

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code:	Course Code: Course Name: Open Elective-V		L	T	P	C	
EI-OE-402	(iii) High Voltage Engineering			1		3	
Year and	4 th year	Contact hours per week: (3Hrs)					
Semester	8 th Semester	Exam: (3hrs.)					
Pre-requisite of	Power System Engineering, Basic	Evaluation					
course	Science Engineering	CIE: 40 SEE: 60			0		
Course Objective	es:						
1. To introduce t	1. To introduce the concepts of high voltage engineering and methods of generation.						
2. To study with different high voltage measurements and required necessary instruments.							
3. To study the basics theories of lightening phenomenon, voltage surges and their							

cha	racteristics.					
4. To	introduce the protection methods and measurement methods for lightening and voltage					
surg	ges.					
Course	e Outcomes: On completion of the course, student would be able to:					
CO1	To understand the concepts of high voltage engineering and methods of generation.					
CO2	To familiarize with different high voltage measurements and required necessary					
	instruments.					
CO3	To understand the basics theories of lightening phenomenon, voltage surges and their					
	characteristics.					
CO4	To learn the protection methods of against lightening and surges.					
CO5	To learn about the measuring instruments of lightening surges and its measurement					
	methods.					

Modu	COURSE SYLLABUS	Hrs	COs
le No	CONTENTS OF MODULE	1115	COS
1	CONDUCTION AND BREAKDOWN: Recent trends in high voltage transmission Conduction & breakdown in gases, liquids and solid dielectrics, insulator breakdown, insulation characteristics of long air gaps.	7	CO1
2	METHODS OF HIGN VOLTAGE GENERATION: Methods of generation of power frequency high voltage: cascaded transformers and resonance transformers Generation of high voltage DC, voltage multiplier circuits. Electrostatic Generation: Van de Graff machine and its voltage stabilization. Impulse voltage Generation: Basic impulse circuit, single stage impulse generator, multistage impulse generator (Marx circuit).	7	CO1, CO2
3	PROTECTION OF SYSTEM AGAINST SURGES: Ground wires, protective angle,tower footing resistance,surge diverters, Gap type and gapless lightning arresters, Insulation coordination, basic insulation levels, Voltage-time curve, impulse ratio.	7	CO3, CO4
4	LIGHTENING: Lightening phenomenon, lightning stroke mechanism, principle of lightning protection, tower foot resistance, insulator flash over and withstand voltage, lightning arresters and their characteristics, testing, generation of direct voltage, measurement of high voltage, general layout of H.V. Laboratory.	7	CO4, CO5

Suggested Text / Reference Books:

- 1. R.D. Begamudre, "E.H.V. AC Transmission", Wiley Eastern Ltd.
- 2. V. Kamaraju and M.S. Naidu, "H.V. Engg", T.M.H., N.Delhi.
- 3. M.S. Naidu and V. Kamaraju, "High Voltage Engineering", TMH Publication
- 4. C.L Wadhwa, "High Voltage Engineering", Pub.: New Age International Ltd.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.

3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section -B and Section -C. All questions will carry 12 marks.

Course Code:	Course Name: Program Elective-V		L T P C			
EI-PE-404	(i) Utilization of Electrical Energy	3 1 0 4				
Year and	4 th Year	Contact hours pe	r week: (4Hrs)			
Semester	(VIII th Semester)	Exam: (3 Hrs)				
	Brief knowledge of in the following	Evalı	uation			
Pre-requisite of	topics: Electrical Machines, Electrical					
course	Power System and Generation, Energy	CIE: 40	SEE: 60			
	efficient System.					
Course Objectiv	es:					
1. To introduc	ce the concept of Illumination.					
2. To introduc	ce the concept of Electric Heating and We	lding.				
3. To study th	e concept of Electrolytic Process.					
4. To study th	e concept of Electric Traction.					
Course Outcome	es: On completion of the course, student w	vould be able to:				
CO1 To Fami	liarize with the concept of Illumination.					
CO2 To under	To understand the concept of Electric Heating and Welding.					
CO3 To Fami	To Familiarize with the concept of Electrolytic process.					
CO4 To under	stand the concept of economics of Electri	c Traction.				

Module	COURSE SYLLABUS	Hrs	COs
No	CONTENTS OF MODULE	пг	COS
1	ILLUMINATION: Basic laws of illumination, light sources and their characteristics, sources of light, design of lighting schemes, incandescent lamp, sodium lamp, mercury lamp and fluorescent lamp, comparison of various lamps, LED,CFL Lamp.	7	I
2	ELECTRIC HEATING & WELDING: Principle and application of resistance, induction and dielectric heating.,Resistance welding, arc welding, welding generator and welding transformer, properties of arcing electrode.	8	П
3	ELECTROLYTIC PROCESS: Principles and applications of electrolysis. Faraday's law of electrolysis, electroplating, charging and discharging. Capacity and efficiency of battery, defects in battery, maintenance of battery.	11	III
4	ELECTRIC TRACTION: Systems of electric traction, traction motors, traction motor control, multiunit control, braking of electric motors, thyristor control of electric traction., Types of services, speed	10	IV

time and speed distance curves, average and schedule speed,	
Estimation of power and energy requirements: specific energy	
consumption. Mechanics of train movement coefficient of adhesion,	
Adhesive weight, effective weight.	

REFERENCE BOOKS:

- 1. Utilization of Electrical Energy: Open Shaw Taylor; ELBS
- 2. Art and Science of Utilization of Electrical Energy: H. Pratab ;DhanpatRai& Sons, Delhi.
- 3. Generation, Distribution and Utilization of Electrical Power: C.L. Wadhwa; Khanna Pub.
- 4. H. Pratab, "Electric Traction", Dhanpat Rai & Sons.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code:	Course Name: Program Elective-	V	L	T	P	С
EI-PE-404	(ii) Instrumentation and System De			4		
Year and	4 th Year	Contact hours per week: (4 Hrs)				
Semester	VIII th Semester	Exam: (3 hrs.)				
Pre-requisite of	EI-ES-108 Basic Electronics	Evalu	atio	n		
course	Engineering	CIE: 40		CI	E: 6	50
Course Objectiv	es:					
5. To provide a	coherent knowledge about concepts o	f instrument system de	esign			
6. to develop kn	owledge about system characteristics	and performance attrib	butes	,		
7. To elaborate	relevant issues of physical, architectur	re design at printed cir	cuits	boa	rd le	evel of
complex elec	tronic systems					
8. To understand	d the fundamentals circuit layout					
9. To develop co	oncept of power distributions systems					
Course Outcome	es: On completion of the course, stude	ent would be able to:				
CO1 Apply ba	asic principles and guidelines of physi	cal architecture design	n for	com	plex	
electroni	c systems				_	
CO2 Analyze	the various system attributes and thei	r impact on system per	rforn	nanc	e	
CO3 Analyze	the influence of interconnects at diffe	erent levels on electron	ic sy	sten	1	
performa	ance					
CO4 Develop	system model on the basis of learned	concepts				

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Introduction - overview of system engineering, system perspective, documentation, concept development, requirements, design development, rapid prototyping and field testing, validation, verification and integration, maintenance and life-cycle costs, failure, iteration and judgment. Packaging and Enclosures: Packaging influence, packaging design, wiring, temperature, vibration and shock, component packaging, mechanical issues	8	CO1
2	Grounding and Shielding: Safety, Noise, principle of energy coupling, Grounding, filtering, shielding, electrostatic discharge and it protection, general rules for design; Case study-EMC design of an oscilloscope.	8	CO1, CO2
3	Fundamentals of circuit design, high speed design, low power design, noise and error limitation, standard data buses and networks Circuit Design: , reset and power failure detection, input/output interfaces.	8	CO2, CO3
4	Circuit layout and Power: Circuit boards, component placement, routing of signals and traces, grounds, returns and shields, connectors and cables, design for manufacture, testing and maintenance; Power: Power requirements, sources of power, power conversion, definitions and specifications, power distribution and conditioning, electromagnetic interfaces.	8	CO1, CO4

Recommended Books:

- 1. Noise reduction techniques in electronic systems, 2nd ed. New York: Wiley By H.W.Ott
- 2. Electronic Instrument Design, Oxford Univ. Press, By Kim R. Fowler
- 3. Intuitive Operational Amplifiers, MeGraw-Hill, By T.M.Frederiksen
- 4. Printed Circuit Boards, CEDT Series TMH By Walter C. Bosshart

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code:	Course Name: Program Elective-	\mathbf{V}	L	T	P	C
EI-PE-404	(iii) Fuzzy Logic Control		3	1	-	4
Year and	4 th year	Contact hours per week: (4Hrs)				
Semester	8 th Semester	Exam: (3hrs.)				

Pre-rec	quisite of	Basic Engineering Mathematics,	Evalı	uation
course	_	Control system	CIE: 40	SEE: 60
Course	Objective	es:		
To stud	ly and acqu	uire the basic knowledge of fuzzy logi	c.	
To stud	dy the basi	c architecture of FKBC and its design	parameters	
To stud	ly nonlinea	r & adaptive fuzzy controllers.		
To iden	ntify, form	ulate and solve the neuro fuzzy logic b	based problems.	
Course	Outcome	es: On completion of the course, stude	nt would be able to:	
CO1	To under	stand working of basic fuzzy system a	and its architecture.	
CO2	Able to	fuzzy techniques in different field,	which involve percep	ption, reasoning and
	learning.			
CO3	Analyze	and design a real world problem	for implementation	and understand the
	dynamic	behavior of a system.		
CO4	Assess th	e results obtained by FKBC and Neur	o fuzzy systems.	

Modu	COURSE SYLLABUS	Hrs	COs
le No	CONTENTS OF MODULE		COS
1	FUZZY CONTROL & ITS MATHEMATICS: Fuzzy control from an industrial perspective, knowledge representation in KBC's, Vagueness, fuzzy logic versus probability theory, fuzzy sets; their properties & operations on fuzzy sets, fuzzy relations & operations on fuzzy relations, the Extension Principle, Fuzzy propositions, The Compositional Rule of Inference, Different implications, Representing a set of rules.	8	CO1
2	FKBC DESIGN PARAMETERS: The FKBC architecture, choice of variables & content of rules, Derivation of rules, choice of membership functions, choice of scaling factors, choice of fuzzification procedure, choice of defuzzification procedure, comparison and evaluation of defuzzification methods.	8	CO1, CO2
3	NONLINEAR & ADAPTIVE FUZZY CONTROL: The Control Problem, The FKBC as a Non-Linear Transfer Element, Types of FKBC such as PID-like FKBC, Sliding Mode FKBC, Sugeno FKBC, Adaptation mechanism for FKBC Design & Performance Evaluation, Approaches to Design such as membership function tuning using gradient descent, membership function tuning using performance criteria, the self-organizing controller, model based controller.	8	CO2, CO3, CO4
4	STABILITY OF FKBC & INTRODUCTION TO NEURO FUZZY CONTROLLERS: The State space approach, Stability and robustness indices, input-output stability, circle criterion, Application of the Circle Criterion to Design, Conicity criterion, Neural networks based Fuzzy controllers & their applications.	8	CO3, CO4

Suggested Text / Reference Books:

- 1. D. Driankov, H.Hellendoorn and M.Reinfrank, "An Introduction to Fuzzy Control", Narosa Publications.
- 2. G.J. Klir and BYuan, "Fuzzy sets and Fuzzy logic, theory and applications", Prentice Hall India Private Limited.
- 3. Abraham Kandel and Gideon Imngholz, "Fuzzy Control Systems", Narosa Publications.
- 4. Bart Kosko, "Neural Network & Fuzzy System", PHI

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Program Name: B. TechElectrical and Instrumentation Engineering						
Course	Code:	Course Name: Program Elective-	V	L T P C		
EI-PE-4	04	(iv) Optical Instrumentation 3 1 -		3 1 - 4		
Year an	ıd	4 th year	Contact hours per w	eek: (4Hrs)		
Semeste	er	8 th Semester	Exam: (3hrs.)			
Pre-req	uisite of	Optics, EM theory, digital	Evalua	tion		
course		communication, workshop	CIE: 40	SEE: 60		
Course	Objective	es:				
1. To	expose the	e basic concepts of optical fibers and t	their industrial applicati	ions.		
2. To	provide a	dequate knowledge about Industrial ap	oplication of optical fib	res.		
3. To	provide b	asic concepts of lasers.				
4. To	provide k	nowledge about Industrial application	of lasers			
5. To	provide k	nowledge about Industrial application	of Holography and Me	edical applications		
of I	Lasers.	-				
Course	Outcome	s: On completion of the course, stude	nt would be able to:			
CO1	Student v	will be able to Understand the working	g of optical fiber as a se	ensor		
CO2	Ability to	Study and identify applications of La	ASER in instrumentation	on & measurement		
CO3	Perceive	different industrial applications through	gh optical instrumentati	ion		
CO4	To make precise and accurate measurement in medical applications					
CO5	Apply LA	oly LASER and Optical fiber for various physical parameter measurements.				
CO6		g the optical sensor technology on var				
		<u> </u>	•			

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Optical fiber and Transmission characteristics: Principles of light propagation through a fibre - Different types of fibres and their properties, fibre characteristics — manufacturing of optical fiber. Attenuation, material absorption losses, scattering losses, nonlinear and linear scattering, fiber bend loss, dispersion, intermodal dispersion, dispersion modified single mode fiber, dispersion flattened fibers, polarization, nonlinear phenomena. Connectors and splicers — Fibre termination.	8	CO1 CO5

2	Optical sources and detectors, Optical fiber sensors (10 hrs) Optical sources — Optical detectors. Optical emission from semiconductor, semiconductor LASER, non-semiconductor LASER, LED as an optical source, optical detector principles, absorption, quantum efficiency, responsively, photo diodes, modulation. Introduction to fiber optics sensors, sensors based on intensity modulation, Fibre optic instrumentation system — Different types of modulators — Interferometric method of measurement of length — Moire fringes — Measurement of pressure, temperature, current, voltage, liquid level and strain application of optical fiber for displacement, strain, stress and pressure measurement. Active multimode FO sensors, microbend optical fiber sensors, current sensors, phase modulated, polarization modulated optical fiber sensors, fiber optic gyroscope.	10	CO1 CO2 CO5 CO6
3	Industrial and Medical Applications of Lasers: Introduction, application of laser in biomedical instrumentation, Medical applications of lasers, laser and tissue interactive – Laser instruments for surgery, removal of tumours of vocal cards, brain surgery, plastic surgery, gynaecology and oncology. Laser interferometry, performance parameters, laser telemeters, measurement of distance, LIDAR, Laser for measurement of distance, length, velocity, acceleration, current, voltage and Atmospheric effect – Material processing – Laser heating, welding, melting and trimming of material – Removal and vaporization. Holography – Basic principle - Methods – Holographic interferometry and application, Holography for non-destructive testing – Holographic components measurement of strain, stress, bending moments and vibrations using hologram.	12	CO3 CO4 CO5
4	Optical amplification and integrated optics: Optical amplifiers, integrated optics integrated optical devices: beam splitters, directional couplers, modulators, switches, optoelectronics integration and differentiation, analog arithmetic operations, digital optics.	6	CO1 CO2 CO5 CO6

Text Books:

- 1. R.P.Khare, Fiber Optics and Optoelectronics, Oxford university press, 2008.
- 2. J. Wilson and J.F.B. Hawkes, Introduction to Opto Electronics, Prentice Hall of India, 2001.
- 3. Jose Miguel Lopez, —Optical fiber sensing technology, John Wiley & Sons, 2002
- 4. AjoyGhatak, —Optics, Tata Mc- Graw Hill Publishing, 5thed., 2012

Reference Book:

- 1. Asu Ram Jha, Fiber Optic Technology Applications to commercial, Industrial, Military and Space
- 2. Optical systems, PHI learning Private limited, 2009.
- 3. M. Arumugam, Optical Fibre Communication and Sensors, Anuradha Agencies, 2002.
- 4. John F. Read, Industrial Applications of Lasers, Academic Press, 1978.
- 5. Joseph T Verdeyen, —LASER Electronics, Prentice Hall of India, 3rded., 2003
- 6. John M. Senior, —Optical fiber Communications Principles and Practice, PHI publication, 2nded., 2008

Note for Examiner(s): Question paper will comprise three sections,

1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.

- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code	Course Name: Program Elective-		LTPC	7		
	8	<u> </u>				
EI-PE-404	(v) Remote Sensing	3 1 - 4				
Year and	4 th year	Contact hours per w	eek: (4Hrs)			
Semester	8 th Semester	Exam: (3hrs.)				
Pre-requisite	of Optics, EM theory, digital	Evalua	ation			
course	communication, image processing,	CIE: 40	SEE: 60			
	DSP, Mathematics					
Course Object	Course Objectives:					
1. To expo	se the basic concepts of remote sensing	and their application sy	stems			
2. To prov	ide adequate knowledge of remote sensin	g data applications.				
3. To prov	ide basic concepts of sensors on board					
4. To prov	ide knowledge about GIS					
5. To prov	ide knowledge about Image processing					
Course Outco	omes: On completion of the course, stude	ent would be able to:				
CO1 Stud	ent will be able to Understand the workin	g of different sensors				
CO2 Abil	ty to Study and identify applications of s	atellite derived data				
CO3 Perc	eive different GIS applications through su	ıstainable development				
CO4 To n						
CO5 Appl	y remote sensing data for various physica	al parameter measureme	ents.			
CO6 Anal	yzing the spectral sensor technology on v	various parameters of m	leasurements.			

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Concepts and Foundations of Remote sensing - Introduction: Energy sources and radiation principles; radiation laws; energy interactions in the atmosphere; energy interactions with earth surface features; data acquisition and interpretation; global positioning system; ideal remote sensing system; characteristics of real remote sensing system; successful applications of remote sensing systems; geographic information systems - introduction.	9	CO2 CO3 CO6
2	Sensors and Instruments: Introduction, Photographic sensors, active and passive sensors, Visible and near infrared sensors; thermal infrared sensors; microwave sensors; sonic sensors; IR spectrometer Radiometers, Scanners, Sensors and Platforms, Resolution: spatial and	9	CO1 CO4 CO5

	temporal, geometric, angular. Satellite systems: Introduction, Land observation satellites, satellite remote sensing, satellite orbits, Landsat systems, land observation satellites, current satellite systems (Landsat class, spot, IRS, broad scale coverage, AVHRR, SeaWiFS, IKONOS, Cartosatetc)		
3	Multispectral thermal and hyper spectral sensing: Introduction, along track, across track scanning; operating principles, examples of Multispectral scanners and data, thermal scanners, along + across track thermal scanning, radiometric calibration of thermal scanners, FLIR systems, hyperspectral sensing, Microwave and lidar sensing: radar development, SAR, geometric characteristics of side looking radar transmission of radar signals, radar image interpretation, radar remote sensing from space, Seasat, radarsat, ERS, JERS, ALOS, etc. shuttle radar topography mission, Lidar – introduction, sensors, resolution sensors, development and applications.	9	CO1 CO4 CO6
4	Digital image processing fundamentals: Image rectification enhancement, contrast manipulation, spatial and multi-image manipulation, image interpolation, edge detection, image restoration image classification, color imaging, data merging and GIS integration Applications of Remote sensing data: Applications to atmosphere geosphere, hydrosphere, cryosphere, environmental applications applications of data collection systems.	9	CO1 CO2 CO5 CO6

Suggested Text / Reference Books:

- 1. Remote sensing by FA Sabins, 1992
- 2. Introduction to Remote sensing by AP Cracknell and LWB Hayes Taylor & Francis Publ.
- 3. Remote sensing and image interpretation by Thomas M Lillisand, RW Kiffer, JW Chipaman, John Weily 2004
- 4. Digital Singal Image Processing by Tamal Bose, JohnWeily, 2004
- 5. Introduction to JB Campbell, Taylor & Francis Publ.2002

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

1 rogram Name. D. TechElectrical and Histrumentation Engineering								
Course Code:	Course Name: Industrial Process Control	L	T	P	C			

EI-PC-4	106			3	1	0	4	
Year ar		4 th Year	Contact hours per w	eek:	(4H	rs)		
Semeste	er	(VIII th Semester)	Exam: (3 Hrs)					
Pre-req	uisite of		Evalua	tion				
course		Control engineering	CIE: 40		SEF	E: 60)	
Course	Objective	es:						
exar (Spe	mples, Gai ecial refere	and Study of FC and FO type control n of valve and concept of control valvence to Masoneillian & Fisher Equa henomenon	ve sizing for liquid, Gas	s, vap	or a	nd st		
2. Stud	dy control	Valve noise, its calculation & reduction Globe Valve.	on techniques and Des	sign d	&			
	•	racteristic function of PLC, its Archite Demonstrate various PLC programm			•	•	5	
4. Deta	ail study a	nd applications of Distributed processorive standards and Protocols used in	s control system and U	nders			of	
5. Stuc	ly DCS su	pervisory control techniques & consider applications			ept	of fie	eld	
Course	Outcome	s: On completion of the course, stude	nt would be able to:					
CO1	various p	nderstand FC and FO type control varinciples & concepts involved in valve of valve cavitation and flashing phenomena.	e sizing for liquid, Gas		•			
CO2	Able to u	nderstand control Valve noise, its calche knowledge and demonstrating the	culation, reduction tech	-			e	

COI	Able to understand FC and FO type control valve and Able to learn and analyze the
	various principles & concepts involved in valve sizing for liquid, Gas, vapor and steam
	and control valve cavitation and flashing phenomenon
CO2	Able to understand control Valve noise, its calculation, reduction techniques and
	Acquire the knowledge and demonstrating the constructional details of Globe Valve.
CO3	Acquire the knowledge of performance characteristic function of PLC and its
	Architecture.
CO4	Able to learn the various PLC programming languages and Demonstratevarious PLC
	programming skill for industrial applications.
CO5	Able to learn and analyze the various principles & concepts of Distributed process
	control system and Understanding of various automotive standards and Protocols used
	in PLC network and DCS
CO6	Acquire the knowledge of DCS supervisory control techniques, the concept of field
	buses and their Industrial applications.
CO7	To implement new and emerging technologies to analyze, design, maintain reliable,
	safe, and cost effective solution for industry problems.

Module	COURSE SYLLABUS	Hrs	COs		
No	CONTENTS OF MODULE				
1	CONTROL VALVE DESIGN: Control valve flow characteristics, valve & process characteristics, effect of distortion coefficient on linear and percentage valve, range-ability of control valve, control valve sizing for liquid, Gas, vapor and steam. (Special reference to Masoneillian & Fisher Equation) control valve cavitation and flashing: flow control cavitation index, vibration curve cavitation index, calculation of flash fraction. Control valve gain, sequencing of control valve and viscosity correction of control valve.	9	CO1, CO7		
2	Valve noise calculation & reduction: Sources of valve noise, noise control: path treatment source treatment valve noise calculation.	9	CO2, CO7		

	Design & construction of Globe Valve: Valve trends, trim design, trim flow characteristics, flow rangeability, standard trim configuration, valve plug stems, Body form of single & double seated Globe valve, construction		
3	Discrete State Process Control System:Programmable controller, characteristic function of PLC, Architecture and block diagram of PLC, ladder diagram, ladder diagram elements, Development & analysis of ladder diagram, logic diagram from ladder diagram, Functional description of PLC difference between PLC & computer. Communication networking: Universal communications networking, Peer to Peer communications, PLC installations. Programming the Programmable controller: Programming languages, ladder diagram instructions, special functions, data transfer and data manipulation operations, arithmetic operations, flow control operations, Boolean mnemonics. Functional blocks data transfer operations arithmetic and logic operations, Programmable controller's industrial applications.	9	CO3 CO4 CO5 CO7
4	Distributed process control system: Functional requirement of DPCS, DCS configurations, control console equipment: Software configuration: Operating system configuration, controller function configuration, algorithm, libraries, relay rec. mounted equipment, communication between the components. DCS data high ways, field buses, multiplexers & party line system, DCS Supervisory computer and configurations: Supervisory computer functions, supervisory control techniques & considerations(Algorithms), DCS & Supervisory computer display, DCS. DCS system integration with PLC & computer.	9	CO4 CO5 CO6 CO7

Reference Books:

- 1. Microprocessor in process control: C.D.Johnson
- 2. Instrumentation for process measurement and control by N.A. Anderson.
- 3. Principles and practice of automatic process control: Carlos by A Smith.
- 4. Instrument Engineers' handbook Process control by Bela G. Liptak.
- 5. Computer based Industrial Control by Krishan Kant

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

1 Togram Name. B. TeenElectrical and instrumentation Engineering									
Course Code: EI-PRPC-24		Course Name: Process Control La	rse Name: Process Control Lab		T 0	P 3		<u>C</u>	
Year a	nd	4th Year	Contact hours per w	s per week: (3Hrs)					
Semest	er	VIII th Semester	Exam: (3hrs.)		,	Í			
Pre-rec	quisite of	Control Engineering Lab	Evalua	atio	n				
course		Control Engineering Lab.	CIE: 30		SE	E: 4	5		
Course	Objectives	s:							
1. To	Familiariza	ation of PLC Ladder Programming In	nstructions Set						
2. To	compile an	d execute programs in Ladder Programs	amming						
3. To	study the P	C and PLC based control systems							
4. To	study and v	write PLC program for the multiple	process control system	S					
5. To	study and v	write PLC program for different stra	tegies of control syster	n su	ch a	s fee	edb	ack,	
fee	d forward,	cascade, ratio control etc.							
6. To	write PLC	programs to solve the different con	trol problems						
Course	Outcomes:	On completion of the course, studer	nt would be able to:						
CO1	Ability to	understand PC and PLC based contr	ol system and their im	plen	nent	atior	1		
CO2	Ability to develop PLC Ladder Programming skill								
CO3	O3 Analyse and implement PLC Ladder Programming for different type of process control			trol					
	system.								
CO4	Ability to	design and develop PLC program for	or different strategies of	of co	ntro	ol sys	stei	n	
	such as fe	edback, feed forward, cascade, ratio	control for control of	oroc	ess v	varia	ble	es	

Expt.	COURSE SYLLABUS	COa
No	CONTENTS OF MODULE	COs
1	Familiarization of PLC Ladder Programming Instructions Set	
2	To Study PC Based Traffic Light Control: Basic Traffic Light Sequence	
	PLC Based Traffic Light Control:	
	PLC Connection Details	
	Dual Traffic Light Sequence	
3	Traffic Counting	
	Green Time Alteration According to Traffic Flow	
	The Pedestrian Crossing	
	Complete System Control	
4	To Study Process Control – Ratio, feedback control flow & level	CO1,
	To Study Rotary Transfer Unit :-	CO2,
	Movement of Rotary Table	CO3,
	Initialization	CO4
5	Station Counting	
	 Dispensing 	
	A Production Line System	
	Follow a Set Routine	
6	To Study Industrial Control Trainer	
7	To Study Multiprocess Control Trainer: Feedback, feedforward cascade and	
,	ration Control system for flow, temperature and level control	
8	To study of Pressure Control Unit: Proportional Control: Run a loop	
0	experiments using 'proportional only control' with the following sets of SP and	

	PG values. Record the eventual 'steady state' rate values in the table below,	
	once the initial oscillations have decayed.	
	Proportional and Integral Control	_
	To design, Level Control PC:-	
9	Proportional Control	
	Proportional and Integral Control	
	To Study .Flow control PC & PLC :-	=
	Proportional Control	
	Proportional and Integral Control	
10	Saturation and Integral Windup	
	Three Term or PID Control	
	Zeigler / Nichols Tuning	
	To Study The System Rig :-	
	Proportional Control	
	Proportional and Integral Control	
	Saturation and Integral Windup	
	Three Term or PID Control	
	Ziegler / Nichols Tuning	
	Temperature Control	
11	Batch Volume Control	
11	Fluid Level Control	
	Open Loop Control	
	Bode Plots	
	Flow Loop Model using Caldwell's Method	
	Flo Loop Model using Sundaresan's Method	
	Design of Controller for PCU Flow Loop	
	PRT Signal Conditioning	
	Flowmeter Signal Conditioning	
	Process Control Experiment :-	
	Proportional Control	
	Proportional and Integral Control	
	Saturation and Integral Windup	
	Three Term or PID Control	
12	Ziegler / Nichols Tuning	
	Temperature Control	
	Batch Volume Control	
	Fluid Level Control	
	Open Loop Control	
	Bode Plots	

Course Code:	Course Name: Open Elective-V Lab.		L	T	P	C
EI-PROE-26	(i) Artificial Intelligence Lab		0	0	3	1.5
Year and	4 th Year	Contact hours per w	eek	: (3I	Irs)

Semester	r	VIII th Semester	Exam: (3hrs.)				
Pre-requisite of		NIL	Evaluation				
course		NIL	CIE: 30	SEE: 45			
Course (Objective	s:					
1. cour	se introdu	ices the basic concepts and techniqu	es of Artificial Intellig	gence			
2. writi	ing code f	or AI problems in Prolog					
3. Ider	ntify prob	lems, errors in Prolog Programming	codes				
4. Intro	oduce kno	wledge representation in Prolog and	d write code for drawi	ing inferences			
5. To I	dentify pr	oblems that are amenable to solution	n by specific AI metho	ods			
Course O	utcomes:	On completion of the course, stude	nt would be able to:				
CO1	To comp	oile and execute AI programs in Pro	log.				
CO2	To ident	ify the syntax errors and semantic e	antic errors in Prolog Programming.				
CO3	To Repr	esent knowledge in Prolog and write	te code for drawing inferences				
CO4	Sensitiv	e towards development of responsib	le Artificial Intelligen	nce			

Expt.	t. COURSE SYLLABUS	
No	CONTENTS OF MODULE	COs
1	Write a Prolog Program to test existence of data in the knowledge	
2	Design and develop a Prolog Program enquire relationships in a family tree	
	using Horn clauses.	
3	Design and develop a Prolog Program to check efficacy of Prolog for	
3	computations such as roots of quadratic equation	
4	Design and develop a Prolog Program to test fail and cut predicate to identify	
7	who likes whom from the data(knowledge).	
5	Write a Prolog Program to test fail and cut predicate to identify who likes	CO1,
3	whom from the data(knowledge) based on similar interests using Lists.	
6	Develop, implement, and execute a Prolog Program to search a Number in a	CO3 ,
0	list using linear searching Technique.	CO4
7	Develop an algorithm, implement, and execute a Prolog Program to find all	
,	the paths between two nodes.	
8	Design and develop a Prolog Program to rotate a list N places to the left.	
9	Develop, implement, and execute a Prolog Program to search a record by	
9	name and phone number in Artificial Intelligence	
10	Write a Design and develop a Prolog Program to solve Towers of Hanoi	
10	puzzle	

Text Books:

- 1. Prolog Programming for Artificial Intelligence, by Ivan Bratko, 4Th Edition, Pearson.
- 2. Prolog Programming in Depth, by Michael A. Covington, Donald Nute, Andre Vellino, Prentice-Hall.
- 3. Programming in PROLOG, by William F. Clocksin, Christopher S. Mellish, Springer

Web resources:

- 1. https://www.cpp.edu/~jrfisher/www/prolog_tutorial/contents.html#2
- 2. https://www.javatpoint.com/prolog-programs
- 3. https://www.cs.ccu.edu.tw/~dan/prologProgs.html

EI-PRC	E-26	(ii) Robotics		0 0 3 1.5	
Year and		4 th Year	Contact hours per week: (3Hrs)		
Semester		VIII th Semester	Exam: (3hrs.)		
Pre-requisite of			Evaluation		
course			CIE: 30	SEE: 45	
Course Objectives:					
1. To i	introduce different types of robotics and demonstrate them to identify different parts and				
components.					
2. To write programming for simple operations.					
3. Simulate the work space for different industrial process					
Course Outcomes: On completion of the course, student would be able to					
CO1	Recognize different type of industrial robots and peripheral for simple industrial setup				
CO2	To programs different parts and peripheral for controlling industrial robots using				
	different ways.				
CO3	Use of any robotic simulation software to model the different types of robots and				
	calculate work volume for different robots				
CO4					

Expt.	COURSE SYLLABUS		
No	CONTENTS OF MODULE		
1	Determination of maximum and minimum position of links.		
2	Verification of transformation (Position and orientation) with respect to gripper		
	and world coordinate system		
3	Estimation of accuracy, repeatability and resolution.		
4	Robot programming and simulation for pick and place		
5	Robot programming and simulation for Colour identification		
6	Robot programming and simulation for Shape identification		
7	Robot programming and simulation for machining (cutting, welding)		
8	Robot programming and simulation for writing practice		
9	Robot programming and simulation for any industrial process (Packaging,		
	Assembly)		
10	Robot programming and simulation for multi process.		