

B. Tech Instrumentation Engineering Syllabi for Examinations

3rd YEAR (SEMESTER–V) (w.e.f. 2020-21)

Course IN-HSN	SM-301 Course title: Ethics and Value				
	ear and emester3 rd year 5 th SemesterContact hours per week: 2 hrs Examination Duration: 3 hrs				
L	Т	Р	С	Evaluation	
2	-	-	2	Minor test + Curricular activities: 40	Major test: 60
Course	Objecti	ves:			
1. '	To create	e an awar	eness o	n Engineering Ethics and Human Values.	
2. 7	To under	stand soc	ial resp	oonsibility of an engineer.	
3. '	Го аррге	ciate ethi	cal dile	emma while discharging duties in profession	nal life
Course	Outcon	nes: On co	omplet	ion of the course, student would be able to:	
CO1	Unders	tand the e	thical	theories and concepts	
CO2	Unders	tand an e	ngineei	's work in the context of its impact on soci	ety
CO3	Understand and analyze the concepts of safety and risk				
CO4	Understand the professional responsibilities and rights of Engineers				
CO5	Unders	tand the c	concept	s of ethics in the global context.	

Module-I

HUMAN VALUES : Morals, Values and Ethics – Integrity – Work Ethic – Honesty – Courage –Empathy – Self-Confidence – Character .

ENGINEERING ETHICS AND THEOREMS: Senses of 'Engineering Ethics' - variety of moral issueds- types of inquiry - moral dilemmas - moral autonomy - Kohlberg's theory - Gilligan's theory - consensus and controversy – Models of Professional Roles - Professional and professionalism, moral reasoning and ethical theories, virtues, professional responsibility, integrity, self-respect, duty ethics, ethical rights, self-interest, egos, moral obligations. Theories Co-operation – Commitment.

Module-II

SOCIAL ETHICS and ENGINEERING AS SOCIAL EXPERIMENTATION: Engineering as experimentation - engineers as responsible experimenters - codes of ethics - a balanced outlook on law - Legal aspects of social ethics, the challenger case study, Engineers duty to society and environment.

Module-III

SAFETY, RESPONSIBILITIES AND RIGHTS: Safety and risk - assessment of safety and risk - risk benefit analysis and reducing risk - the Three Mile Island and Chernobyl case studies. Bhopal (MIC), Visakhapatnam (Polystyrene) case studies

RESPONSIBILITIES AND RIGHTS OF ENGINEERS: Collegiality and loyalty – respect for authority – collective bargaining – confidentiality – conflicts of interest – occupational crime – professional rights – employee rights – Intellectual Property Rights (IPR) – discrimination.

Module-IV

GLOBAL ISSUES AND ENGINEERS AS MANAGERS, CONSULTANTS AND LEADERS: Multinational corporations - Environmental ethics - computer ethics - weapons development - engineers as managers-consulting engineers-engineers as expert witnesses and advisors -moral leadership- Engineers as trend setters for global values.

Text Books:

- 1. Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw-Hill, New York 1996.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.

Reference Books:

- 1. Charles D. Fleddermann, "Engineering Ethics", Pearson Education / Prentice Hall, New Jersey, 2004 (Indian Reprint now available).
- 2. Charles E Harris, Michael S. Protchard and Michael J Rabins, "Engineering Ethics Concepts and Cases", Wadsworth Thompson Leatning, United States, 2000 (Indian Reprint now available)
- 3. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2003.
- 4. Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001.

B. Tech Instrumentation Engineering

Course IN-PC-						
Year an	ıd	3 rd year		Contact hours per week: 4 hrs		
Semeste		5 th Semes	ster	Examination Duration: 3 hrs		
L	Т	P C Evaluation				
3	1	1 - 4 Minor test + Curricular activities: Maje		Major test: 60		
				40		
Course	Objecti	ves:				
1. To :	introduc	e the cond	cept of C	hoppers.		
2. To :	introduc	e the cond	cept of Ii	nverters and types of inverters.		
3. To	study the	e modulat	ion & ha	rmonics and techniques to remove harmo	onics.	
4. To	study va	rious type	es of cho	pper drives and its applications.		
Course Outcomes: On completion of the course, student would be able to:						
CO1	To Familiarize with control strategies of choppers, types of choppers.					
CO2	To und	erstand th	e worki	ng of Inverters.		

3rd YEAR (SEMESTER–V) (w.e.f. 2020-21)

CO3	To Familiarize with inverters, types of choppers and their mode of angles of operations.
CO4	To understand the applications of choppers and at different stages.

Module-I

Choppers: Principle of choppers, Control strategies; Constant frequency system and Variable frequency system. Step-up choppers, Types of chopper Circuits; First Quadrant or Type-A choppers, Second-Quadrant or Type-b choppers, Two-Quadrant Type-a Chopper or Type-C chopper, Two-Quadrant Type-b Chopper or Type-D chopper, Four-Quadrant Type-a Chopper or Type-E chopper, Thyristor Chopper Circuits; Voltage commutated choppers, Current-commutated choppers and Load commutated choppers.

Module-II

Inverters: operating Principle of Single Phase Voltage source inverter; Single –Phase bridge inverter, steady state analysis of Single–Phase bridge inverter, Fourier analysis of Single–Phase inverter Output voltage, Force-commutated thyristor inverter; Modified Mcmurray Half-bridge Inverter, Modified Mcmurray Full-bridge Inverter, Modified Mcmurray-Bedford Half-bridge Inverter, Modified Mcmurray-Bedford Full-bridge Inverter, Three Phase Bridge Inverter; Three –Phase 180^o Mode VSI and Three –Phase 120^o Mode VSI.

Module-III

Modulation and Harmonics; Pulse Width Modulated Inverter; Single-Phase Modulation, Multiple Phase Modulation, Sinusoidal Pulse Modulation (Sin M), Reduction Of Harmonics in the inverter output Voltage; Harmonics Reduction by PWM, Harmonics Reduction by Transformer connection, Harmonics Reduction by Stepped wave Inverter, Current Source inverter; Single phase with ideal switching, Basic Series Inverter, Basic Parallel Inverter(Single Phase).

Module-IV

Electric Drives and Applications: Chopper Drives; Power Control or Motoring Control, Regenerative-Breaking control, Two Quadrant chopper control and Four Quadrant Chopper control, Speed Control of three Phase Induction Motor; Stator Voltage control, Stator Frequency control, Stator Voltage and Frequency control, Stator Current control, Static Kramer Drives, Static Scherbius Drive. (No quantitative analysis)

Text Books;

- 1. VendamSubramanium, 'Power Electronics' New Age Publishers-New Delhi
- 2. P.C.Sen, 'Power Electronics' Tata McGraw-Hill Publishing Co Ltd-New Delhi
- 3. Mohan/Underland/Robbins, 'Power Electronics' JohnWiley& Sons Pvt ltd-
- 4. Ramamurthy,'Thyristor and Its Applications'
- 5. Rashid 'Power Electronics'
- 6. Gupta/Singh 'Power Electronics and Introduction to Drives' DhanpatRaiPubl.Co
- 7. P.S.Bhimbhra 'Power Electronics' Khanna Publishers.

B. Tech Instrumentation Engineering

Course no: IN-PC-305		Course t	itle: M	IICROPROCESSORS		
Year a	nd	3 rd year		Contact hours per week: 4 hrs		
Semest	er	5 th Semes	ster	Examination Duration: 3 hrs		
L	Т	Р	С	Evaluation		
3	1	-	4	Minor test + Curricular activities: 40	Major test: 60	
Course	Objecti	ves:	l	l		
1. To	equip th	e students	with a	rchitecture and working of basic microproc	cessors.	
2. To	make the	e students	under	stand the instructions sets of basic micropro	cessors and various	
asse	embly la	nguage pi	rogram	S.		
3. To	impart tl	he knowle	dge of	various programmable interfacing chips.		
4. To	design a	nd study t	the var	ious instrumentation systems with program	mable chips.	
Course	Outcon	nes: On co	omplet	ion of the course, student would be able to:	-	
CO1	Unders	tand the b	basic of	f the internal organisation of 8086 Micropro	ocessor.	
CO2				Idressing modes and instructions of 8086, d		
	assembly language programs using software interrupts, subroutines, macros.					
CO3				memory and I/O devices with 8086 throug		
	interface chips					
CO4	Unders	tand inter	rupt st	ructure in 8086 and few case studies using	interfacing chips	
	useful	in instrum	entatio	on systems.		

3RD YEAR (SEMESTER–V) (w.e.f. 2020-21)

Module - I

Introduction to Microprocessors, Microcomputer systems, Computer languages. Microprocessor Architecture, Microprocessor operation with memory and input / output devices. 8085 based microprocessor systems.

Module - II

Instructions: Basic Instructions, Format, classification, Status flags, Writing Assembly Language Programs. Additional Instructions and Programming techniques: Logic Operators, Data transfer and 16 bit Arithmetic Instructions.

Module - III

Looping, counting, Indexing. Stack, Subroutines, conditional call and Return. Code Conversions: BCD to binary, Binary to BCD. BCD Arithmetic's and data operations: BCD Addition and subtraction, Introduction to advanced Instructions and applications, Multiplication. Timing diagrams, machine cycle.

Module - IV

Basic interfacing concepts, Memory mapped and Peripheral mapped I/O. Interrupts and interrupts structure of 8085. Basic concepts in serial I/O's, Programmable Peripheral Interface (PPI), Direct Memory Access(DMA) and DMA controller(8257). Keyboard & display interface

(8279). Introduction to 8086 Microprocessor - Architecture and signals, Pin diagram, Memory organisation, Minimum mode and Maximum Mode 8086 system.

References:

- 1. Microprocessor Architecture Programming and Applications by Gaonkar, Penram International
- 2. Microprocessors and its Applications by Theagrajan. PHI
- 3. Microprocessors and interfacing by D.V.Hall.
- 4. Microprocessor system: The 8086/8088 family IInd ed. By Yu.Cheng& Gibson

3RD YEAR (SEMESTER–V) (w.e.f. 2020-21)

Course	no:	Course t	Course title: Analogue Communication Engineering						
IN-PC-	307								
Year a	nd	3 rd year	3rd year Contact hours per week: 4 hrs						
Semest	Semester 5 th Semester		ester	Examination Duration: 3 hrs					
L	Т	Р	C	Evaluation					
3	1	-	4	Minor test + Curricular activities: 40	Major test: 60				

Module-I

Signal Analysis: Introduction, Classification of signals, Singularity or elementary functions, representation of signals, Convolution, properties of signal systems, Fourier series and applications in **LTI system**, trigonometric Fourier series, Fourier transform; its properties and applications in **LTI system**

Module-II

Noise: classification of noise, voltage-current models of a noisy resistor, noise in reactive circuits, Signal to noise ratio, Noise figure, noise temperature

Amplitude Modulation: amplitude modulation, spectrum and modulation index of AM, over modulation, power content in AM, Generation of AM, Double side band suppressed carrier modulation, Single side band modulation, AM demodulation, vestigial side band modulation systems, frequency division multiplexing.

Module-III

Frequency Modulation: angle modulation, phase and frequency modulation, FM Spectrum, effect of variation of MI on spectrum of FM, Narrow band and wide band frequency modulation, FM generation using parametric variation and Armstrong method, FM demodulation, noise in FM Systems

Module-IV

Transmitter: Classification of radio transmitters, block diagram of AM Transmitter, carrier frequency requirements of radio transmitter, privacy systems,FM transmitters

Receivers: Classification of receivers, TRF receivers, superhetrodyne receivers, frequency

mixers, IF Amplifiers, Tracking and alignment of receivers, Automatic gain control and automatic frequency control.

Reference Books:

- 1. Principles of Communication systems, McGraw Hill, By Taub and Schilling.
- 2. Electronic Communication system, PHI, By G Kennedy.
- 3. Electronic communications, PHI, By Roddy and Coolen.

Course		Course t	itle: L	inear Automatic Control System				
IN-PE-309 Year and Semester		3 rd year 5 th Semester		Contact hours per week: 4 hrs Examination Duration: 3 hrs				
L	Т	Р	С	Evaluation				
3	1	-	4	Minor test + Curricular activities: 40	Major test: 60			
Course	Object	ives:			1			
1. Stud anal	dy the till lysis of a	me respoi	nse of v order c	various types (0, 1, 2, 3, etc.) of system Exe ontrol system using MATLAB/ simulation	cute time response software			
				of Linear system, Analyze and interpret sta				
	•	•	•	plot and Nyquist plot.	• •			
3. Stud	dy Lag, I	Lead, Lea	ıd-Lag	compensators and verify experimental resu	lts using MATLAB.			
4. Stud	dy the co	oncept of	state,	state variables and various state models te	chniques and			
con	cept of c	controllab	ility an	d observability, pole placement by state fe	edback			
Course	Outcon	mes: On c	comple	tion of the course, student would be able to	•			
CO1	Abilit	y to deriv	e Math	nematical Modeling various types (0, 1, 2, 3	3, etc.) of system and			
	anayz	e their tir	ne resp	onses				
CO2	Able	to Analyz	the e	ffect of P, PI, PD and PID controllers on a	control system and			
	design suitable controller for a typical process							
CO3	-	-		l interpret stability of the systemthroughRo	ot Locus, Bode plot			
	and Nyquist plot.							
CO4		Able to design lead, lag, lead-lag compensators using time domain and frequency						
	-	lomain analysis techniques.						
CO5		•		nd concept of state, state variables and the	design output			
	feedb	ack contr	oller in	state space.				

3RD YEAR (SEMESTER–V) (w.e.f.2020-21)

Module – I

TIME DOMAIN ANALYSIS: Standard test signal (step, ramp, impulse, parabolic) time response of various types (0, 1, 2, 3, etc.) of system. Steady state error analysis, effect of adding zero to a system. Design consideration of 2nd order system, design of higher order system, performance indices

Module - II

STABILITY OF A CONTROL SYSTEM : Concept of stability, necessary conditions of stability, Hurwitz Stability criterion, Routh stability criterion, relative stability analysis, more

on the Routh stability criterion, The Root locus technique: The root locus concept construction of root loci, root contours, system with transportation Lag, sensitivity of the roots of the characteristic equation.

Module - III

FREQUENCY DOMAIN ANALYSIS: Correlation between time and frequency response, polar plots, bode plots, all- pass and minimum- phase system experimental determination of transfer functions, log magnitude versus phase plots. Stability in frequency domain: mathematical preliminaries, Nyquist stability criterion, assessment of relative stability using Nyquist criterion, closed-loop frequency response, sensitivity analysis in frequency domain.

Module-IV

STATE VARIABLE ANALYSIS AND DESIGN: Concept of state, state variables and state models, state models for linear continuous time system, diagonization, solution of state equations, concept of controllability and observability, pole placement by state feedback, state variables and linear desecrate-time systems.

Reference Books:

- 1. Automatic Control System ByKuo
- 2. Feedback Control System ByD'Azzo and Houpis
- 3. Modern Control Engineering ByOagata
- 4. Control Systems Engineering By Nagrath&Gopal.

3RD YEAR (SEMESTER–VI) (w.e.f.2020-21)

	Course no: Cou IN-PC-302		itle: I	nstrument & System Design	
Year ar	nd	3 rd year		Contact hours per week: 3 hrs	
Semest		6 ^h Semes	ster	Examination Duration: 3 hrs	
L	Т	P	C	Evaluation	
2	1	-	3	Minor test + Curricular activities: 40	Major test: 60
Course	Objecti	ves:			
1. To p	orovide a	coheren	t knov	vledge about concepts of instrument system	design
2. to de	evelop k	nowledge	e abou	t system characteristics and performance att	tributes
3. To e	laborate	relevant	issues	s of physical, architecture design at printed of	circuits board level of
com	plex ele	ctronic sy	vstems		
4. To u	Indersta	nd the fur	ndame	ntals circuit layout	
5. To d	levelop o	concept o	f pow	er distributions systems	
Course	Outcon	nes: On c	omple	tion of the course, student would be able to	•
CO1	Apply	basic prir	nciples	s and guidelines of physical architecture des	ign for complex
	electronic systems				
CO2	Analyze the various system attributes and their impact on system performance				
CO3	Analyz	the infl	uence	of interconnects at different levels on electr	ronic system
	perform	nance			-

Module - I

Introduction - overview of system engineering, system perspective, documentation, concept development, requirements, design development, rapid pro totyping and field testing, validation, verification and integration, maintenance and life-cycle costs, failure, iteration and judgment.

Packaging and Enclosures: Packaging influence, packaging design, wiring, temperature, vibration and shock, component packaging, mechanical issues, case studies of a New Chassis and Housing Design Concept for Electronic Equipment, and Robot.

Module-II

Grounding and Shielding: Safety, Noise, principle of energy coupling, Grounding, filtering, shielding, electrostatic discharge and it protection, general rules for design; Case study-EMC design of an oscilloscope.

Module - III

Circuit Design: Fundamentals of circuit design, high speed design, low power design, noise and error limitation, standard data buses and networks, reset and power failure detection, input/output interfaces.

Module -IV

Circuit layout and Power: Circuit boards, component placement, routing of signals and traces, grounds, returns and shields, connectors and cables, design for manufacture, testing and maintenance; Power: Power requirements, sources of power, power conversion, definitions and specifications, power distribution and conditioning, electromagnetic interfaces. **Reference Books:**

- 1. Noise reduction techniques in electronic systems, 2nd ed. New York: Wiley By H.W.Ott
- 2. Electronic Instrument Design, Oxford Univ. Press, By Him R. Fowler
- 3. Intuitive Operational Amplifiers, MeGraw-Hill, By T.M.Frederiksen
- 4. Printed Circuit Boards, CEDT Series TMH By Walter C. Bosshart

Course IN-PC-								
Year a	nd	3 rd year		Contact hours per week: 3 hrs				
Semest	er	6 ^h Seme		Examination Duration: 3 hrs				
L	Т	T P C Evaluation						
2	1	-	3	Minor test + Curricular activities: 40	Major test: 60			
Cours	e Objec	ctives:			I			
1. To	o introdu	uce studer	nts wit	h the need for electronic communication.				
2. To	o familia	arize with	digita	l modulation and its formats.				
3. To	have u	nderstand	ing of	f angle modulation and its types.				

3RD YEAR (SEMESTER–VI) (w.e.f. 2020-21)

4. To	To have knowledge of pulse modulation and digital modulation.					
5. To	To gain analytical skills based information theory.					
6. To	have basic knowledge about source coding and error controlling codes.					
Course	e Outcomes: On completion of the course, student would be able to:					
CO1	Acquire knowledge about the analog modulation and its different formats including					
	power and current relations in and AM wave.					
CO2	Have good understanding of angle modulation including frequency modulation and					
	phase modulation and respective demodulation techniques.					
CO3	Acquire knowledge about pulse analog modulation and digital modulation and					
	respective demodulation techniques.					
CO4	To have acquaint about the basics of information theory and associated codes.					
CO5	Acquire basic knowledge about source coding and error control coding techniques					
	together with solving simple numerical problems.					

Module-I

Pulse Modulation: Sampling Theorem ,natural sampling, flat top sampling, quantization process , Pulse amplitude modulation ,TDM,PWM, PCM, DPCM,DM,ADM

Module-II

Digital modulation Techniques: Digital modulation formats, types of digital modulation: ASK, BPSK, BPSK, DPSK, QPSK and Minimum Shift Keying

Module-III

Information theory: Introduction, Information rate, source coding theorem, Huffman coding, discrete memory less channel, mutual information channel capacity, channel coding theorem, channel capacity theorem shanon's theorem and shanon-hartley theorem.

Module-IV

Coding theory: Introduction, Linear block codes, cyclic codes convolution codes, decoding of convolution codes, distance properties of convolution codes.

Data Networks: Communication Networks, Circuit Switching, Store and forward switching, layered architecture, packet networks, and multiple access communication. **Reference Books:**

- 1. Principles of communication systems, Pub.-McGraw Hill, by Taub And Schilling
- 2. Digital communication, Pub.- John Willy and sons, by Simon Hykin.
- 3. Communication Systems B P Lathi
- 4. Communication Switching Systems and Networks, Pub.-PHI, by Thiagrajan Vishwanathan.

3RD YEAR (SEMESTER–VI) (w.e.f.2020-21)

Course no: IN-PE-306	Course title: Fuzzy Logic Control
IIN-I E-300	

Year a	nd	3 rd year		Contact hours per week: 3 hrs			
Semest		6 ^h Semester		Examination Duration: 3 hrs			
L	Т	Р	C	Evaluation			
2	1	-	3	Minor test + Curricular activities: 40	Major test: 60		
Course	e Object	ives:			•		
To stud	ly and ac	equire the	basic	knowledge of fuzzy logic.			
To stu	dy the ba	asic archi	tecture	of FKBC and its design parameters			
To stud	ly nonlir	near & ad	aptive	fuzzy controllers.			
To ider	ntify, for	mulate ar	nd solv	e the neuro fuzzy logic based problems.			
Course	e Outcor	mes: On o	comple	etion of the course, student would be able to):		
CO1	To un	derstand v	workin	g of basic fuzzy system and its architecture			
CO2	Able t	to fuzzy t	technic	ues in different field, which involve perce	eption, reasoning and		
	learning.						
CO3	Analy	Analyze and design a real world problem for implementation and understand the					
	dynam	dynamic behavior of a system.					
CO4	Assess	s the resu	lts obta	ained by FKBC and Neuro fuzzy systems.			

Module-I

INTRODUCTION : Introduction to Fuzzy control, Fuzzy logic controller components, Construction of Fuzzy sets, Fuzzy logic controller and its applications.Fuzzy control from an industrial perspective, knowledge- based controller, knowledge representation in KBC's.

Module-II

Introduction to Fuzzy sets, Crisp sets, Basic concepts of Fuzzy sets, L-fuzzy sets, level 2-fuzzy sets, type 2-fuzzy sets. Fuzzy sets Vs. Crisp sets. Fuzzy Arithmetic, Algebraic operations, settheoretic operations, fuzzy relation on sets & fuzzy set compositions of Fuzzy relations, properties of the minimum-maximum composition.

Module-III

FKBC DESIGN PARAMETERS: The FKBC architecture, choice of variables and contents of rules, Derivation of rules, Choice of membership functions, choice of scaling factors, Choice of fuzzification procedure, Choice of defuzzification procedure, comparison and evaluation of defuzzification methods.

Module-IV

ADAPTIVE FUZZY CONTROL: Design and performance evaluation, Approaches to Design such as membership function tuning using gradient descent, Membership function tuning using performance criteria, the self-organizing controller, Model based controller.

BOOKS FOR REFERENCE :

- 1. Fuzzy control system by Abraham Kandel and Gideon Imngholz, Narosa.
- 2. Fuzzy logic control system by T.Ross

3. Fuzzy Control system by D. Drainkov& M. Reienfrank.

4. Klir George J. "Fuzzy sets and Fuzzy Logic Theory and Applications", PHI

-----3RDYEAR (SEMESTER–VI) (w.e.f.2020-21)

Course IN-PC-		Course title: Digital Signal Processing					
Year a	nd	3 rd year		Contact hours per week: 4 hrs			
Semest		6 ^h Semes	ster	Examination Duration: 3 hrs			
L	Т	P	С	Evaluation			
3	1	-	4	Minor test + Curricular activities: 40	Major test: 60		
Course	Object	ives:					
1. To s	tudy the	basic of	Z trar	sform and its application in LTI discrete-tin	ne systems.		
2. To s	tudy the	Discrete	linea	r Time Invariant systems in Z domain and in	frequency domain.		
3. To	study d	ifferent s	tructu	re realization of Finite Impulse Response	e systems and Finite		
Imp	ulse Res	sponse sys	stems				
4. To	study th	e basic o	of Dis	crete-Fourier Transform (DFT), Fast Four	rier Transform (FFT)		
algo	rithms a	nd its app	olicati	on.			
5. To s	tudy the	digital fi	lters f	for filtering applications.			
Course	Outcon	nes: On c	omple	etion of the course, student would be able to	:		
CO1	To lea	rn the bas	sic of	Z transform and its application in LTI discre	ete-time systems.		
CO2	To an	alyze the	Disci	rete linear Time Invariant systems in Z dom	nain and in frequency		
	domai	n.					
CO3	To un	derstand	the di	fferent structure realization of Finite Impul	se Response systems		
	and Finite Impulse Response systems.						
CO4	To lea	To learn the basic of Discrete-Fourier Transform (DFT), Fast Fourier Transform					
	(FFT)	algorithm	ns and	l its applications.			
CO5	To De	esign digit	al filt	ers for filtering applications.			

Module-I

Z-TRANSFORM & ANALYSIS: The Z-transform, properties of Z-transform, inverse of Ztransform, region of convergence and properties, analysis of LTI system in Z-Domain and in frequency domain, transient response, steady-state response, causality and stability.

Module-II

Discrete and Fast Fourier Transform (DFT & FFT):DFT and its properties, IDFT, DFT and Z-transform relationship, linear filtering using DFT, linear and circular convolution. FFT: FFT decimation-in-time (DIT) algorithm and FFT decimation-in-frequency(DIF) algorithm (Radix-2).Effect of finite Word length in Digital filter: Coefficient Quantization, product quantization, Finite Register length effect in IIR and FIR realization.

Module-III

Reliasation of Digital Filters: FIR Filter: Direct form, cascade form, frequency selective and lattice structurerealizations.IIR Filter: Direct form-I ,Direct form-II, cascade form ,parallel and lattice structure realizations Comparison between FIR and IIR filter.

Module-IV

Digital filter Design: Advantages and disadvantages of digital filters, FIR digital filter design: Characteristics and properties of FIR digital filter, FIR digital filter design using Fourier series method, Use of window functions method, frequency sampling method. IIR filter design: Design of IIR filter from analog filter by derivative approximations method, Invariant-Impulse-response method, Bilinear - transformation method and Matched Z- transformation method.

Reference Books:

- 1. Digital Filter Analysis & Design by Andreas Antoniou
- 2. Digital Signal Processing by David J. Defalta& Joseph G. Lucas
- 3. Digital Signal Processing by Sanjit K Mitra.
- 4. Digital Signal Processing by Proakis, Masnolakis
- 5. Digital Signal Processing by Farooq Hussain

3RDYEAR (SEMESTER-VI) (w.e.f.2020-21)

Course no:		Course title: Microcontroller & Embedded System								
IN-PC										
Year and		3 rd year		Contact hours per week: 4 hrs						
Semester		6 ^h Semes	ster	Examination Duration: 3 hrs						
L	Т	Р	C	Evaluation						
3	1	-	4	Minor test + Curricular activities: 40	Major test: 60					
Course	e Object	ives:								
1. In c	lepth stu	dy of 805	51 Arcl	nitectures and programming of microcontro	llers: embedded					
sys	tem appl	lications.								
2. Use	e of asse	mbler dir	ectives	and programming in assembly language us	sing Assembler					
3. Thi	s course	concerns	s with I	Embedded systems basic knowledge: embed	ded architectures:					
4. To	analyze	and desig	gn the H	RTOS and applications.						
Course	e Outcor	mes: On o	comple	tion of the course, student would be able to	:					
CO1	Unders	stand the	fundan	nental concepts of Microcontroller Organization	ation and					
	Archite	ecture (In	tel 805	1), Data Representation and Memory Usag	e					
CO2	Apply	the basic	progra	mming skills of microcontrollers for Proble	em Solving and					
	Algori	thm Deve	elopme	nt, Assembling/Compiling and Execution						
CO3	Unders	stand the	basic o	f Embedded system, Understand the Embed	dded Product					
	Develo	pment Li	ife Cyc	le, Design embedded system in RTOS						
CO4	Illustra	te and de	sign th	e hardware using Embedded System.						
CO5				ms in solving sorting problems.						
CO6	After s	tudy of th	nis cou	rse it is expected that students will be able t	o develop interface					
				process and write programs for different ap						
		-		ents will be able to do of their own for high	er processors and					
	microc	ontrollers	s.							

Introduction to Embedded Systems: Definitions and Classification, Overview of Embedded Systems, Embedded Software, Embedded System on Chip (SoC), Use of VLSI Designed Circuits; Processor and Memory Organization: Structural Units in Processor, Memory Devices, Processor and Memory Selection, Memory Map and Applications, Memory Blocks for Different Structures.

Module-II

Devices and Buses for Devices Networks: I/O Devices I/O Types and Examples, Parallel Port and Serial Port Devices and Communication Buses; Device Drivers, Device Servicing by Interrupt and Service Routines Linux Internals as Device Drivers and Network Functions, Writing Physical Device Deriving ISRs in a System and Some Examples, Context Switching, Deadline, Latency Priorities Programming in Assembly Language (ALP) Vs High Level Language, Basic C Program Elements, Concept of Embedded Programming in C++, Embedded Programming in C++, C program compiler, Cross Compiler.

Module-III

Microcontrollers:- Introduction; comparison of microprocessors & microcontrollers; A survey of microcontrollers, 8051 microcontroller hardware: Input/Output Pins; Ports and Circuits; External memory; counter & timers; serial data input/output; & Interrupts. Introduction to instructions of 8051: For moving data, logical operations, arithmetic operations and jump & call.

Module-IV

8051 programming with examples of study of input/output ports of 8051, use of 8051 in closed loop system, study of Internal/External Interrupts of 8051, and study of Internal counter using Internal/External clock of 8051. Interfacing: Interfacing with display, memory, keyboard, AD/DA, generation of PWM output for proportional control using timer & counter and serial data communication.

REFERENCE BOOKS:

- 1. The 8051 Microcontroller Architecture Programming & Application by Kenneth J. Ayala, Penram Inter.
- 2. The 8051 Microcontroller and Embedded Systems- Muhammad Ali Mazidi; Pearson Education India
- 3. Microcontroller Architecture, Programming, Interfacing and System Design by Raj Kamal, Pearson Education India
- 4. Programming and Customizing the 8051 Microcontroller by Fredko Mike, TMH
- 5. Embedded Systems Architecture, Programming, and Design by Raj Kamal, TMH

B. Tech Instrumentation Engineering Syllabi for Examinations 4th YEAR (SEMESTER–VII) (w.e.f. 2021-22)

Course no:		Course	title:	OPTIONAL – I						
IN-PE-401				ARTIFICIAL INTELLIGENCE						
Year an	d	4th year	,	Contact hours per week: 3 hrs						
Semeste	r	7th Sem	ester	Examination Duration: 3 hrs						
L	Т	P	С	Evaluation						
2	1	-	3	Minor test + Curricular activities: 40	Major test: 60					
Course	Objecti	ves:			1					
1. To e	xplore t	the basics	of Ar	tificial Intelligence.						
2. To in	troduce	e the conc	epts o	f a Rational Intelligent Agent and that can	be designed to solve					
prol	olems.									
3. To g	ain kno ⁻	wledge of	n blind	and heuristic search in AI.						
4. To ci	reate an	understa	nding	of the basic issues of knowledge representation	ation and Logic.					
5. To b	e able to	o design e	expert	systems with intelligence.						
Course	Outcon	nes: On c	omple	tion of the course, student would be able to):					
CO1	Recog	gnize the	role of	AI to solve real world problems						
CO2	Expla	in and im	pleme	nt representation of knowledge, problem so	olving methods in AI.					
CO3	Know	how to b	ouild si	mple knowledge-based systems.						
CO4	Solve	complex	engine	eering and real-world problems using AI.						

Module - I

Introduction: History, the turning test, overview of AI application are as problem & problem spaces, problems characteristics.

Module - II

Knowledge Representation Logic: Proportional & first order prediction logic, inference rules, resolution limitation of logic. Production system: Definition & history, examples of search in production system, advantages.

Module -III

Search: Informal and informal, algorithms of depth 1st, breadth 1st, hill climbing, beat 1st, search and bound; game playing - minimax search, alpha and beta pruning. Forward and backward reasoning.

Module - IV

Expert system: Introduction & examples, architecture (rule board system), development, knowledge engineering process, limitations. Programming in PROLOG.

Reference Books:

- 1. Artificial Intelligence by George F.luger & William A.
- 2. Stubblefeild, The Benjamin/Cummings Pub. Comp., Inc.
- 3. Principle of A.I by Nils J. Nilsson, Narosa.
- 4. A.I By Elaine Tich & Kevin Knoght, TMH
- 5. Introduction to Artificial Intelligence & Expert systems by Dass W. Patterson, PHI
- 6. A.I: an engineering approach by Robert J. Schlkoff, McGraw Hill.

		- -		(SEVIESTER-VII) (W.C.I. 2021-22)					
Course no:		Course title: BIO-MEDICAL INSTRUMENTATION							
IN-PE-403									
Year a	nd	4th year		Contact hours per week: 3 hrs					
Semest	er	7th Sem	ester	Examination Duration: 3 hrs					
L	Т	Р	С	Evaluation					
2	1	-	Major test: 60						
Course	Objectiv	ves:							
1. To i	ntroduce	the concep	ot of B	io Medical Instrumentation.					
2. To i	ntroduce	Bio Poten	tial Ele	ectrodes and Biomedical Recorders.					
3. To i	ntroduce	the Heart	Sound	and Ultrasound.					
4. To s	tudy the l	maging S	ystem.						
Course	Outcom	es: On cor	npletic	on of the course, student would be able to:					
CO1	To Famil	iarize with	n Bio N	Medical Instrumentation.					
CO2	To under	stand with	Bio P	otential Electrodes and Biomedical Record	lers.				
CO3	To under	stand the l	Heart S	Sound and Ultrasound.					
CO4	To under	stand the l	magin	g System.					

4th YEAR (SEMESTER–VII) (w.e.f. 2021-22)

Module- I

Introduction: Bio-electric potential and electrode: Instrumentation system, Living Instrumentation system, Bio-metric, the anatomy of nervous system, origin of bio-potentials, resting and action potentials, propagation of action potentials, the Bio-electric potentials, bio-potential electrode: Microelectrodes, skin surface electrode, Needle electrodes.

Module -II

Biomedical recorders: Basic functioning of heart, Electrocardiograph Block diagram of ECG, ISOLATION AMPLIFIER, the ECG leads, Microprocessor based ECG Machine, multi-channel ECG Machine, vector cardiograph, Apex cardiograph, Ballistocardio graph, PCG, Microphones for PCG, amplifier for PCG, EEG: Electrode for EEG, Block diagram of EEG Machine, EMG Recording, pre amplifier for EMG, low frequency and high frequency filters, display signal delay & Trigger unit, EMG recording method.

Module -III

Ultrasonic Imaging system: Physics of ultrasonic waves, Medical ultrasound,(Basic Pulse-Echo apparatus), A-scan, Echocardiograph (M-mode), B-scanner, Real time ultrasonic imaging systems (Requirements, Mechanical Sector scanner, Multi-Element Linear Array Scanners, Phase Array system, Duplex Scanner and Annular Array Scanner), Display devices for ultrasonic imaging system, Biological effect of ultrasound.

Module-IV

Imaging System: X-ray Machine and Computed Tomography: X-ray machine, X-ray image Intensifier T.V. system, X-ray computed Tomography (CT Scanner). NMR imaging system : Imager system. Application of NMR Imaging, Advantage & disadvantage of NMR Imaging system.

Reference Books:

- 1. Introduction to Biomedical Equipment Technology By Carr & Brown.
- 2. Biomedical Instrumentation and Measurement by Cromwell, PHI.
- 3. Handbook of Biomedical Instrumentation by R.S.Khandpur, TMH.

		4	I EAI	R (SEMESTER–VII) (w.e.f.2021-22)	
Course				Course title: Computer Graphics & CA	D CAM
	IN-PC-405				
Year a	nd	4th year		Contact hours per week: 3 hrs	
Semest	er	7th Sem	ester	Examination Duration: 3 hrs	
L	Т	Р	С	Evaluation	
2	1	-	3	Minor test + Curricular activities: 40	Major test: 60
Cours	e Objectiv	ves:			·
1. To	learn and	understan	d Graph	ics fundamentals.	
2. To	develop t	he algorith	nm desig	n capability for creating different 2-D and 3	-D graphical objects To
lea	rn creation	n of anima	ited scer	es for virtual objects creations	
3. To	further th	e acquired	l knowle	dge to utilize it in different research works of	on Pattern Recognition and
Im	age Proce	ssing.			
4. To	learn and	understan	d Graph	ics fundamentals.	
Cours	e Outcom	es: On co	mpletior	of the course, student would be able to:	
CO1	Understa	nd how to	write al	gorithms for generating different 2-D and 3-	D graphical objects.
CO2	Apply the	e knowled	ge to cre	eate and filling polygon (solid area fill),	
CO3	Impleme	nt the diffe	erent tec	hniques of 2-D	
CO4	Impleme	nt differen	t line an	d polygon clipping algorithms,	
CO5	Draw dif	ferent type	es of pro	jections in 3-D vector algebra, different 3-D	transformation
	technique	es, curves	and surf	aces and rendering methods	
CO6	Animate	scenes en	ertainm	ent and apply the knowledge to research wo	rk.

4th YEAR (SEMESTER–VII) (w.e.f.2021-22)

Module-I

Introduction of computer Graphics and its applications, Overview of Graphics systems, Video display devices, Raster scan display, Raster scan systems, video controller, Raster scan display processor, Random scan display, random scan systems, color CRT monitor, Flat panel display, Interactive input devices, Logical classification of input devices, Keyboard, mouse, Trackball and spaceball, Joysticks, Image scanner, Light pens, Graphics software, Coordinates representations, Graphics primitives and functions.

Module-II

Points and lines, Line drawing algorithms, midpoint circle and ellipse algorithms. Filled area primitives: scan line polygon fill algorithm, boundary-fill and flood fill algorithms.

Translation, scaling, rotation, reflection and shear transformations, matrix representations and homogeneous coordinates, composite transforms, transformation between coordinate systems. 2-D Viewing: The viewing pipeline, viewing coordinate reference frame, window to viewport coordinate transformation, viewing functions, Cohen-Sutherland and Cyrus beck line clipping algorithms.

Module-III

Polygon surfaces, quadric surfaces, spline representation, Hermite Curve, Bezier Curve and BSpline curves, Bezier and B-Spline surfaces, sweep representations, 3-D Geometric Transformations: Translation, Rotation, Scaling, Reflection and Shear transformations, composite transformations, 3-D viewing, viewing pipeline, viewing coordinates, view volume and general projection transforms and clipping.

Module-IV

Classification, back-face detection, depth-buffer, scan line, depth sorting, BSP- tree methods, are subdivision and octree methods Illumination models and surface rendering methods: Basic illumination models, polygon rendering methods.

Design of animation sequence general computer animation functions, raster animation, computer animation languages, key frame systems, motion specifications.

TEXT & REFERENCE BOOKS :

- 1. COMPUTER GRAPHICS C VERSION by Donald Hearn and M. Pauline Baker, Pearsosn Education.
- 2. Principles of Interactive Graphics, Neuman and Sproul, TMH
- 3. Computer Graphics second edition "Zhigand Xiang, Roy Plastock, Schaum's outlines Tata McGraw Hill Edition.
- 4. Computer Graphics Principles & Practice", Second Edition in C, Foley, VanDam, Feiner and Hughes, Pearson Education.
- 5. Procedural Elements for Computer Graphics, David F Rogers, Tata McGraw Hill, 2nd edition.
- 6. An Integrated Introduction to Computer Graphics and Geometric Modelling, R. Goldman, CRC Press, Taylor & Francis Group.

Course no: IN-PC-407		C	Course ti	tle: ADVANCE PROCESS DYNAMICS	S & CONTROL							
Year and		4th yea	ar	Contact hours per week: 3 hrs								
Semest	emester 7th Semester Examination Duration: 3 l											
L	Т	Р	С	Evaluation	Evaluation							
2	1	-	3	Minor test + Curricular activities: 40	Major test: 60							
Cours	e Objec	ctives:										
1. Ac	quire ki	nowledg	e Proces	s dynamics and various forms of mathemat	tical models to							
exp	bress the	em		-								
2. To	underst	tand the	multiloo	p systems								
3. To	develo	p knowle	edge abo	ut controller tuning								
4. To	develo	p unders	tanding	about PI diagrams								
5. To	analyze	e sample	s data co	ontrol systems								
Course	Outco	mes: Oi	n comple	etion of the course, student would be able to	0:							
CO1	Formu	late mat	hematica	l model of various systems								
CO2	Design	and dev	elop mu	ltiloop control systems								
CO3	<u> </u>		<u> </u>	ameters of controllers								
CO4	Constr	uct PI di	agrams									
CO5			<u> </u>	a control systems								
		•	*	Module-1								

4th YEAR (SEMESTER–VII) (w.e.f. 2021-22)

MATHEMATICAL MODELLING: Need of mathematical modelling, lumped and distributed parameters, state variables and state equations of chemical processes, mathematical modelling of CSTR, interacting system and non-interacting system.

ANALYSIS OF COMPLEX PROCESSES: Control of jacketed kettle systems, dynamic response of gas absorber, heat conduction into solids, heat exchanger.

Module-II

ANALYSIS AND DESIGN OF ADVANCED CONTROL SYSTEMS: Review and limitation of single loop control, need of multi loops, cascade, selective override, auctioneering, split range , feed forward, feed forward feedback, adaptive, inferential, ratio control, Self adaptive control: MRAC,STR.

Module-III

Controller Tuning: Tuning of PID controller, Zeigler – Nichols methods, Process reaction curve, Ultimate gain and period method, quarter decay ratio advance method of tuning, IAE, ISE, IATE

tuning of controllers. Effect of measurement and transportation lag on process response, Effect of disturbances.

Module-IV

P-I Diagrams: Standard Instrumentation Symbols for Devices, Signal Types, Representation of a Process Control Loop using PI diagram.

Sampled data Control Systems : Sampling, open loop and closed loop response, Stability, Sampled data control of first order process with transport lag, Design of sampled data controllers.

BOOKS RECOMMENDED:

- 1. Kane-Handbook of Advanced Process Control System
- 2. Curtis Johnson-Process Control: Instrumentation Technology
- 3. Chemical Process Controll by George Stephanopoulos
- 4. Process dynamics and Control by Donald P. Eckman
- 5. Process systems Analysis and Control Donald R. Coughanowr

Course no: Course title: (OPTIONAL – II) ROBOTICS
IN-PE-402
Year and 4th year Contact hours per week: 3 hrs
Semester 8th Semester Examination Duration: 3 hrs
L T P C Evaluation
2 1 - 3 Minor test + Curricular activities: 40 Major test: 60
Course Objectives:
1. To develop the student's knowledge in various robot structures and their workspace.
2. To develop student's skills in performing spatial transformations associated with rigid body
motions.
3. To develop student's skills in perform kinematics analysis of robot systems.
4. To provide the student with knowledge of the singularity issues associated with the operation of
robotic systems.
5. To provide the student with some knowledge and analysis skills associated with trajectory
planning.
6. To provide the student with some knowledge and skills associated with robot control
Course Outcomes: On completion of the course, student would be able to:
CO1 Outline the structure of a typical robotic system, understand its link and joint parameters, an
perform robot kinematics.
CO2 Identify the geometric parameters of a robot by applying the knowledge of robot kinematics
and generalized differential model of the robot.
CO3 Analyse planar and spatial parallel robots in context to its forward and inverse kinematics,
and evaluate its singularity, condition number and maneuverability.
CO4 Identify the dynamic parameters of a robot by applying the knowledge of general form of
dynamic equation of motion.
CO5 Identify the independent joint control and torque
CO6 Design a robotic manipulator and evaluate its primary and secondary workspace. Evaluate
the performance of a robot. Module-I

Module-I

Introduction to Robotics, terminology and definitions, Classification: Cylindrical, Spherical, Revolute, Rectangular; Components of Robotic Systems: Actuators, Sensors, Controllers,

Manipulators. Position and Orientation Description & frames, Rotation, Homogeneous transform, Translations, Transformation matrix.

Module-II

Forward Kinematics: Denavit-Hartenberg (D-H) representation, Link parameters, Link frame assignment, Example of Manipulation Kinematics. Inverse Kinematics: Solvability, Solution Approaches and examples; Velocities of link motion, Jacobian transformation.

Module-III

Manipulator Dynamics: Euler-Lagrange Equation, KE and PE Expressions, Equations of motion, Newton-Euler transformation, some examples; Independent Joint control: Actuator Dynamics, set point tracking, Trajectory Interpolation

Module-IV

Robot Hardware: Robot End Effectors, Grippers, grippers selection & Design; Vision: Introduction, visual sensing, Machine vision & its applications and other optical methods and Robot Applications.

Reference Books:

- 1. Robot and Controls By Mittal and Nagarath, TMH
- 2. Introduction to Robotics: Mechanics and control By J.J.Craig, Addision Weslay Pub. Co.
- 3. Robot Dynamics and Control, By W.Sponge & M.Vidyasagar, John Wiley and Sons, New York, 1989.
- 4. Robotics: Control, Sensing, Vision and Intelligence By K.S.Fu, R.C.Gonzalez and C.S.G.Lee, McGraw Hill, 1987.

Course no:			Course title: ANALYTICAL INSTRUMENTATION							
IN-PE-404										
Year	and	4th year	•	Contact hours per week: 3 hrs						
Seme	ster	8th Sem	ester	Examination Duration: 3 hrs						
L	Т	Р	С	Evaluation						
2	1	-	3	Minor test + Curricular activities: 40	Major test: 60					
Course	e Objectiv	ves:			•					
1. Un	derstand t	he interact	tion of	electromagnetic radiations with matter						
2. To	Understar	nd the con	cepts c	of spectroscopy						
3. To	study the	various m	ethods	of instrumental analysis						
4. Sel	ect an Inst	trument fo	r a par	ticular analysis with idea of its merits, den	nerits and					
limitati	ons		-	-						
Course	e Outcom	es: On co	mpleti	on of the course, student would be able to:						
CO1	Apply an	alytical te	chniqu	es to accurately determine the elements pro	esent in the given sample					
CO2	How to d	ecide the	particu	lar spectroscopic method	·					
CO3	Understa	nd the air	water a	and soil quality monitoring instruments						
CO4	Apply ch	romatogra	phy in	real time industrial environment						
	Module - I									

4th YEAR (SEMESTER–VIII) (w.e.f.2021-22)

Basic Components of a Spectrophotometer, different types of excitation sources, single and double monochromator components and mounting; materials for lens, prism, sample holder, filters etc for various wavelengths, optical sensors for different wavelength ranges. UV-VIS Spectrophotometers (Optical & Electronic Instrumentation) double wavelength spectrophotometer.

Fluorescence & Phosphorescence Spectrometry (Basic principle, optical & electronic Instrumentation) Atomic Absorption & Emission Spectroscopy (Sample preparation, photometer instrumentation). Laser Raman Spectrometer Instrumentation & application.

Module - III

Basic consideration, Instrumentation, Qualitative & Quantitative elemental data analysis, limitations and applications of i) X-Ray Fluorescence, ii) Neutron activation, iii) Auger Electron and iv) ESCA techniques.

Module - IV

Basic principle of NMR phenomenon, NMR spectrometer Instrumentation and application Electron spin resonance (ESR) Spectroscopy basic principle, spectrometer instrumentation and applications. Basic principle of chromatography - Gas & Liquid column chromatograph instrumentation and applications; water pollution monitoring instrumentation.

Reference Books:

- 1. Instrumental Methods Of Analysis By Williard, Merrit, Dean
- 2. Handbook Of Analytical Instrumentation By R.S. Khandpur
- 3. Instrumental Methods For Chemical Analysis By E.W.Ewing
- 4. Introduction To Instrumental Analysis By Robert D. Braun
- 5. Essentials of Instrumental analysis by Skoog, Holler & Nieman, Thomson Publ.

		4	ⁿ YEA	R (SEMESTER–VIII) (w.e.f.2021-22)
Course				Course title: INDUSTRIAL PROCESS CONTROL
IN-PC-406				
Year an		4th year		Contact hours per week: 3 hrs
Semeste	er	8th Sem	ester	Examination Duration: 3 hrs
L	Т	Р	C	Evaluation
2	1	-	3	Minor test + Curricular activities: 40 Major test: 60
Course	Objecti	ves:		
1. Basi	c conce	ot and Stu	dy of I	FC and FO type control valve and their applications with examples,
Gair	n of valv	e and con	cept of	control valve sizing for liquid, Gas, vapour and steam. (Special
refei	ence to	Masoneill	ian &	Fisher Equation) and study control valve cavitation and flashing
pher	nomenor	1		
2. Stud	ly contro	ol Valve no	oise, it	s calculation & reduction techniques and Design & Construction of
Gloł	be Valve			
3. Stud	ly the ch	aracteristi	c func	tion of PLC, its Architecture and various PLC programming languages
and	Demons	trate vario	ous PL	C programming skill for industrial applications.
				of Distributed process control system and Understanding of various
auto	motive s	standards a	and Pr	ptocols used in PLC network and DCS
5. Stud	ly DCS s	supervisor	y cont	rol techniques & considerations(Algorithms), Concept of field buses
and	their app	olications		
Course	Outcon	nes: On co	mplet	ion of the course, student would be able to:
CO1	Able to	o understa	nd FC	and FO type control valve and Able to learn and analyze the various
	princip	oles & con	cepts i	nvolved in valve sizing for liquid, Gas, vapour and steam and control
				shing phenomenon
CO2	Able to	o understa	nd con	trol Valve noise, its calculation, reduction techniques and Acquire the
	knowle	edge and d	lemons	strating the constructional details of Globe Valve.
CO3	Acquir	e the know	wledge	of performance characteristic function of PLC and its Architecture.
CO4	Able to	b learn the	variou	as PLC programming languages and Demonstrate various PLC

	programming skill for industrial applications.
CO5	Able to learn and analyze the various principles & concepts of Distributed process control system and Understanding of various automotive standards and Protocols used in PLC network and DCS
CO6	Acquire the knowledge of DCS supervisory control techniques, the concept of field buses and
	their Industrial applications.
CO7	To implement new and emerging technologies to analyze, design, maintain reliable, safe, and
	cost effective solution for industry problems.

Module-I

CONTROL VALVE DESIGN: Control valve flow characteristics, valve & process characteristics, effect of distortion coefficient on linear and percentage valve, range-ability of control valve, control valve sizing for liquid vapor and steam. (Special reference to Masoneillian & Fisher Equation) control valve cavitation and flashing: flow control cavitation index, vibration curve cavitation index, calculation of flash fraction. Control valve gain, sequencing of control valve and viscosity correction of control valve.

Module-II

Valve noise calculation & reduction: Sources of valve noise, noise control: path treatment source treatment valve noise calculation. Design & construction of Globe Valve: Valve trends, trim design, trim flow characteristics, flow rangeability, standard trim configuration, valve plug stems, Body form of single & double seated Globe valve, construction & flow characteristics of Butterfly valve.

Module-III

Discrete State Process Control System: Development & analysis of ladder diagram, logic diagram from ladder diagram, Functional description of PLC difference between PLC & computer. Sizing & selection, PLC peripherals, programming & documentation tools. Communication networking: Universal communications networking, Peer to Peer communications, PLC installations. Programming the Programmable controller: Programming languages, ladder diagram instructions, special functions, data transfer and data manipulation operations, arithmetic operations, flow control operations, Boolean mnemonics. Functional blocks data transfer operations arithmetic and logic operations, Programmable controller's industrial applications.

Module-IV

Distributed process control system: Functional requirement of DPCS, DCS configurations, control console equipment: Video display, keyboard, peripherals device & display. Software configuration: Operating system configuration, controller function configuration, algorithm, libraries, relay rec. mounted equipment, communication between the components. DCS data high ways, field buses, multiplexers & party line system, Multiplexing & scanning, Multiplexer design. DCS Supervisory computer and configurations: Supervisory computer functions, supervisory control techniques & considerations, DCS & Supervisory computer display, DCS. DCS system integration with PLC & computer.

References Books :

- 1. Microprocessor in process control: C.D.Johnson
- 2. Instrumentation for process measurement and control by N.A. Anderson.
- 3. Principles and practice of automatic process control: Carlos by A Smith.
- 4. Instrument Engineers' handbook Process control by Bela G. Liptak.
- 5. Computer based Industrial Control by Krishan Kant

Kurukshetra University, Kurukshetra

(Established by the State Legislature Act XII of 1956) ('A+' Grade, NAAC Accredited)

> ।। योगस्थः कुरु कर्माणि।। समबुद्धि व योग युक्त होकर कर्म करो

(Perform Actions while Steadfasting in the State of Yoga)

DEPARTMENT OF INSTRUMENTATION (DOI)

LOCF/OBE/NBA CURRICULUM (2020 -2021)

Program Name: B. Tech.-Electrical and Instrumentation Engineering (For the Batches from 2020-2021 in phased manner)

(UTD Only)

LOCF/OBE/NBA CURRICULUM (2020 - 2021)

Program Name: B. Tech.-Electrical and Instrumentation Engineering (For the Batches Admitted From 2020-2021)

VISION

Be globally acknowledged as a distinguished centre of academic excellence.

MISSION

To prepare a class of proficient scholars and professionals with ingrained human values and commitment to expand the frontiers of knowledge for the advancement of society.

DEPARTMENT VISION AND MISSION

VISION

• To become a model department as a Centre of quality education, research with innovation and recognition at National and International level for serving society.

MISSION

- M1: To provide quality education to aspiring young minds for improving their skills, inculcating values, creating leadership qualities and enhance research with innovative methods.
- M2: To produce young engineers capable to be utilized in the areas of New Technological Design, Environment, ethics and sustainable technologies.
- M3: To develop Teaching-Learning methods which can produce socially committed good professional human being who can contribute effectively in Nation building and represent Country Internationally.

Mapping of University Vision and Mission to Department Vision and Mission

University Vision and Mission Department Vision and Mission High quality knowledge delivery through state of art Yes infrastructure and ethical values to the students Students excellence will make them professionals and Yes innovators emerging as global leaders Research and development will help in furtherance of Yes Faculty knowledge

Acclaimed as modal Centre of Learning and Research by

Programme Educational Objectives (PEOs):

The Department of Instrumentation in consultation with various stakeholders have formulated the Programme Educational Objectives (PEO's) that are broad statements that describe the career and professional accomplishments that the program is preparing its graduates to achieve in few years, subsequent to receiving the degree. The PEO's of the B. Tech. programme in Electrical and Instrumentation Engineering are as follows:

- **PEO1:**The graduates will become competent by applying their technical and managerial skills.
- **PEO2:**The graduates will be able to adapt to any environment and succeed in higher positions in contemporary rapidly evolving technologies in Electrical and Instrumentation engineering field.
- **PEO3:**The graduates will engage themselves in the life-long learning by pursuing higher education and participation in research and development activities meet all challenges to transform them as responsible citizens of the nation

Program Specific Outcomes (PSO's):

- **PSO1:** Clearly understand the fundamental concepts of Electrical and Instrumentation Engineering
- **PSO2:** Graduates will be able to formulate and solve real life problems in the area of Electrical and Instrumentation Engineering
- **PSO3:** Graduate will possess the skills to communicate effectively in both oral and written forms, demonstrating the practice of professional ethics, and responsive to societal and environmental needs.

DEO!a	MISSION OF THE DEPARTMENT									
PEO's	M1	M2	M3							
PEO1	3	3	1							
PEO2	2	3	2							
PEO3	2	2	3							

PEOs to Mission statement mapping

Program Outcomes (PO) with Graduate Attributes

Programme Outcomes are attributes of the graduates from the programme that are indicative of the graduates' ability and competence to work as an engineering professional upon graduation. Program Outcomes are statements that describe what students are expected to know or do by the time of graduation, they must relate to knowledge and skills that the students acquire from the programme. The achievement of all outcomes indicates that the student is well prepared to achieve the program educational objectives down the road. The Department of Instrumentation engineering has following twelve PO's. The course syllabi and the overall curriculum are designed to achieve these outcomes:

S. No	Graduate Attributes	Program Outcomes (POs)				
1	Engineering Knowledge PO1: Able to understand the fundamentals of mathematics, Electrical and Instrumentation Engineering and apply them to solution of complex engineering problems.					
2	Problem Analysis	PO2: Ability to analyze, identify, formulate and solve engineering problems in Electrical and Instrumentation Engineering using basic fundamental principles of mathematics and science.				
3	Design and Development of Solutions	PO3: Design a system, component or process to meet the desired needs and standards within realistic constraints such as public health and safety, social and environmental considerations.				
4	Investigation of Problem	PO4: Design and conduct experiments, as well as do research, analyze and interpret data and give clear solutions.				
5	Modern Tool usage PO5: Use and learn the recent techniques, skills and engineering and IT tools necessary for engineering practice understanding of the limitations.					
6	Engineer and society	PO6 : To give basic knowledge of social, economic, safety and cultural issues relevant to professional engineering.				
7	Environment and sustainability	PO7: To impart knowledge related to the design and development of modern systems which are environmentally sensitive and to understand the importance of sustainable development.				
8	Ethics	PO8: Apply ethical principles and professional responsibilities in engineering practice.				
9	Individual & team work	PO9: Ability to visualize and function as an individual and as a member in a team of a multi-disciplinary environment.				
10	Communication	PO10: Ability to communicate effectively on complex engineering ideas to the engineering community & the society at large. (i.e. being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions)				
11	Lifelong learning	PO11: To impart education to learn and to engage in independent and life – long learning in the technological change.				
12	Project management and finance	PO12: Ability to handle administrative responsibilities, manage projects & handle finance related issues in a multidisciplinary environment.				

Mapping of PEO's with PO's

S. No.	Program Educational Objectives	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
1	The graduates will become competent by applying their technical and managerial skills.	\checkmark														
2	The graduates will be able to adapt to any environment and succeed in higher positions in contemporary rapidly evolving technologies in Electrical and Instrumentation engineering field.			\checkmark											\checkmark	
3	The graduates will engage themselves in the life-long learning by pursuing higher education and participation in research and development activities to meet all challenges to transform them as responsible citizens of the nation			\checkmark												

LOCF/OBE/NBA CURRICULUM (2020 -2021)

Program Name: B. Tech.-Electrical and Instrumentation Engineering Undergraduate Degree Program

General, Course structure & Theme & Semester-wise credit distribution

A. Definition of Credit:

1 Hour Lecture (L) per week	1 credit
1 Hour Tutorial (T) per week	1 credit
1 Hour Practical (P) per week	0.5 credits
and/or	
2 Hours Practical(Lab)/week	1 credit

B. Total credits:

Total credits for a student to be eligible to get Under Graduate degree in Engineering are 174.0 credits. A student will be eligible to get Under Graduate degree with Honors' or additional Minor Engineering, if he/she completes an additional 20 credits. These could be acquired through MOOCs.

C. Structure of Undergraduate Engineering program:

S. No.	Category	Breakup of Credits (Total 174.0)
1	Humanities, Social Sciences and Management Courses	07.0
2	Basic Science Courses	17.0
3	Engineering Science Courses including workshop, drawing, basics of Electrical/ Mechanical/ Computer etc.	17.0
4	Professional Core Courses	83.0
5	Program Elective Courses relevant to the branch	18.5
6	Open Elective Courses : Electives from other technical and /or emerging subjects	22.5
7	Project work, Seminar and Internship in Industry etc.	09.0
8	Mandatory Courses: [Environmental Sciences, Induction training, Indian Constitution, Essence of Indian Traditional Knowledge].	(non-credit)
	Total	174.0

D. Course code and definition:

Category of	Definitions			
Course/ Code				
L	Lecture			
Т	Tutorial			
Р	Practical			
С	Credit			
CIE	Continuous Internal Evaluation			
SEE	Semester End Examination			

BS	Basic Science Courses					
ES	Engineering Science Courses					
HSM	Humanities, Social Sciences and Management Courses					
EI	Electrical and Instrumentation Engineering					
PC	PC Professional core courses					
PE	PE Professional Elective courses					
OE	Open Elective courses					
PRBS/ PRPC/	Practical Basic Science/Professional Core/					
PRES/PRPE/	Engineering Science/ Program Elective/					
PROE/ PRHSM	Open Elective/Humanities, Social Sciences and Management Courses					
MC	Mandatory courses					
PROJ	Project					

E. Details of Structure and distribution of credits to various courses:

S.	Catagor	Categor Commo Na Commo Title				Teaching Schedule					
No	y	Course No.	Course Title	С	L	Т	Р	Cont. Hrs.			
		Humanit	Course	S							
1	HSM	EI-HSM-107	English	2.0	2	-	-	2			
2	PRHS M	EI-PRHSM-07	Language Lab	1.0	-	-	2	2			
3	HSM	EI-HSM-211	Basics of Industrial Sociology, Economics and Management	2.0	2	0		2			
4	HSM	EI-HSM-212	Project Planning Estimation and Assessment	2.0	2	0		2			
			Total	7.0	6	0	2	8			
			Basic Science Courses								
1	BS	EI-BS-101	Physics	4.0	3	1	-	4			
2	PRBS	EI-PRBS-01	Physics Lab	1.5	-	-	3	3			
3	BS	EI-BS-103	Mathematics-I	3.0	2	1	-	3			
4	BS	EI-BS-102	Chemistry	4.0	3	1		4			
5	PRBS	EI-PRBS-02	Chemistry Lab	1.5			3	3			
6	BS	EI-BS-104	Mathematics-II	3.0	2	1		3			
			Total	17.0	10	4	6	20			
			Engineering Science Courses								
1	ES	EI-ES-105	Basic Electrical Engineering	4.0	3	1	-	4			
2	PRES	EI-PRES-03	Engineering Drawing lab	1.5	-	-	3	3			
3	PRES	EI-PRES-05	Basic Electrical Lab	1.0	-	-	2	2			
4	ES	EI-ES-106	Programming for Problem Solving	4.0	3	1		4			
5	ES	EI-ES-108	Basic Electronics Engineering	3.0	2	1		3			
6	PRES	EI-PRES-04	Computer programming Lab	1.5	-	-	3	3			
7	PRES	EI-PRES-06	Basic Electronic lab	1.0	-	-	2	2			
8	PRES	EI-PRES-08	Workshop Practice Lab.	1.0	-	-	2	2			

			Total	17.0	8	3	12	23
			Professional Core Courses		_			
1	PC	EI-PC-201	Power Systems -I	3.0	2	1		3
2	PC	EI-PC-203	Basic Instrumentation Engineering	3.0	2	1		3
3	PC	EI-PC-205	Network Analysis	3.0	2	1		3
4	PC	EI-PC-207	Transducers and Applications	3.0	2	1		3
5	PRPC	EI-PRPC-09	Network Analysis Lab	1.0			2	2
6	PRPC	EI-PRPC-11	Transducers lab	1.5			3	3
7	PRPC	EI-PRPC-15	Power System-I Lab	1.0			2	2
8	PC	EI-PC-202	Power Electronics-I	4.0	3	1		4
9	PC	EI-PC-204	Electrical Measurements & Instrumentation	4.0	3	1		4
10	PC	EI-PC-208	Electrical Machines-I	4.0	3	1		4
11	PRPC	EI-PRPC-10	Power Electronics-I Lab	1.0			2	2
12	PRPC	EI-PRPC-12	Electrical Measurements & Instrumentation Lab	1.0			2	2
13	PRPC	EI-PRPC-16	Electrical Machines –I lab	3	3			
14	PC	EI-PC-303	Power Electronics-II	1		4		
15	PC	EI-PC-307	Power System- II		4			
16	PC	EI-PC-309	Linear Automatic Control System		4			
17	PRPC	EI-PRPC-17	Power Electronic Lab-II	1.5			3	3
18	PRPC	EI-PRPC-19	Power System Lab- II	1.5			3	3
19	PRPC	EI-PRPC-23	Control System Lab	1.5			3	3
20	PRPC	EI-PRPC-25	Industrial Training-I	**			1\$	1
21	PC	EI-PC-304	Electrical Machines-II	4.0	3	1		4
22	PC	EI-PC-306	Power Plant Engineering	3.0	2	1		3
23	PC	EI-PC-308	Digital Signal Processing	4.0	3	1		4
24	PRPC	EI-PC-310	Microcontroller & Embedded System	4.0	3	1		4
25	PRPC	EI-PRPC-18	Electrical Machines Lab-II	1.5			3	3
26	PRPC	EI-PRPC-20	Micro-controller Lab	1.5			3	3
27	PRPC	EI-PRPC-22	Digital Signal Processing Lab	1.5			3	3
28	РС	EI -PC-405	Electric Drives4.031					4
29	РС	EI-PC-407	Advance Process Dynamics and Control4.031					4
30	PRPC	EI-PRPC-27	Electric Drives Lab 1.5					
31	PRPC	EI-PRPC-31	Industrial Training-II **					
32	PC	EI-PC-406	Industrial Process Control	4.0	3	1		4
33	PRPC	EI-PRPC-24	Process Control Lab	1.5			3	3
34	PRPC	EI-PRPC-28	Seminar	1.0			2	2
			Total	83	46	17	42	105

			Program Elective Courses					
1	PE	EI-PE-206	Program Elective- I	3.0	2	1		3
			i. Control System Components					
			ii. Electrical Energy Conservation					
2	DE		and Auditing	4.0	2	1		4
2	PE	EI-PE-305	Program Elective- II	4.0	3	1		4
			i. Microprocessorsii. Analog and Digital					
			ii. Analog and Digital Communication					
			iii. Switch Gear and Protection					
3	PRPE	EI-PRPE-21	Program Elective- II Lab	1.5			3	3
			i. Microprocessors					
			ii. Analog and Digital Communication					
			iii. Switch Gear and Protection					
4	PE	EI-PE-302	Program Elective-III	3.0	2	1		3
			i. Electrical Machine Design					
			ii. Mechanical Measurements in Instrumentation					
			iii. Electrical and Hybrid Vehicles					
5	PE	EI -PE-403	Program Elective- IV	3.0	2	1		3
-			i. Biomedical Instrumentation					
			ii. Reliability Engineering					
			iii. Wind and Solar Energy Systems					
			iv. Power Quality and FACTS					
6	PE	EI-PE-404	Program Elective- V	4.0	3	1		4
			i. Utilization of Electrical Energy					
			ii. Instrumentation and System Design					
			iii. Fuzzy Logic Control					
			iv. Optical Instrumentation					
			v. Remote Sensing					
			Total	18.5	12	5	3	20
	1		Open Elective Courses					
1	OE	EI-OE-209	Open Elective-I	3.0	2	1		3
			i. Linear Integrated Circuits					
			ii. Computer Networks					
2	PROE	EI-PROE-13	Open Elective- I Lab	1.5			3	3
			i. Linear Integrated Circuits			1		
			ii. Computer Networks					
3	OE	EI-OE-210	Open Elective-II	3.0	2	1		3
			i. Digital Techniques					

			ii. Computer Organization					
4	PROE	EI-PROE-14	Open Elective- II Lab	1.0			2	2
			i. Digital Techniques					
			ii. Computer Organization					
5	OE	EI-OE-301	Open Elective- III	4.0	3	1		4
			i. Environment Monitoring					
			Instrumentation					
			ii. Electromagnetic Field Theory					
			iii. Mathematics-III					
			iv. Energy Efficient Systems					
6	OE	EI-OE-401	Open Elective- IV	4.0	3	1		4
			i. Computer Graphics & CAD CAM					
			ii. IoT and IT'S APPLICATIONS					
			iii. Introduction to Python Programming					
7	PROE	EI-PROE-29	Open Elective- IV lab	1.5			3	3
			i. Computer Graphics & CAD CAM					
			ii. IoT and IT'S APPLICATIONS					
			iii. Introduction to Python Programming					
8	OE	EI-OE-402	Open Elective- V	3.0	2	1		3
			i. Artificial Intelligence					
			ii. Robotics					
			iii. High Voltage Engineering					
9	PROE	EI-PROE-26	Open Elective- V Lab	1.5			3	3
			i. Artificial Intelligence					
			ii. Robotics					
			iii. High Voltage Engineering					
			Total	22.5	12	5	11	28
	1	T	Project Work	1		T	1	
1	PROJ	EI-PROJ-02	Minor Project	3.0			6	6
2	PROJ	EI-PROJ-01	Case Study (Project Work) 2.0				4	4
3	PROJ	EI-PROJ-04	Major Project 4.0 8					8
			Total	9.0			18	18
	1	1	Mandatory Courses			1	1	
1	MC	EI-MC-112	Environmental Science		3	0		3

Detailed First Year Curriculum Contents

B. Tech Electrical and Instrumentation Engineering SCHEME OF EXAMINATIONS

			Teaching Schedule				Allot	ment of	Exam	
Course No.	Course Title	С	L	Т	Р	Cont. Hrs.	CIE	SEE	Total	Duration in Hrs.
EI-BS-101	Physics	4	3	1	-	4	40	60	100	3 Hrs
EI-BS-103	Mathematics-I	3	2	1	-	3	40	60	100	3 Hrs
EI-ES-105	Basic Electrical	4	3	1	-	4	40	60	100	3 Hrs
	Engineering									
EI-HSM-107	English	2	2	-	-	2	40	60	100	3 Hrs
EI-PRBS-01	Physics Lab	1.5	-	-	3	3	30	45	75	3 Hrs
EI-PRES-03	Engineering Graphics and	1.5	-	-	3	3	40	60	100	3 Hrs
	Design lab									
EI-PRES-05	Basic Electrical Lab	1	-	-	2	2	20	30	50	3 Hrs
EI-PRHSM-07	Language Lab	1	-	-	2	2				
	Total	18	10	3	10	23	250	375	625	

B. Tech. 1st YEAR (SEMESTER-I) (w.e.f. 2020-21)

B.Tech. 1stYEAR (SEMESTER–II) (w.e.f.2020-21)

			Те	eachir	g Sche	edule	Allot	ment of	marks	Exam
Course No.	Course Title	С	L	Т	Р	Cont. Hrs.	CIE	SEE	Total	Duration in Hrs.
EI-BS-102	Chemistry	4	3	1		4	40	60	100	3 Hrs
EI-BS-104	Mathematics-II	3	2	1		3	40	60	100	3 Hrs
EI-ES-106	Programming for Problem Solving	4	3	1		4	40	60	100	3 Hrs
EI-ES-108	Basic Electronics Engineering	3	2	1		3	40	60	100	3 Hrs
EI-MC-112	Environmental Science	**	3	0		3	40**	60**	100**	3 Hrs
EI-PRBS-02	Chemistry Lab	1.5			3	3	30	45	75	3 Hrs
EI-PRES-04	Computer programming Lab	1.5	-	-	3	3	30	45	75	3 Hrs
EI-PRES-06	Basic Electronic lab	1	-	-	2	2	20	30	50	3 Hrs
EI-PRES-08	Workshop Practice Lab.	1	-	-	2	2	20	30	50	3 Hrs
	Total	19	13	4	10	27	260	390	650	

** Industrial training is noncredit, audit pass course which will not counted towards marks/grade calculations

B. Tech Electrical and Instrumentation Engineering SCHEME OF EXAMINATIONS

			Те	eachir	ng Sche	edule	Allot	ment of	marks	Exam
Course No.	Course Title	С	L	Т	Р	Cont. Hrs.	CIE	SEE	Total	Duration in Hrs.
EI-PC-201	Power Systems-I	3	2	1		3	40	60	100	3 Hrs
EI-PC-203	Basic Instrumentation Engineering	3	2	1		3	40	60	100	3 Hrs
EI-PC-205	Network Analysis	3	2	1		3	40	60	100	3 Hrs
EI-PC-203 EI-PC-207	Transducers and	3	2	1		3	40	60	100	3 Hrs
EI-PC-207	Applications	3	Z	1		5	40	00	100	5 118
EI-OE-209	Open Elective-I	3	2	1		3	40	60	100	3 Hrs
EI-HSM-211	Basics of Industrial	2	2	0		2	40	60	100	3 Hrs
	Sociology, Economics and									
	Management									
EI-PRPC-09	Network Analysis Lab	1			2	2	20	30	50	3 Hrs
EI-PRPC-11	Transducers lab	1.5			3	3	20	30	50	3 Hrs
EI-PROE-13	Open Elective- I Lab	1.5			3	3	20	30	50	3 Hrs
EI-PRPC-15	Power System-I Lab	1			2	2	20	30	50	3 Hrs
	Total	22	12	5	10	27	320	480	800	

B. Tech. 2nd YEAR (SEMESTER–III) (w.e.f. 2021-22)

	Open Elective –I							
ſ	i.	Linear Integrated Circuits						
ſ	ii.	Computer Networks						

B.Tech. 2nd YEAR (SEMESTER–IV) (w.e.f. 2021-22)

			Те	eachir	ng Sche	edule	Allot	ment of	marks	Exam
Course No.	Course Title	С	L	Т	Р	Cont. Hrs.	CIE	SEE	Total	Duration in Hrs.
EI-PC-202	Power Electronics-I	4	3	1		4	40	60	100	3 Hrs
EI-PC-204	Electrical Measurements & Instrumentation	4	3	1		4	40	60	100	3 Hrs
EI-PE-206	Program Elective- I	3	2	1		3	40	60	100	3 Hrs
EI-PC-208	Electrical Machines-I	4	3	1		4	40	60	100	3 Hrs
EI-OE-210	Open Elective-II	3	2	1		3	40	60	100	3 Hrs
EI-HSM-212	Project Planning Estimation	2	2	0		2	40	60	100	3Hrs
	and Assessment									
EI-PRPC-10	Power Electronics-I Lab	1			2	2	20	30	50	3 Hrs
EI-PRPC-12	Electrical Measurements &	1			2	2	20	30	50	3 Hrs
	Instrumentation Lab									
EI-PROE-14	Open Elective- II Lab	1			2	2	20	30	50	3 Hrs
EI-PRPC-16	Electrical Machines -I lab	1.5			3	3	30	45	75	3 Hrs
	Total	24.5	15	5	09	29	330	495	825	

Program Elective- I			Elective- II
i.	Control System Components	i.	Digital Techniques
ii.	Electrical Energy Conservation and Auditing	ii.	Computer Organization

B. Tech Electrical and Instrumentation Engineering SCHEME OF EXAMINATIONS

		,	8			Allot	ment of	Exam		
Course No.	Course Title	С	L	Т	Р	Cont. Hrs.	CIE	SEE	Total	Duration in Hrs.
EI-OE-301	Open Elective- III	4	3	1		4	40	60	100	3 Hrs
EI-PC-303	Power Electronics-II	4	3	1		4	40	60	100	3 Hrs
EI-PE-305	Program Elective- II	4	3	1		4	40	60	100	3 Hrs
EI-PC-307	Power System- II	4	3	1		4	40	60	100	3 Hrs
EI-PC-309	Linear Automatic Control	4	3	1		4	40	60	100	3 Hrs
	System									
EI-PRPC-17	Power Electronic Lab-II	1.5			3	3	30	45	75	3 Hrs
EI-PRPC-19	Power System Lab- II	1.5			3	3	30	45	75	3 Hrs
EI-PRPE-21	Program Elective- II Lab	1.5			3	3	30	45	75	3 Hrs
EI-PRPC-23	Control System Lab	1.5			3	3	30	45	75	3 Hrs
EI-PRPC-25	Industrial Training-I	**			1 ^{\$}	1	40**	60**	100**	
	Total	26	15	5	13	33	320	480	800	

B. Tech. 3rd YEAR (SEMESTER–V) (w.e.f. 2022-23)

\$ Evaluation seminar for Industrial Training-I

** Industrial training is noncredit, audit pass course which will not counted towards marks/grade calculations

Open Elective- III			am Elective- II
i.	Environment Monitoring Instrumentation	i.	Microprocessors
ii.	Electromagnetic Field Theory	ii.	Analog and Digital Communication
iii.	Mathematics-III	iii.	Switch Gear and Protection
iv.	Energy Efficient Systems		

			Те	eachir	ig Sche	edule	Allot	ment of	marks	Exam
Course No.	Course Title	С	L	Т	Р	Cont. Hrs.	CIE	SEE	Total	Duration in Hrs.
EI-PE-302	Program Elective-III	3	2	1		3	40	60	100	3 Hrs
EI-PC-304	Electrical Machines-II	4	3	1		4	40	60	100	3 Hrs
EI-PC-306	Power Plant Engineering	3	2	1		3	40	60	100	3 Hrs
EI-PC-308	Digital Signal Processing	4	3	1		4	40	60	100	3 Hrs
EI-PC-310	Microcontroller &	4	3	1		4	40	60	100	3 Hrs
	Embedded System									
EI-PRPC-18	Electrical Machines Lab-II	1.5			3	3	30	45	75	3 Hrs
EI-PRPC-20	Micro-controller Lab	1.5			3	3	30	45	75	3 Hrs
EI-PRPC-22	Digital Signal Processing	1.5			3	3	30	45	75	3 Hrs
	Lab									
EI-PROJ-02	Minor Project	3			6	6	50	100	150	3 Hrs
	Total	25.5	13	5	15	33	340	535	875	

B. Tech. 3rd YEAR (SEMESTER-VI) (w.e.f. 2022-23)

Program Elective- III								
i.	Electrical Machine Design							
ii.	Mechanical Measurements in Instrumentation							
iii.	Electrical and Hybrid Vehicles							

B. Tech Electrical and Instrumentation Engineering SCHEME OF EXAMINATIONS

			Teaching Schedule Allotment						marks	Exam
Course No.	Course Title	С	L	Т	Р	Cont. Hrs.	CIE	SEE	Total	Duration in Hrs.
EI-OE-401	Open Elective- IV	4	3	1		4	40	60	100	3 Hrs
EI -PE-403	Program Elective- IV	3	2	1		3	40	60	100	3 Hrs
EI -PC-405	Electric Drives	4	3	1		4	40	60	100	3 Hrs
EI-PC-407	Advance Process Dynamics	4	3	1		4	40	60	100	3 Hrs
	and Control									
EI-PRPC-27	Electric Drives Lab	1.5			3	3	30	45	75	3 Hrs
EI-PROE-29	Open Elective- IV lab	1.5			3	3	30	45	75	3 Hrs
EI-PROJ-01	Case Study (Project Work)	2			4	4	40	60	100	3 Hrs
EI-PRPC-31	Industrial Training-II	**			1 ^{\$}	1 ^{\$}	40**	60**	100**	3 Hrs
	Total	20	11	4	11	26	260	390	650	

B. Tech. 4thYEAR (SEMESTER–VII) (w.e.f. 2023-24)

\$ Evaluation seminar for Industrial Training-I

** Industrial training is noncredit, audit pass course which will not counted towards marks/grade calculations

Open Elective- IV			m Elective- IV
i.	Computer Graphics & CAD CAM	i.	Biomedical Instrumentation
ii.	IoT and IT'S APPLICATIONS	ii.	Reliability Engineering
iii.	Introduction to Python Programming	iii.	Wind and Solar Energy Systems
		iv.	Power Quality and FACTS

			Те	eachir	ig Sche	edule	Allot	ment of	marks	Exam
Course No.	Course Title	С	L	Т	Р	Cont. Hrs.	CIE	SEE	Total	Duration in Hrs.
EI-OE-402	Open Elective- V	3	2	1		3	40	60	100	3 Hrs
EI-PE-404	Program Elective- V	4	3	1		4	40	60	100	3 Hrs
EI-PC-406	Industrial Process Control	4	3	1		4	40	60	100	3 Hrs
EI-PRPC-24	Process Control Lab	1.5			3	3	30	45	75	3 Hrs
EI-PROE-26	Open Elective- V Lab	1.5			3	3	30	45	75	3 Hrs
EI-PRPC-28	Seminar	1.0			2	2	20	30	50	3 Hrs
EI-PROJ-04	Major Project	4			8	8	40	60	100	3 Hrs
	Total	19	8	3	16	27	240	360	600	

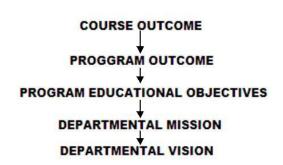
B. Tech. 4th YEAR (SEMESTER–VIII) (w.e.f. 2023-24)

Open 1	Elective V	Progra	am Elective V
i.	Artificial Intelligence	i.	Utilization of Electrical Energy
ii.	Robotics	ii.	Instrumentation and System Design
iii.	High Voltage Engineering	iii.	Fuzzy Logic Control
		iv.	Optical Instrumentation
		v.	Remote Sensing

APPENDIX A

Outcome Based Education

Outcome-based education (OBE) is an educational theory that bases each part of an educational system around goals (outcomes). By the end of the educational experience each student should have achieved the goal. There is no specified style of teaching or assessment in OBE; instead classes, opportunities, and assessments should all help students achieve the specified outcomes.


There are three educational Outcomes as defined by the National Board of Accreditation:

Program Educational Objectives: The Educational objectives of an engineering degree program are the statements that describe the expected achievements of graduate in their career and also in particular what the graduates are expected to perform and achieve during the first few years after graduation. [nbaindia.org]

Program Outcomes: What the student would demonstrate upon graduation. Graduate attributes are separately listed in Appendix C

Course Outcome: The specific outcome/s of each course/subject that is a part of the program curriculum. Each subject/course is expected to have a set of Course Outcomes

Mapping of Outcomes

APPENDIX B

The Graduate Attributes of NBA

Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

Conduct investigations of complex problems: The problems that cannot be solved by straightforward application of knowledge, theories and techniques applicable to the engineering discipline.

* That may not have a unique solution. For example, a design problem can be solved in many ways and lead to multiple possible solutions. Hat require consideration of appropriate constraints/requirements not explicitly given in the problem statement (like: cost, power requirement, durability, product life, etc.) which need to be defined (modeled) within appropriate mathematical framework that often require use of modern computational concepts and tools.#

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

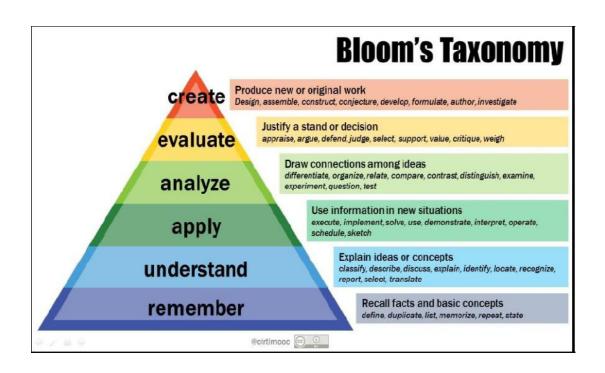
Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.


Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

APPENDIX C

BLOOM'S TAXONOMY

Bloom's taxonomy is a classification system used to define and distinguish different levels of human cognition—i.e., thinking, learning, and understanding. Educators have typically used Bloom's taxonomy to inform or guide the development of **assessments** (tests and other evaluations of student learning), **curriculum** (units, lessons, projects, and other learning activities), and instructional methods such as questioning strategies. **[eduglosarry.org]**

B. Tech Electrical and Instrumentation Engineering SYLLABI OF EXAMINATIONS B. Tech 1st Year (2020-21)

Course	Code:	Course Name: Physics	L T P C					С	
EI-BS-1		•		3	1	-		4	
Year an		1 st Yr.	Contact hours per	we	ek: (4Hr	s)		
Semeste		1 st Semester	Exam: (3 Hrs)						
-	uisite of	NIL		valu	atio				
course	<u></u>		CIE: 40			SEF	E: 60		
	Objective		<u> </u>						
		o the students with basic concepts o	<u> </u>	1 1	1				
		equate knowledge about tools at an i				huai	<u>aal mmal</u>	alama	
		dents to serve them well towards ta			-		-	bienis.	
^		bwledge and applications that they w							
		owledge about different applications				te el	ectronic	cs etc.	
-		s: On completion of the course, s	student would be ab.	ie to					
<u>CO1</u>		nd the applications of Optics nd components of a laser system and	d their applications						
CO2		· ·	<u>^</u>		on		anatio		
CO3		nd significance and normalization on d Classification of solids on the ba		0			1	1	
CO4		vity by Hall measurements	isis of Danu theory and	I HOW		least	lle		
CO5		d Electro and magneto statics, Maxwel	l's equations						
CO5		SER and Optical fiber for various phys	1	nents					
Modul	прру ЦА	COURSE SYLI		nemes	•		Hrs		
e No		CONTENTS OF MODULE						CO'S	
0110	Electros			elect	rosta	ntic			
	Electrostatics and Magnetostatics: Divergence and curl of electrostatic field; Laplace's and Poisson's equations for electrostatic potential,								
		tatic field and charge density. ele							
		ctrics. Differential and integral							
		, divergence and curl Line, surfa							
1		ence theorem, Stokes theore					8	CO5	
	Divergence of magnetic induction, Biot savarts law. Magnetic vector								
	potential	, Amperes circuital law, Fara	aday's law of elec	tron	nagne	etic			
	induction	n, the basic equations of electronic electro	romagnetism, gener	aliza	tion	of			
	-	law, Maxwell's equations. Ener		gneti	ic fie	ld;			
		energy and Poynting vector with							
		CAL OPTICS: Interference: D							
	biprism,	1	-		chels				
	interfero	· 11			etwe			G G A	
2		fer and Fresnel diffraction. Frau					8	CO1	
		ansmission diffraction grating,							
	-	Polarization, quarter wave plate	e, half wave plate, r	N1CO	pris	m,			
	Polarime		le stuant ag	!	d				
		ature of particles, Solid state e						CO2	
3		ivity: Wave nature of Particle lent Schrodinger equation for	-				9	CO3 CO4	
	maepent	ione somouniger equation it		Бур	LIAL	UII			

Sal?

	values, Free-particle wavefunction and wave-packets, Uncertainty principle. Free electron theory, Band theory of solids, Classification of solids on the basis of band theory, Fermi-Dirac probability function, Position of Fermi level in intrinsic Temperature variation of carrier concentration in extrinsic semiconductors. Electron and hole concentrations in intrinsic semiconductors, Intrinsic density, Intrinsic conductivity, Extrinsic conductivity, Law of mass action, Fermi level in extrinsic semiconductors, Electrical conduction in Extrinsic semiconductors, Diffusion length and mean life time, Hall Effect. Dielectric and Magnetic materials: Introduction, Nonpolar molecules, Polar molecules, Polar and nonpolar molecules in an electric field,		
4	Folar molecules, Polar and honpolar molecules in an electric field, Electric polarization of matter, Electric polarization vector, Electric field in dielectrics, Gauss's law in dielectrics, Relation between three electric vectors D, E and P, Effect of dielectric on capacitance. Magnetisation of matter (Origin of Magnetic Moment, Diamagnetism, Paramagnetism, Ferromagnetism, B, H, M), B-H curve.	4	CO5
5	 LASER: Spontaneous and stimulated emissions, Laser action, characteristics of laser beam-concepts of coherence, He-Ne and semiconductor lasers (simple ideas), applications. FIBRE OPTICS: Propagation of light in fibres, numerical aperture, single mode and multi-mode fibres, dispersion, applications. 	7	CO1 CO2 CO6

Text Books:

- 1. Perspectives of Modern Physics Arthur Beiser (TMH), 2001
- 2. A Text Book of Optics Brij Lal & Subramanyam, Chand & Co.1981
- 3. David Griffiths, Introduction to Electrodynamics, PHI 2004
- 4. Eisberg and Resnick, Introduction to Quantum Physics, AP, 1985
- 5. Ghatak, Optics, PHI, 1995
- 6. Introduction to Solid State Physics (VII Ed.) Charles Kittel (John Wiley)., 2007

Suggested Reference Books:

- 1. Halliday and Resnick, Physics, 1981
- 2. W. Saslow, Electricity, magnetism and light
- 3. O. Svelto, Principles of Lasers
- 4. Introduction to Solid State Physics (VII Ed.) Charles Kittel (John Wiley)., 2007
- 5. Quantum Mechanics Powell and Crasemann (Oxford & IBH)

Reference Books:

- 1. Classical Electrodynamics, By J D Jacson, Wiley Publishers, 1970
- 2. Solid State Physics A. J. Dekkar. ; Mac Millan India Limited, 1981
- 3. Fundamentals of Magnetism- B. Cullity Addison-Wiley Publishing, 2008
- 4. Semiconductor devices, physics and technology, S. M. Sze Wiley, 1981
- 5. Introduction to solid state physics C. Kittel, Wiley, 20011

Note for Examiner(s): Question paper will comprise three sections,

1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.

- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks each.

Course Code: EI-BS-103Course Name: Mathematics-I				L 2	T 1	P 0	C 3
Year and		1 st Year	Contact hours per week: (3 Hrs				
Semester		I st Semester	Exam: (3 Hrs)				
Pre-requisit	o of	The course requires prior	Evalu	ation	l		
-		knowledge of Differentiation,	CIE: 40		SE	Г. 6	0
course		Integration and vector algebra.	CIE: 40		SEE: 60		
Course Obj	ectives:						
1. To apply 1	Differer	ntiation to geometric principles and ex	kpand functions into s	series	•		
2. To unders	stand Pa	rtial differentiation and apply to vario	ous mathematical situ	ations	s.		
3. To gain ki	nowledg	ge on fundamentals of Multiple Integr	als and their Applica	tions.			
4. To explore	e how to	o differentiate and integrate Vectors.	To provide good unde	erstar	nding	g of	
interrelation	on betw	veen vector differentiation and Integra	tion through Basic Tl	heore	ms.		
Course Out	comes:	On completion of the course, student	would be able to:				
CO1	Unders	stand the Differentiation and Integration	on applications.				
CO2	Unders	erstand and solve Partial differentiation and Multiple integrals for various					
	problei						
CO3	Apply	the knowledge of Differentiation to g	eometric principles a	nd ex	panc	1	
		ons into series.					
CO4	Studen	ts should be able to use his knowledg	e of Vector analysis a	s and relate it to			
	fluid fl	Č .					

Module	COURSE SYLLABUS		COs
No	CONTENTS OF MODULE		COS
1	Applications of Differentiation: Taylor's & Maclaurin's series, Expansion by use of known series, Expansion by forming a differential equation, Asymptotes, Curvature, Tracing of Cartesian curves.	6	CO1, CO2, CO3
2	Partial Differentiation & its Applications: Euler's theorem, Jacobian, Errors and approximations, Maxima-minima	6	CO1, CO2,

	of functions of two variables, Lagrange's method of undetermined multipliers.		CO3
3	 Double Integral: Change of order of integration Double integral in polar coordinates, Applications of double integral to find area enclosed by plane curves volume of solids of revolution. Triple integral: Volume of solids, 	6	CO1, CO2, CO3
4	 Vector Calculus: Differentiation of vectors: Gradient of a scalar field and directional derivative, divergence, and curl of a vector field, Del applied twice to point functions, Del applied to product of point functions. Integration of vectors: line integral, surface integral, volume integral, Green's, Stoke's and Gauss divergence theorems (without proof). 	6	CO1, CO2, CO3, CO4

TEXT BOOKS:

- 1. Advanced Engineering Mathematics: E. Kreyszig. 10th Edition, John Wiley & sons,
- 2. Higher Engineering Mathematics: B.S. Grewal. 43rd Edition, Khanna Publications

REFERENCE BOOKS:

- 1. Engineering Mathematics Part-I: S.S. Sastry, 4th Edition, PHI.
- 2. Advanced Engineering Mathematics: R.K. Jain, S.R.K. Iyengar, 3rd Edition, Narosa Publications
- 3. Advanced Engineering Mathematics: Michael D. Greenberg, 2nd Edition, Pearson Publications.

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code:	Course Name: Basic Electrical Engineering			Τ	P	С
EI-ES-105				1	-	4
Year and	1 st year	Contact hours per week: (4Hrs))
Semester	1 st Semester Exam: (3hrs.)					
Pre-requisite of NIL Evaluation						

course		CIE: 40	SEE: 60					
Course C	Objectives:							
1. To stu	1. To study basics theory, laws and theorem of DC electrical networks.							
2. To stu	2. To study working of various electrical AC circuits, magnetic circuits and its parameters.							
3. To stu	3. To study the working theory of AC and DC electrical machines.							
4. To int	troduce the domestic wiring and earthing in a	electrical system.						
Course C	Dutcomes: On completion of the course, stud	lent would be able to:						
CO1	To understand the basic concept of elect	rical circuits, electrical	l laws and network					
	theorems.							
CO2	To understand the basic components and w	orking theory of DC and	d AC network.					
CO3	To understand the parameters of electrical	networks and equipmen	ts.					
CO4	To understand the circuits and working of	various electrical machin	nes.					
CO5	To impart basic technical knowledge of	electrical wiring syste	em and apply it to					
	technological fields.							

Modu le No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	DC Circuits: Electrical circuit elements (Resistance, inductance and Capacitance), voltage and current sources, Kirchoff current and voltage laws, analysis of simple circuits with dc excitation. Superposition, Thevenin and Norton Theorems. Time-domain analysis of first-order RL and RC circuits.	7	CO1, CO2
2	AC Circuits: Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor, power factor improvement and its significance. Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance. Three-phase balanced circuits, voltage and current relations in star and delta connections.3-phase power equation, measurement of three phase power by two wattmeter method.	7	CO1, CO2, CO3
3	Transformers: Magnetic materials, BH characteristics, working of ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.	7	CO3, CO4
4	Electrical Rotating Machines: Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Loss components and efficiency, starting and speed control of induction motor. Construction and working of Single-phase induction motor and torque-speed characteristic. Construction and working of DC machine and speed control of separately dc motor. Construction and working of synchronous generators.	8	CO3, CO4
5	Electrical Installations: Components of domestic wiring system, earthing system and its significance. Elementary calculations for energy consumption.	4	CO3, CO5

Suggested Text / Reference Books:

- 1. D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.
- 2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.
- 3. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
- 4. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- 5. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.
- 6. B.L. Theraja and A. K. Theraja, "Electrical Technology", Vol-I, S.Chand.

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course EI-HSN		Course Name: English		L 2	T -	P -	C 2	
Year a	nd	1 st Yr.	Contact hours per we			er week: (2Hrs)		
Semest	er	1 st Semester	Exam: (3 Hrs)					
Pre-rec	uisite of	NIL	Evalua	ation				
course	_	NIL	CIE: 40	SEE: 60			0	
Course	Objective	es:						
To mak	e student u	understand the details of functional Er	nglish.					
To mak	e student l	earn the effective communication skill	lls					
Course	Outcome	s: On completion of the course, stude	ent would be able to:					
CO1	The stude	ent will acquire basic proficiency in E	nglish					
CO2	Writing and speaking skills							
CO3	Reading and listening skills							
CO4	Vocabulary enrichment							

Program Name:		T1	IT		
Program Namo	K Toch	- Hildefriegt	and Instrum	nontotion	Fnainoorina
I I UZI AIII I MAIIIC.	D. IUII.	-Littilai	anu monu	псптаноп	

Modul e No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Vocabulary Building: The concept of Word Formation Root words from foreign languages and their use in English Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives.	3	CO1, CO2, CO3, CO4

	Synonyms, antonyms, and standard abbreviations.		
2	Basic Writing Skills: Sentence Structures, Use of phrases and clauses in sentences, Importance of proper punctuation, Creating coherence, Organizing principles of paragraphs in documents, Techniques for writing precisely	5	CO2
3	Identifying Common Errors in Writing:Subject-verb agreement,Noun-pronoun agreement,Misplaced modifiers,Articles,Prepositions,Redundancies,Clichés	4	CO1
4	Nature and Style of sensible Writing:Describing, Defining,Classifying, Providing examples or evidence, writing introduction and conclusion	5	CO1, CO2
5	Writing Practices: Comprehension, Précis Writing, Essay Writing	3	CO1, CO2
6	Oral Communication (This unit involves interactive practice sessions in Language Lab): Listening Comprehension, Pronunciation, Intonation, Stress and Rhythm, Common Everyday Situations: Conversations and Dialogues, Communication at Workplace, Interviews, Formal Presentations	4	CO1, CO3

Text Books:

- 1. Practical English Usage. Michael Swan. OUP.1995.
- 2. Remedial English Grammar. F.T. Wood. Macmillan.2007
- 3. On Writing Well. William Zinsser. Harper Resource Book.2001
- **4.** Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press.2006.
- 5. Communication Skills. Sanjay Kumar and Pushp Lata. Oxford University Press.2011.
- 6. Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

	1 Togram Name. D. Tech, Electrical and Instrumentation Engineering								
Course		Course Name: Physics Lab	: Physics Lab		Т	P	<u>C</u>		
EI-PRI	38-01	•		-	-	3	1.5		
Year a	nd	1 st Yr.	Contact hours per w	eek:	(3I	Hrs)			
Semest	er	1 st Semester	Exam: (3 Hrs)						
Pre-rec	uisite of	NIL	Evalua	tion					
course		NIL	CIE: 30		SE	E: 45	5		
Course	Objective	es:							
1. Und	erstand the	e applications of Optics							
2. Und	erstand co	mponents of a laser system and their	applications						
3. Und	erstand to	measure conductivity in semiconduc	tors						
4. Und	erstand ba	sics of quantum principles							
Course	Outcome	s: On completion of the course, stude	ent would be able to:						
CO1	Experime	ents in Optics/ principles							
CO2	Experime	Experiments in acoustics/ applications							
CO3	Experime	ents in Lasers/ optical principles							
CO4	Experime	nents in Magnetism/ applications							
CO5	Experime	ents in Semiconductor conductivity/ properties							

Program Name: B. Tech.-Electrical and Instrumentation Engineering

Expt.	COURSE SYLLABUS	COs
No	CONTENTS OF MODULE	COS
1	Magnetic field from Helmholtz coil; To study the variation of magnetic field	
1	with distance and to find the radius of coil by Stewart and Gee's apparatus	
2	To find the wavelength of sodium light by Newton's rings experiment.	
3	To find the wavelength of sodium light by Fresnel's biprism experiment.	
4	To find the wavelength of various colours of white light with the help of a	CO1
4	plane transmission diffraction grating.	CO2
5	To find the wavelength of sodium light by Michelson interferometer.	CO3
6	To find the resolving power of a telescope.	CO4
7	To find the specific rotation of sugar solution by using a polarimeter.	
8	To compare the capacitances of two capacitors by Density bridge and hence	
0	to find the dielectric constant of a medium.	
9	To find the frequency of A.C. mains by using sonometer.	
10	To Find Value of high Resistance by substitution method	
11	To Find the value of high resistance by leakage method	
12	To Convert a galvanometer in to an Ammeter of given range.	
13	To study laser beam characteristics, diffraction.	
14	To find the value of e/m for electrons by Helical method, Measurement of	
14	Lorentz force in a vacuum tube.	
15	To find the ionization potential of Mercury using a thyratron tube	
16	To find the value of Planck's constant by using a photo electric cell.	
17	To find the value of Hall Co-efficient of semi-conductor.	
18	To find the band gap of intrinsic semi-conductor using four probe method.	
19	To calculate the hysteresis loss by tracing a B-H curve.	

Text Books:

- 1. Advanced Practical Physics B.L. Worshnop and H.T. Flint (KPH)
- 2. Practical Physics S.L.Gupta &V.Kumar (Pragati Prakashan).
- 3. Advanced Practical Physics Vol.I& II Chauhan & Singh (Pragati Prakashan).

Program Name: B. Tech.-Electrical and Instrumentation Engineering

	Course Code: EI-PRES-03 Course Name: Engineering Graphics and Design 1		cs and Design lab	L T P C 3 1.5	
Year and		1 st Yr.	Contact hours per	week: (3Hrs)	
Semester		1 st Semester	Exam: (3 Hrs)		
Pre-requi	isite of	NIL	Evalu	ation	
course		INIL	CIE: 40	SEE: 60	
Course O	bjective	es:			
1. To m	ake stud	ents understand about construction of	f various types of Curv	ves and scales.	
	ake stud ar solids	ents understand about orthographic parts.	rojections of Point, Li	ne, Plane and	
3. To m	ake stud	ents understand about sectional views	s and development of	right regular solids	
Course O	outcome	s: On completion of the course, stude	ent would be able to:		
CO1 T	To learn about construction of various types of Curves and scales.				
CO2 T	To learn about orthographic projections of Point, Line and Plane				
CO3 T	To learn about orthographic projections of regular solids.				
СО4 Т	o learn a	about sectional views and development	nt of right regular soli	ds	

Module No	COURSE SYLLABUS CONTENTS OF MODULE	COs				
1	Introduction to Engineering Drawing covering: Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales;					
2	Orthographic Projections covering: Principles of Orthographic Projections-Conventions - Projections of Points and Projection of lines inclined to both planes; Projections of planes inclined Planes - Auxiliary Planes;	CO1, CO2, CO3,				
3	Projections of Regular Solids: those inclined to both the Planes- (Pyramid, Prism, Cone and Cylinder) Auxiliary Views. Floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc.	CO4				
4	Section of Solids: Sectional View of simple right regular solids, Development of Surfaces of right regular solids (Pyramid, Prism, Cone and Cylinder)					

Suggested Text/Reference Books:

1. Bhatt N.D., Panchal V.M. & Ingle P.R., (2014), Engineering Drawing, Charotar Publishing House

- 2. Shah, M.B. & Rana B.C. (2008), Engineering Drawing and Computer Graphics, Pearson Education
- 3. Agrawal B. & Agrawal C. M. (2012), Engineering Graphics, TMHPublication
- 4. Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publishers

	Program	Name: B. Tec	nElectrical and	l Instrumenta	tion Eng	ginee	ring		
Course	e Code:	Course Name	Basic Electric	l I ab		L	Τ	P	С
EI-PRI	ES-05		. Dasie Lieetrica			0	0	2	1
Year a	nd Semester	1 st Year		Contact ho	-	week	: (21	Hrs)
		1 st Semester		Exam: (3h	/				
	quisite of	Basic	Science		Evalı	latio			
course		2001		CIE:	20		SE	E: 3	30
	e Objectives:								
			eorems of electri						
			nd AC electric n						
			ents and their ap						
			or electrical labo		11.				
	1	<u> </u>	the course, stuc			1 .1			1
CO1			ledge of electric	circuit laws a	nd netwo	rk the	eorei	ns a	nd
000		to laboratory w		, · · ·,	11	1 1	ı•	C	1
CO2		alyze the perio	rmance of an ele	ctric circuits a	s well as	nana	ling	ore	lectric
CO3	equipments.	the principle	of operation on	d the main fact	was of a	laatui	0.10.0	turio	ult and
COS	their applica		s of operation an	i the main lead	ulles of e	lectri	c ne	lwoi	rk and
CO4			electrical comp	onants and the	ir rotings	Dat	alor	alzi	llato
04	1	ent technologic	1	onents and the	in ratings	. Dev	eiot) SKI	115 10
Expt.	use in unier	ent teennologie	COURSE SYL	LARUS					
No		С	ONTENTS OF						COs
1	To study and		off's current law		's voltage	e law.			
2		l verify Theven			U				
3	To study and	l verify Norton'	s theorem.						
4	To study and	l verify Superpo	sition theorem.						
5	To study and	verify Maximu	m power transfe	r theorem.					CO1
6	To study the	operation of se	ries RLC networ	k and determir	e its para	amete	rs.		CO2
7			rallel RLC netw						CO3
8	To study the	characteristics	of series RLC ne	twork under re	esonance	cond	ition	ı 🗍	CO4
0	and determin	e its resonance	frequency from	resonance curv	/e.				
9	•		of parallel RLC						
			resonance freque						
10			neasurement by	using two wat	meter's i	metho	od fo	r	
10		e phase load.		<u> </u>					
11	-	basic operation	and equivalent	circuit of a sing	gle-phase				
	transformer.	~	~		-				
12			ort Circuit tests o		transform	ner.			
13			phase transform						
14			of fluorescent la	*					
15	To study the	characteristics	of tungsten filan	ent lamps.					

Text/Reference Books:

- 1. D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.
- 2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.
- 3. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.

	Prog	ram Name: B. TechElectrical and	Instrumentation Eng	gineering
Course Code: EI-PRHSM-07 Course Name: Language Lab.				L T P C - - 2 1
Ye	ar and	1 st Yr.	Contact hours per	week: (2Hrs)
Sei	mester	1 st Semester		
Pr	e-requisite of	Functional English	Evalu	ation
col	urse		CIE: 00	SEE: 00
Co	ourse Objecti	ves:		
1.	Graduates w	ill attain skills to conduct experiments/	investigations and inter-	erpret data with
	reference to	systems and standards		
2.	Graduates w	ill have ability to communicate effective	vely in written, oral an	d instrumentation
	formats to p	it forth solutions and prepare detailed e	engineering report in the	he process and
	automation i	ndustries.		
3.	Graduates w	ill be able to apply the knowledge, skil	l and attitude as a tean	n player in
	initiating, ex	ecuting and managing projects in the a	reas of design, manufa	acture, marketing
	and entrepre	neurship in multi-disciplinary environr	nents.	
Co	ourse Outcon	es: On completion of the course, stude	ent would be able to:	
CC	D1 Imparti	ng the role of communicative ability as	one of the soft skills	needed for
	placeme	ent		
CC	D2 Develop	bing communicative ability and soft sk	ills needed for placem	ent
CC		students Industry-Ready through incu	*	

Expt. No	COURSE SYLLABUS CONTENTS OF MODULE	COs
1	GRAMMAR IN COMMUNICATION: Grammar and Usage – Building Blocks, Homonyms, Subject and Verb Agreement, Error Correction - Grammar Application, Framing Questions – Question words, Verbal Questions, Tags, Giving Replies –Types of Sentences, Listening Comprehension –Listening and Ear training.	
2	ASSERTIVE COMMUNICATION: Listening Comprehension in Cross–Cultural Ambience, Telephonic Conversations/Etiquette, Role Play Activities, Dramatizing Situations- Extempore – Idioms and Phrases	
3	CORPORATE COMMUNICATION: Video Sensitizing, Communicative Courtesy – Interactions – Situational Conversations, Time Management, Stress Management Techniques, Verbal Reasoning, Current Affairs – E Mail Communication / Etiquette	CO1, CO2, CO3
4	PUBLIC SPEAKING: Giving Seminars and Presentations, Nuances of Addressing a Gathering - one to one/ one to a few/ one to many, Communication Process, Visual Aids & their Preparation, Accent Neutralization, Analyzing the Audience, Nonverbal Communication.	
5	INTERVIEW & GD TECHNIQUES: Importance of Body Language –Gestures & Postures and Proxemics, Extempore, Facing the Interview Panel, Interview FAQs, Psychometric Tests and Stress Interviews, Introduction to GD, Mock GD Practices.	

Text Books:

- 1. Bhatnagar R.P. & Rahul Bhargava, "English for Competitive Examinations", Macmillian Publishers, India, 1989, ISBN: 9780333925591
- 2. Devadoss K. & Malathy P., "Career Skills for Engineers", National Book Publishers, Chennai, 2013.
- 3. Aggarwal R.S., "A Modern Approach to Verbal & Non–Verbal Reasoning", S.Chand Publishers, India, 2012, ISBN : 8121905516

Course Code: EI-BS-102Course Name: ChemistryLT31				P -	C 4		
Year a	nd	1 st Yr.	Contact hours per v	veek:	(4H	Irs)	J
Semest	er	2 nd Semester	Exam: (3 Hrs)				
Pre-req	uisite of	NIL	Evalu	ation			
course	-	INIL	CIE: 40		SEI	E: 6	0
Course	Objective	es:					
	-	eloped in this course will aid in quant roduced at the 10+2 levels in schools.		ncept	s in	che	mistry
Techno modific	U .	ng increasingly based on the electron	ic, atomic and molecul	ar lev	vel		
-	•	s more than 100 years old and to unde e description of all chemical processe	-	nanon	neter	· lev	els,
Course	Outcome	s: On completion of the course, stude	nt would be able to:				
CO1	Analyze molecula	microscopic chemistry in terms of ato r forces.	mic and molecular orb	oitals	and i	inter	[
CO2	Apply the	e knowledge of conductance to explai	n various electrochem	ical p	henc	mei	non.
CO3	Distingui	sh the ranges of the electromagnetic s	pectrum used for exci	ting d	liffer	ent	
	molecula	r energy levels in various spectroscop	ic techniques				
CO4	Rationali	ze bulk properties and processes using	g thermodynamic cons	idera	tions		
CO5	Rationali	ze periodic properties such as ionizati	on potential, electrone	gativ	ity, c	oxid	ation
		l electronegativity.					
CO6	Distingui	sh between various stereoisomers.					

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Atomic and molecular structure: Schrodinger equation. Particle in a one-dimensional box solution and its applications for molecules. Molecular orbital theory and its applications to the formation of homonuclear (H ₂ , N ₂) and heteronuclear diatomic molecules (NO, CO, CN) Energy level diagrams of diatomics. Pi (p)-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and the energy level diagrams for [Ni(CO) ₄], [Co(NH ₃) ₆], [PtCl ₂ (NH ₃) ₂] and magnetic properties of transition metal complexes and their magnetic properties.	10	CO1, CO2

2	Spectroscopic techniques and applications: Principles of spectroscopy and selection rules. Electronic spectroscopy. Fluorescence spectroscopy and its applications in medicine. Vibrational and rotational spectroscopy of diatomic molecules. Applications. Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI), surface characterization with Auger electron spectroscopy (AES), X-ray Photoelectron Spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS).	10	CO3
3	 Electrochemistry: Conductance of electrolytic solutions, Transference number and its determination by Hittorf method and Moving boundary method, Kohlrausch's law of independent migration of ions, Interionic attraction theory, activity and activity coefficients of strong electrolytes. Use of free energy in chemical equilibria: Thermodynamic functions: Internal energy, enthalpy, entropy and free energy. Estimations of entropy and free energies. Free energy and EMF. Cell potentials, the Nernst equation and applications. pH, Acid-base, oxidation-reduction and solubility equilibria. 	10	CO4
4	 Periodic properties: Effective nuclear charge, penetration of orbitals, variations of <i>s</i>, <i>p</i>, <i>d</i> and <i>f</i> orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries of molecules: H₂O, NH₃, CCl₄, PCl₅, SF₆ and Pt(NH₃)₂Cl₂. Stereochemistry: Representations of 3-dimensional structures, structural isomers and stereoisomers, optical activity, absolute configurations and conformational analysis. 	8	CO4, CO5

Text Books:

- **1.** University chemistry, by B. H.Mahan
- 2. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane
- **3.** Fundamentals of Molecular Spectroscopy, by C. N.Banwell
- 4. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M.S. Krishnan
- 5. Physical Chemistry, by P. W. Atkins
- **6.** Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore, 5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp
- Note for Examiner(s): Question paper will comprise three sections,
- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code: E1-BS-104Course Name: Mathematics-IILTPC2103Year and SemesterIst Year II nd SemesterContact hours per week: (3Hrs)Exam: (3 Hrs)Pre-requisite of courseThe course assumes prior knowledge of topics in Matrices, Differentiation, Partial Fractions, Partial Differentiation.CIE: 40SEE: 60Course Objectives:ITo explore the Properties of Matrices.SEE: 60SEE: 603.To gain know various basic Differential equations and solve them.Intervention of the course, student would be able to:SEE: 60Course Outcomes:On completion of the course, student would be able to:CourseCourseSEE: 60Course Outcomes:On completion of the course, student would be able to:CourseCourseSEE: 60CO1Understand significance and Solve for differential equations and solve them.CO3Understand and apply Laplace Transformations and use them to solve Differential equations.CO2Differentiate between linear and non-linear partial differential equations, equations.Intervential equations and use them to solve Differential equations.CO3Understand and apply Laplace Transformations and use them to solve Differential equations.CO4Differentiate between linear and non-linear partial differential equations, form them related to in hand problems and solve them.Intervential equations, form them	Program Name: B. TechElectrical and Instrumentation Engineering								
SemesterII nd SemesterExam: (3 Hrs)Pre-requisiteThe course assumes prior knowledge of topics in Matrices, Differentiation, Partial Fractions, Partial Differentiation.EvaluationCourse Objectives:Differentiation, Partial Fractions, Partial Differentiation.CIE: 40SEE: 601.To explore the Properties of Matrices.Image: Course of Matrices.Image: Course of Matrices.3.To gain know various basic Differential equations and solve them.Image: Course of Matrices.4.To provide good understanding of Linear and non-linear Partial Differential equations.Course Outcomes:On completion of the course, student would be able to:CO1Understand significance and Solve for different Matrix propertiesCO2Differentiate between linear and non-linear differential equations and solve them.CO3Understand and apply Laplace Transformations and use them to solve Differential equations.CO4Differentiate between linear and non-linear partial differential equations, form them		Course Name. Mathematics_11							
Pre-requisite of courseThe course assumes prior knowledge of topics in Matrices, Differentiation, Partial Fractions, Partial Differentiation.EvaluationCourse Objectives:Differentiation, Partial Fractions, Partial Differentiation.SEE: 601.To explore the Properties of Matrices.SEE: 602.To know various basic Differential equations and solve them.3.To gain knowledge on Laplace transformations and ability to apply them in various problems4.To provide good understanding of Linear and non-linear Partial Differential equations.CO1Understand significance and Solve for different Matrix propertiesCO2Differentiate between linear and non-linear differential equations and solve them.CO3Understand and apply Laplace Transformations and use them to solve Differential equations.CO4Differentiate between linear and non-linear partial differential equations, form them	Year and	I I st Year	· · · · · · · · · · · · · · · · · · ·						
Pre-requisite of courseof topics in Matrices, Differentiation, Partial Fractions, Partial Differentiation.CIE: 40SEE: 60Course Objectives:1. To explore the Properties of Matrices.2. To know various basic Differential equations and solve them.3. To gain knowledge on Laplace transformations and ability to apply them in various problemsCourse Outcomes: On completion of the course, student would be able to:CO1Understand significance and Solve for different Matrix propertiesCO2Differentiate between linear and non-linear differential equations and use them to solve Differential equations.CO4Differentiate between linear and non-linear partial differential equations, form them	Semester	II nd Semester	Exam: (3 Hrs)						
of courseDifferentiation, Partial Fractions, Partial Differentiation.CIE: 40SEE: 60Course Objectives:1. To explore the Properties of Matrices.2. To know various basic Differential equations and solve them.3. To gain knowledge on Laplace transformations and ability to apply them in various problemsCourse Ourse Good understanding of Linear and non-linear Partial Differential equations.COUUnderstand significance and Solve for different Matrix propertiesCO1Understand and apply Laplace Transformations and use them to solve Differential equations.CO3Differentiate between linear and non-linear partial differential equations, form themCO4Differentiate between linear and non-linear partial differential equations, form them		The course assumes prior knowledge	Evalua	tion	tion				
Partial Differentiation. Course Objectives: 1. To explore the Properties of Matrices. 2. To know various basic Differential equations and solve them. 3. To gain knowledge on Laplace transformations and ability to apply them in various problems 4. To provide good understanding of Linear and non-linear Partial Differential equations. Course Outcomes: On completion of the course, student would be able to: CO1 Understand significance and Solve for different Matrix properties CO2 Differentiate between linear and non-linear differential equations and solve them. CO3 Understand and apply Laplace Transformations and use them to solve Differential equations. CO4 Differentiate between linear and non-linear partial differential equations, form them	Pre-requ	isite of topics in Matrices,							
Course Objectives:1. To explore the Properties of Matrices.2. To know various basic Differential equations and solve them.3. To gain knowledge on Laplace transformations and ability to apply them in various problems4. To provide good understanding of Linear and non-linear Partial Differential equations.Course Outcomes: On completion of the course, student would be able to:CO1Understand significance and Solve for different Matrix propertiesCO2Differentiate between linear and non-linear differential equations and solve them.CO3Understand and apply Laplace Transformations and use them to solve Differential equations.CO4Differentiate between linear and non-linear partial differential equations, form them	of course	Differentiation, Partial Fractions,	CIE: 40		SE	E: 6)		
 To explore the Properties of Matrices. To know various basic Differential equations and solve them. To gain knowledge on Laplace transformations and ability to apply them in various problems To provide good understanding of Linear and non-linear Partial Differential equations. Course Outcomes: On completion of the course, student would be able to: CO1 Understand significance and Solve for different Matrix properties CO2 Differentiate between linear and non-linear differential equations and solve them. CO3 Understand and apply Laplace Transformations and use them to solve Differential equations. CO4 Differentiate between linear and non-linear partial differential equations, form them 		Partial Differentiation.							
 To know various basic Differential equations and solve them. To gain knowledge on Laplace transformations and ability to apply them in various problems To provide good understanding of Linear and non-linear Partial Differential equations. Course Outcomes: On completion of the course, student would be able to: CO1 Understand significance and Solve for different Matrix properties CO2 Differentiate between linear and non-linear differential equations and solve them. CO3 Understand and apply Laplace Transformations and use them to solve Differential equations. CO4 Differentiate between linear and non-linear partial differential equations, form them 	Course (Objectives:							
 3. To gain knowledge on Laplace transformations and ability to apply them in various problems 4. To provide good understanding of Linear and non-linear Partial Differential equations. Course Outcomes: On completion of the course, student would be able to: CO1 Understand significance and Solve for different Matrix properties CO2 Differentiate between linear and non-linear differential equations and solve them. CO3 Understand and apply Laplace Transformations and use them to solve Differential equations. CO4 Differentiate between linear and non-linear partial differential equations, form them 	1. To e	xplore the Properties of Matrices.							
problems4. To provide good understanding of Linear and non-linear Partial Differential equations.Course Outcomes: On completion of the course, student would be able to:CO1Understand significance and Solve for different Matrix propertiesCO2Differentiate between linear and non-linear differential equations and solve them.CO3Understand and apply Laplace Transformations and use them to solve Differential equations.CO4Differentiate between linear and non-linear partial differential equations, form them	2. To k	now various basic Differential equations and	solve them.						
 4. To provide good understanding of Linear and non-linear Partial Differential equations. Course Outcomes: On completion of the course, student would be able to: CO1 Understand significance and Solve for different Matrix properties CO2 Differentiate between linear and non-linear differential equations and solve them. CO3 Understand and apply Laplace Transformations and use them to solve Differential equations. CO4 Differentiate between linear and non-linear partial differential equations, form them 	3. To g	ain knowledge on Laplace transformations an	d ability to apply them in	n var	rious				
Course Outcomes: On completion of the course, student would be able to:CO1Understand significance and Solve for different Matrix propertiesCO2Differentiate between linear and non-linear differential equations and solve them.CO3Understand and apply Laplace Transformations and use them to solve Differential equations.CO4Differentiate between linear and non-linear partial differential equations, form them	prob	ems							
CO1Understand significance and Solve for different Matrix propertiesCO2Differentiate between linear and non-linear differential equations and solve them.CO3Understand and apply Laplace Transformations and use them to solve Differential equations.CO4Differentiate between linear and non-linear partial differential equations, form them	4. To p	rovide good understanding of Linear and non	linear Partial Differentia	al eq	uatio	ns.			
CO2Differentiate between linear and non-linear differential equations and solve them.CO3Understand and apply Laplace Transformations and use them to solve Differential equations.CO4Differentiate between linear and non-linear partial differential equations, form them	Course (Outcomes: On completion of the course, stud	ent would be able to:						
CO3Understand and apply Laplace Transformations and use them to solve Differential equations.CO4Differentiate between linear and non-linear partial differential equations, form them	CO1	Understand significance and Solve for differ	ent Matrix properties						
equations. CO4 Differentiate between linear and non-linear partial differential equations, form them	CO2	Differentiate between linear and non-linear of	ifferential equations and	l solv	ve the	em.			
CO4 Differentiate between linear and non-linear partial differential equations, form them	CO3	Understand and apply Laplace Transformation	ons and use them to solve	e Dif	ffere	ntial			
1 1 /		equations.							
related to in hand problems and solve them.	CO4	Differentiate between linear and non-linear	artial differential equation	ons,	form	then	1		
		related to in hand problems and solve them.	-						

Module	COURSE SYLLABUS	Hrs	COs
No	CONTENTS OF MODULE	1115	COS
1	Matrices & its Applications: , inverse using elementary transformations, consistency of linear system of equations, linear and orthogonal transformations, Eigen values and Eigen vectors, properties of Eigen values.	6	CO1
2	Ordinary Differential Equations & its Applications: Exact differential equations. Equations reducible to exact differential equations. Linear differential equations of second and higher order : complementary function and particular integral, method of variation of parameters to find particular Integral, Cauchy and Legendre linear differential equations, Simultaneous linear Differential equation with constant co-efficients.	6	CO2
3	Laplace Transforms and its Applications: Transforms of derivatives, transforms of integrals, multiplication by t ⁿ , division by t. Evaluation of integrals by Laplace transforms. Laplace transform	6	CO3

	of Unit step function, unit impulse function and periodic function. Inverse Laplace transforms , convolution theorem, application to linear differential equations		
4	Partial Differential Equations and Its Applications: Formation of partial differential equations, Lagrange's linear partial differential equation, First order non-linear partial differential equation, Method of separation of variables and its applications.	6	CO4

TEXT BOOKS:

- 1. Advanced Engineering Mathematics: E. Kreyszig, 10th Edition, John Wiley & son
- 2. Higher Engineering Mathematics: B.S. Grewal. 43rd Edition, Khanna Publication

REFERENCE BOOKS:

- 1. Engineering Mathematics Part-I : S.S. Sastry, 4th Edition, PHI.
- 2. Advanced Engineering Mathematics: R.K. Jain, S.R.K. Iyengar, 3rd Edition, Narosa Publications
- 3. Advanced Engg. Mathematics: Michael D. Greenberg, 2nd Edition, Pearson Publications.

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code: EI-ES-106	Course Name: Programming for Problem Solving		L T P C 3 1 0 4		
Year and	1st Year Contact hours per week: (4Hrs)				
Semester	II nd Semester Exam: (3 Hrs)				
Pre-requisite of		Evaluation			
course	NIL	CIE: 40	SEE: 60		
Course Objective	es:				
1. To explain the problem solving concepts using a computer.					
2. To develop pro	blem solutions for the computer by us	sing problem solving too	ols.		

3 To d	escribe the Programming structure of C language.
4. To co	onvert an Algorithm, Pseudo code and Flowchart into a C program
5. To fi	nd errors and execute a C program
Course	e Outcomes: On completion of the course, student would be able to:
CO1	Understand the fundamental concepts of computerhardware and number systems.
CO2	Apply the basic programming skills of C Language in problem solving.
CO3	Use different data types, decision structures, loops, arrays, strings and functions of C-
	programming to design a computer program.
CO4	Apply dynamic memory concepts with pointers.
CO5	Apply various algorithms in solving sorting problems.
CO6	Apply linear data structures like Stack, Queues and Trees in organizing and traversing
	data.

Modul e No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	 Generations and Classification of Computers - Applications of Computers - Basic Organization of a Computer - Number system - Binary, Decimal, Octal and Hexadecimal – Problems Introduction to C Language: Algorithm, Flowchart, Pseudo-code solution to problem, Basic concepts of a C program, Declaration, Assignment & Print statement, Types of operators and expressions, Programming examples and exercise. Branching and Looping: Two-way selection (if, if- else, nested if- else, cascaded if-else), switch statement, ternary operator? Goto, Loops (For, do- while, while) in C, break and continue, programming examples and exercises. 	9	CO1, CO2, CO3
2	 Functions: User defined functions-function definition, function declaration, function call, Formal and actual parameters, Categories of functions, Passing parameters to functions- Pass by value, Pass by reference, Recursion- types of recursion, programming example s and exercises. Arrays and Strings: Arrays: Classification of arrays, Storing value in arrays, Using arrays with Functions- passing individual elements of array, passing the whole array, Multidimensional arrays-addition and multiplication of matrices, Searching and Sorting-Linear search, Binary search, Bubble sort, String: Declaring, Initializing, Printing and reading strings, String input and output functions, String handling functions, Arrays of strings, programming examples and Exercises. 	9	CO2, CO3, CO5
3	 Structures and File Management: Basics of structures-structure data types, type definition, accessing structures, Structure operations, Complex structures-nested structures, structures containing arrays, Array of structures, Structures and Functions, File Management: Creating a file, Declaring file pointer variable, Modes of a file, Opening and closing the files, Input and output operations, Programming examples and exercises. 	9	CO3, CO4
4	Pointers: Pointers concepts, Pointers and functions, Arrays and	9	CO4,

pointers, address arithmetic, Character pointer and functions, Pointers to pointer, Dynamic allocations methods- malloc(), calloc(), realloc(),free(), Array of pointers, Introduction to Data Structures: Primitive and non-primitive data types, Definition and applications of Stacks, Queues, Linked Lists and Trees	CO6
--	-----

Text Books:

- 1. "The C ProgrammingLanguage", BrianW. Kernighan and Dennis M. Ritchie, 2ndEdition, PHI, 2012.
- 2. "Problem Solving with C ", Jacqueline Jones &Keith Harrow, 1stEdition, Pearson2011.
- 3. "Let Us C", by Yashavant Kanetkar, 5th Edition, BPB

Reference Books:

- 1. "Computer Concepts and C Programming", Vikas Gupta, Dreamtech Press2013.
- 2. "Programming with C ", R. S. Bichkar, University Press, 2012.
- 3. "Computer Programming in C ", V. Rajaraman, PHI, 2013.

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code: EI-ES-108	Course Name: Basic Electronics Er	ngineering	L T P C 2 1 - 3			
Year and	1 st Yr.	Contact hours per w	eek: (3Hrs)			
Semester	2 nd Semester	Exam: (3 Hrs)				
Due vegnigite of	EI-BS-101, Physics-I First	Evaluation				
Pre-requisite of course	Semester, Introduction to Solid	CIE: 40	SEE: 60			
Course Objective	State Physics					
1. To impart the basic concepts of Semi-Conductor Electronics.						
 To lay the foundation to understand the various semi-conductor devices. 						

3.	To impart the basic concept of design and study of various circuits in Electronics.			
4.	4. To lay the foundation for the advance courses in electronics.			
Course	Course Outcomes: On completion of the course, student would be able to:			
CO1	Understand the principles of semiconductor Physics and foundation of various semi-			
	conductor devices.			
CO2	Understand transistors as an amplifier and as a switch and various design parameter of			
	an amplifier.			
CO3	Know the concept of feedback in amplifier and oscillator and design of different			
	oscillator.			
CO4	Understand the constructional geometry of FET family and FET amplifier circuit with a			
	view towards reduced power consumption.			

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Semiconductors p-type and n-type, pn junction diodes and energy band structure, pn junction as a circuit element and its characteristics, half wave and full wave rectifier circuits, basic filter circuits, clipper & clamper circuit. Zener diode and its applications as a voltage regulator. LED its characteristics construction & applications.	6	CO1
2	Transistor PNP and NPN- its fabrication and Characteristics in different configurations. Biasing in transistors, Concept of d.c. and a.c. load line and operating point selection. Transistor action as an amplifier and as a switch, Various amplifiers configurations, Design of amplifier and determination of parameters voltage gain current gain input resistance and output resistance & power gain.	6	CO2
3	Concept and need of feedback in amplifiers, Types of feedback in amplifiers, their effect on the amplifier parameters with their advantages and disadvantages, Cascading in amplifiers, Frequency response of RC Coupled amplifiers with explanation, Oscillators circuits and their types with explanation on their design difference, Multivibrators and their types, design and their applications.	6	CO2 CO3
4	Field Effect Transistors, Constructions and their types, Characteristics of JFET, MOSFET their types and Various amplifier configurations using FET. Characteristics and Construction of SCR, TRIAC, UJT and their basic areas applications.	6	CO4

Reference Books:

- 1. Electronic Devices & Circuits Boylstad & Nashelsky.
- 2. Integrated Electronics By Millman & Halkias.
- 3. Electronic Principles Malvino
- 4. Principles of Electronics V.K. Mehta, Shalu Melta.
- 5. Electronic Circuits Donald L. Shilling & Charles Belowl

Note for Examiner(s): Question paper will comprise three sections,

1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.

- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

	Program Name: B. TechElectrical and In		8			
Code: 112	Course Name: Environmental Science		<u>C</u>			
d	1 st Yr.	Contact hours per week: (3Hrs)				
r	2 nd Semester	Exam: (3 Hrs)		(~)	
uisite of	NII	Evalua	ation			
	NIL	CIE: 40 ^{**}	SEE: 60 ^{**}			**
Objective	es:					
concepts	from economic, political, and social	analysis as they pertain	to th	e de	esigr	1 and
on of envi	ronmental policies and institutions.					
oncepts an	d methods from ecological and physic	cal sciences and their a	pplica	atio	n in	
the ethic	al, cross-cultural, and historical conte	xt of environmental iss	ues a	nd t	he li	nks
human ai	nd natural systems.					
duce roles	and identities of citizens in a comple	x and interconnected w	orld.			
Outcome	s: On completion of the course, stude	nt would be able to:				
Understa	nd key concepts from economic, polit	ical, and social analysis	s as tł	ney	pert	ain to
the design	n and evaluation of environmental pol	licies and institutions.		•	-	
Apprecia	te concepts and methods from ecologi	ical and physical science	es an	d th	neir	
Apprecia	te the ethical, cross-cultural, and histo	orical context of environ	nmen	tal i	ssue	s and
Reflect cr	ritically about their roles and identities	s as citizens, consumer	s and			
environm						
	d r uisite of Objective concepts on of envi oncepts an nental pro- the ethic human an duce roles Outcome Understat the design Apprecia applicatio Apprecia the links Reflect com	Course Name: Environmental Scient d 1 st Yr. r 2 nd Semester uisite of NIL Objectives: NIL concepts from economic, political, and social on of environmental policies and institutions. Institutions. on of environmental policies and institutions. Institutions. oncepts and methods from ecological and physic Institutions. oncepts and identities of citizens in a complete Institutions. Outcomes: On completion of the course, stude Understand key concepts from economic, polit the design and evaluation of environmental pol Appreciate concepts and methods from ecological application in environmental problem solving. Appreciate the ethical, cross-cultural, and histor the links between human and natural systems. Reflect critically about their roles and identitie	Course Name: Environmental Science d 1st Yr. Contact hours per w z nd Semester Exam: (3 Hrs) uisite of NIL Evalua Objectives: Concepts from economic, political, and social analysis as they pertain on of environmental policies and institutions. Evalua or oncepts and methods from ecological and physical sciences and their amental problem solving. Image: Course of the ethical, cross-cultural, and historical context of environmental iss human and natural systems. duce roles and identities of citizens in a complex and interconnected w Outcomes: On completion of the course, student would be able to: Understand key concepts from economic, political, and social analysis the design and evaluation of environmental policies and institutions. Appreciate concepts and methods from ecological and physical science application in environmental problem solving. Appreciate the ethical, cross-cultural, and historical context of environmental problem solving. Appreciate the ethical, cross-cultural, and historical context of environmental problem solving.	Course Name: Environmental Science 3 d 1 st Yr. Contact hours per week: Exam: (3 Hrs) nisite of NIL Evaluation Objectives: Concepts from economic, political, and social analysis as they pertain to the on of environmental policies and institutions. or concepts and methods from ecological and physical sciences and their application in environmental systems. duce roles and identities of citizens in a complex and interconnected world. Outcomes: On completion of the course, student would be able to: Understand key concepts from economic, political, and social analysis as the design and evaluation of environmental policies and institutions. Appreciate concepts and methods from ecological and physical sciences and institutions. Appreciate the ethical, cross-cultural, and historical context of environmental issues a human and natural systems. Appreciate the ethical, cross-cultural, and historical analysis as the design and evaluation of environmental policies and institutions. Appreciate the ethical, cross-cultural, and historical context of environmental problem solving. Appreciate the ethical, cross-cultural, and historical context of environmental problem solving. Appreciate the ethical, cross-cultural, and historical context of environment the links between human and natural systems. Reflect critically about their roles and identities as citizens, consumers and	Course Name: Environmental Science 3 0 112 1st Yr. Contact hours per week: (3F r 2 nd Semester Exam: (3 Hrs) uisite of NIL Evaluation Objectives: Concepts from economic, political, and social analysis as they pertain to the dom of environmental policies and institutions. SEE Oncepts and methods from ecological and physical sciences and their application Iteration of the ethical, cross-cultural, and historical context of environmental issues and thuman and natural systems. Iteration duce roles and identities of citizens in a complex and interconnected world. Outcomes: On completion of the course, student would be able to: Understand key concepts from economic, political, and social analysis as they the design and evaluation of environmental policies and institutions. Appreciate concepts and methods from ecological and physical sciences and the application in environmental problem solving. Appreciate the ethical, cross-cultural, and historical context of environmental is Appreciate the ethical, cross-cultural, and historical context of environmental is Appreciate the ethical, cross-cultural, and historical context of environmental is Appreciate the ethical, cross-cultural, and historical context of environmental is Appreciate the ethical, cross-cultural, and historical context of environmental is Appreciate the ethical, cross-cultural, and historical context of env	Il2 Course Name: Environmental Science Image: Terminal Science Image: Image

Program Name: B. Tech.-Electrical and Instrumentation Engineering

Module No	COURSE SYLLABUS CONTENTS OF MODULE		Cos
1	The Multidisciplinary nature of environmental studies Definition, scope and importance, Need for public awareness.	3	CO1
2	 Natural Renewable and non-renewable resources: Natural resources and associated problems. a) Forest resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on 	6	CO1 CO2 CO3 CO4

	forests and tribal people.b) Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.		
	 c) Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. 		
	 d) Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies. 		
	e) Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification.		
	Role of an individual in conservation of natural resources.		
3	Ecosystems: Concept of an ecosystem, Structure and function of an ecosystem, Producers, consumers and decomposers, Energy flow in the ecosystem, Ecological succession, Food chains, food webs and ecological pyramids,	3	CO3
	Biodiversity and its conservation:		
	 Introduction – Definition: genetic, species and ecosystem diversity. Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values. 		
4	 Hot-spots of biodiversity. Threats to biodiversity: habitat loss, poaching of wildlife, man- wildlife conflicts. 	4	CO4 CO2
	 Endangered and endemic species of India. Conservation of biodiversity: in-situ and ex-situ conservation of biodiversity. 		
	Environmental Pollution Definition		
5	 Causes, effects and control measures of: Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Thermal pollution, Nuclear hazards Solid waste Management: Causes, effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution. 	5	CO1 CO2 CO3 CO4
	Disaster management		
	 Social Issues and the Environment From Unsustainable to Sustainable development 		
6	 Urban problems related to energy Water conservation, rain water harvesting, watershed management Resettlement and rehabilitation of people; its problems and concerns. Case studies. 		CO1 CO2
	 Environmental ethics: Issues and possible solutions. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case studies. Wasteland reclamation. 	5	CO2 CO3 CO4
	Consumerism and waste products.Environment Protection Act.		

	Air (Prevention and Control of Pollution) Act.
	Water (Prevention and Control of Pollution) Act
	Wildlife Protection Act
	Forest Conservation Act
	• Issues involved in enforcement of environmental legislation
	Public awareness.
	Human Population and the Environment
	Population growth, variation among nations
	Population explosion – Family Welfare Programme
7	• Environment and human health.
/	Human Rights.
	Value Education.
	• HIV/AIDS
	Women and Child Welfare.
	Field Work:
	• Visit to a local area to document environmental assets-river / forest
8	/ grassland / hill / mountain.
0	• Visit to a local polluted site–Urban/Rural / Industrial / Agricultural.
	• Study of common plants, insects, birds.
	• Study of simple ecosystems – pond, river, hill slopes, etc.

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code: EI-PRBS-02	Course Name: Chemistry Lab		L -	Т -	P 3	C 1.5
Year and Semester	1 st Yr. 2 nd Semester	Contact hours per week: (3Hrs) Exam: (3 Hrs))	
Pre-requisite of	NH	Evaluation				
course	NIL	CIE: 30		SE	E: 4	5
Course Objectives:						

To teach the fundamentals of basic chemical sciences with hand on experience essential for the development of new technologies to Electrical and Instrumentation engineering.
 Course Outcomes: On completion of the course, student would be able to:
 CO1 Measuremolecular/system properties such as surfacetension, viscosity, conductance and pH of solutions, alkalinity, chloride content, dissolved oxygen, hardness of water, etc.
 CO2 Identify the number of compounds in a mixture using TLC.
 CO3 Synthesize a small drug molecule and polymer resin.
 CO4 Determine the amount of solute in a solution using spectrophotometers.
 CO5 Measure the kinematic viscosity, pour and cloud point of oil.

Expt. No	COURSE SYLLABUS CONTENTS OF MODULE	COs
1	To determine the relative viscosity of a given liquid using Ostwald viscometer.	
2	Using Redwood viscometer determine the viscosity of an oil sample.	
3	To determine the surface tension of a giving liquid using stalagmometer.	
4	To determine the alkalinity of a given water sample.	
5	To identify the number of components, present in a given organic mixture by Thin Layer Chromatography (TLC).	
6	Determination of strength of a given HCl solution by titrating it with a standardized NaOH solution using conductivity meter.	
7	To determine the strength of a given acid solution by titrating it with a base using pH meter.	CO1 ,
8	Synthesis of a drug (Aspirin/Paracetamol).	CO2,
9	To prepare Phenol-formaldehyde and Urea formaldehyde resin.	CO3,
10	Determination of chloride content of a given water sample.	CO4,
11	To determine temporary and permanent hardness of a given water sample by EDTA method.	CO5
12	Determination of the partition coefficient of a substance for its distribution between two immiscible solvents.	
13	To find out the content of sodium and potassium in a given salt solution by Flame Photometer.	
14	To verify Beer-Lambert law and determine the \Box max and concentration of unknown solution of KMnO4 using a spectrophotometer.	
15	To determine the amount of dissolved oxygen present in a given water sample.	
16	To find out the pour point and cloud point of a lubricating oil.	

SUGGESTED BOOKS:

- 1. A Text Book on Experimental and Calculation Engineering Chemistry, S.S. Dara, S. Chand & Company (Ltd.)
- 2. Essential of Experimental Engineering Chemistry, Shashi Chawla, Dhanpat Rai Publishing Company.
- 3. Theory & Practice Applied Chemistry O.P. Virmani, A.K. Narula (New Age)

	110510	ini Name. D. Tech-Electrical anu	more unicitation long	mee	ms		
Course C EI-PRES		Course Name: Computer Programming Lab		L 0	Т 0	P 3	C 1.5
Year and	d	1 st Year	Contact hours per v	veek	: (3I	Irs)
Semester		II nd Semester	Exam: (3hrs.)				
Pre-requ	isite of	NIL	Evalu	atio	1		
course		INIL/	CIE: 30		SE	E: 4	45
Course (Objective	s:					
1. To v	vrite C pro	ograms to solve the problems					
2. To c	ompile an	d execute programs in C					
3. To io	dentify the	e syntax errors and semantic errors					
4. To d	lebug the p	program in C					
5. To v	vrite C pro	ograms to solve the problems					
Course O	utcomes:	On completion of the course, studen	nt would be able to:				
CO1	Use flow	vcharts to solve computational probl	ems.				
CO2		nd develop algorithms with arithmet		s.			
CO3		and implement an algorithm with da	U 1		es, lo	ops	,
	-	trings and functions.			·	1	
CO4		and develop algorithms using predef	ined or user-defined fu	nctio	ons t	o sc	olve
	0	s on sorting, searching and file proc					

Program Name: F	8 Tech -Electrica	l and Instrumentatio	n Engineering
I I Ugi am Mame, L		i and monunchiano	in Engineering

Expt.	COURSE SYLLABUS		
No	CONTENTS OF MODULE	COs	
1	Write a C program to compute roots of quadratic equation $ax^2+bx+c=0$, where		
1	a, b, and c are three coefficients of a quadratic equation are inputs.		
2	Design and develop an algorithm to find the <i>reverse</i> of an integer number.		
	Design and develop an algorithm to check whether given number is		
3	PALINDROME or NOT, Implement a C program for the developed algorithm		
5	that takes an integer number as input and output the reverse of the same with		
	suitable messages. Ex: Num: 2019, Reverse: 9102, Not a Palindrome.		
4	Design and develop a c program to implement simple calculator using switch		
-	case statement.		
5	Draw the flowchart and Write a C Program to compute Sin(x) using Taylor	CO1,	
	series approximation given by $Sin(x) = x - (x^{3}/3!) + (x^{5}/5!) - (x^{7}/7!) + \dots$	CO1, CO2,	
6	Develop, implement and execute a C program to search a Number in a list	CO2, CO3,	
0	using linear searching Technique.	CO3, CO4	
7	Develop an algorithm, implement and execute a C program that reads N	004	
/	integer numbers and arrange them in ascending order using Bubble Sort.		
8	Design and develop a C program to read and print a matrix and check whether		
	a given Matrix is a sparse Matrix or not.		
9	Write and execute a C program to display Pascal Triangle using for loop.		
	Write a C program to implements the following string manipulation functions		
10	till the use wishes to continue (infinite loop): (i) <i>strcpy</i> () (ii) <i>srrlen</i> () (iii) <i>strrev</i>		
10	() (iv) strcmp() (v) strcat().		
	Read a sentence and print frequency of vowels and total count of consonants.		
11	Design and develop a C function $RightRotate(x, n)$ that takes two integers x		

	and <i>n</i> as input and returns value of the integer <i>x</i> rotated to the right by <i>n</i>
	positions. Assume the integers are unsigned.
	Draw the flowchart and write a recursive C function to find the factorial of a
12	number, $n!$, define by $fact(n)=1$, if $n=0$. Otherwise $fact(n) = n*fact(n-1)$.
12	Using this function, write a C program to compute the binomial coefficient
	${}^{n}C_{r}$. Tabulate the results for different values of <i>n</i> and <i>r</i> with suitable messages
	Given two university information files such as "studentname.txt" and
	"usn.txt" that contains students Name and USN respectively. Write a C
	program to create a new file called "output.txt" and copy the content of files
10	"studentname.txt" and "usn.txt" into output file in the sequence shown below.
13	Display the contents of output file "output.txt" on to the screen.
	Student Name USN
	Name 1 USN1
	Name 2 USN2
	a. Write a C program to maintain a record of n student details using an array
	of structures with four fields (Roll number, Name, Marks, and Grade).
14	Assume appropriate data type for each field. Input & Print the members of
11	the structure
	b. Write a C program to take 2 structures HH:MM: SS as T1 & T2 & display
	the time difference as structure as T3.
	Write a C program using pointers to compute the sum, mean and standard
15	deviation of all elements stored in an array of n real numbers.
	deviation of an elements stored in an array of in real numbers.

Course Code: EI-PRES-06		Course Name: Basic Electronic Lab.		L T P C - - 2 1	
Year and		1 st Yr.	Contact hours per we	eek: (2Hrs)	
Semester		2 nd Semester	Exam: (3 Hrs)		
Pre-requis	site of	NIL	Evalua	tion	
course		INIL	CIE: 20	SEE: 30	
Course Ob	ojective	es:			
1. Ability	to iden	tify the basic electronic components.			
2. Ability	to wor	k on the basic electronic equipments.			
3. Ability	to get t	the electronic circuit concepts.			
4. Ability	to desi	gn the basic circuit in electronics.			
Course Ou	itcome	s: On completion of the course, stude	ent would be able to:		
CO1 W	ell vers	se with the use of the electronic comp	onents and equipments.		
CO2 W				elated to their	
fal	fabrication and construction.				
CO3 At	ble to st	tart with the basic design concepts cir	cuits operations.		

Expt	COURSE SYLLABUS	COs
No	CONTENTS OF MODULE	COS
1	Familiarization of the basic electronic components and electronic lab	
	equipment's like Functional Generators, CRO, Power supplies, multimeters etc.	

2	Draw and study the forward and reverse characteristics of the PN Diode.	T
3	To draw and study the clipping circuits in various modes.	
4	To draw and study the clamping circuits in positive and negative mode.	
5	To draw and study the differentiating and integrating circuits.	CO1,
6	To draw and study the low pass and high pass filters.	CO2,
7	To design and study the half and full wave rectifier	CO3
8	To design and study the effect of various filter circuits on rectifiers	
0	performance.	
9	To study the characteristics of pnp and npn transistors in CE mode and	
,	determine h parameters from characteristics.	
10	To study the characteristics of pnp and npn transistors in CB mode and	
10	determine h parameters from characteristics.	
11	To design and study the RC coupled CE amplifier and measure its voltage and	
	current gain.	
12	To design and study Hartley oscillator.	
13	To design and study Phase shift oscillator.	1
14	To measure the effect of negative feedback on amplifier in RC coupled current	7
14	series mode.	

Course Code: EI-PRES-08	Course Name: Workshop Practice Lab		L T P C - - 2 1		
Year and	1 st Yr.	Contact hours per v	week: (2Hrs)		
Semester	2 nd Semester	Exam: (3 Hrs)			
Pre-requisite of	NIL	Evalu	ation		
course	INIL.	CIE: 20	SEE: 30		
Course Objectiv	ves:				
1. Upon compl	etion of this course, the students	will gain knowledg	ge of the different		
manufacturin	g processes which are commonly	employed in the ind	dustry, to fabricate		
components u	sing different materials.				
2. Upon comple	tion of this laboratory course, students	will be able to fabrica	ate components with		
their own har	lds.				
3. They will also	o get practical knowledge of the dimen	sional accuracies and	dimensional		
tolerances po	ssible with different manufacturing pro	ocesses.			
4. By assemblin	g different components, they will be al	ble to produce small d	evices of their		
interest.					
Course Outcom	es: On completion of the course, stude	ent would be able to:			
CO1 To prov	CO1 To provide the basics of manufacturing processes				
CO2 To provide working knowledge of lathe machines					
CO3 To provide the study of measuring tools					
CO4 To study	the machine tools				

Expt. No	COURSE SYLLABUS CONTENTS OF MODULE	COs
INU	Lectures & videos: Detailed contents	
	 (i.) Manufacturing Methods- casting, forming, machining, joining, advanced manufacturing methods (2 lectures) 	
1	(ii.) CNC machining, Additive manufacturing (1lecture)	
1	(iii.) Fitting operations & power tools (1lecture)	
	(iv.) Plastic molding, glass cutting (1lecture)	
	(v.) Metal casting (1lecture)	
	(vi.) Welding (arc welding & gas welding), brazing (1 lecture)	
2	To study different types of measuring tools used in metrology and determine least counts of Vernier calipers, micrometers and Vernier height gauges.	
3	To study different types of machine tools (lathe, shape or planer or slotter, milling, drilling machines)	
4	To prepare a job on a lathe involving facing, outside turning, taper turning, step turning, radius making and parting-off.	CO1, CO2,
5	To study different types of fitting tools and marking tools used in fitting practice.	CO3, CO4
6	To prepare lay out on a metal sheet by making and prepare rectangular tray, pipe shaped components e.g. funnel.	
7	To prepare joints for welding suitable for butt welding and lap welding.	
8	To perform pipe welding.	
9	To study various types of carpentry tools and prepare simple types of at least two wooden joints.	
10	To prepare simple engineering components/ shapes by forging.	
11	To prepare mold and core assembly, to put metal in the mold and fettle the casting.	
12	To prepare horizontal surface/ vertical surface/ curved surface/ slots or V- grooves on a shaper/ planner.	
13	To prepare a job involving side and face milling on a milling machine.	

Text Books:

- 1. Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- **2.** Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 4th edition, Pearson Education India Edition,2002.
- **3.** Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology I' Pearson Education, 2008.
- **4.** Roy A. Lindberg, "Processes and Materials of Manufacture", 4thedition, Prentice Hall India, 1998.
- 5. Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGrawHill House, 2017.

Appendix –I

Detailed first year curriculum contents

Guide to Induction Program

1. Introduction

(Induction Program was discussed and approved for all colleges by AICTE in March 2017. It was discussed and accepted by the Council of IITs for all IITs in August 2016. It was originally proposed by a Committee of IIT Directors and accepted at the meeting of all IIT Directors in March 2016.¹This guide has been prepared based on the Report of the Committee of IIT Directors and the experience gained through its pilot implementation in July 2016 as accepted by the Council of IITs. Purpose of this document is to help institutions in understanding the spirit of the accepted Induction Program and implementing it.)

Engineering colleges were established to train graduates well in the branch/department of admission, have a holistic outlook, and have a desire to work formational needs and beyond.

The graduating student must have knowledge and skills in the area of his study. However, he must also have broad understanding of society and relationships. Character needs to be nurtured as an essential quality by which he would understand and fulfill his responsibility as an engineer, a citizen and a human being. Besides the above, several meta-skills and underlying values are needed.

There is a mad rush for engineering today, without the student determining for himself his interests and his goals. This is a major factor in the current state of demotivation towards studies that exists among UG students.

The success of gaining admission into a desired institution but failure in getting the desired branch, with peer pressure generating its own problems, leads to a peer environment that is demotivating and corrosive. Start of hostel life without close parental supervision at the same time, further worsens it with also a poor daily routine.

To come out of this situation, a multi-pronged approach is needed. One will have to work closely with the newly joined students in making them feel comfortable, allow them to explore their academic interests and activities, reduce competition and make them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and build character.

2. Induction Program

When new students enter an institution, they come with diverse thoughts, backgrounds and preparations. It is important to help them adjust to the new environment and inculcate in them the ethos of the institution with a sense of larger purpose. Precious little is done by most of the institutions, except for an orientation program lasting a couple of days.

¹A Committee of IIT Directors was setup in the 152nd Meeting of IIT Directors on 6th September 2015 at IIT Patna, on how to motivate undergraduate students at IITs towards studies, and to develop verbal ability. The Committee submitted its report on 19th January 2016. It was considered at the 153rd Meeting of all IIT Directors at IIT Mandi on 26 March 2016, and the accepted report came out on 31 March 2016. The Induction Program was an important recommendation, and its pilot was implemented by three IITs, namely, IIT(BHU), IIT Mandi and IIT Patna in July 2016. At the 50th meeting of the Council of IITs on 23 August 2016, recommendation on the Induction Program and the report of its pilot implementation were discussed and the program was accepted for all IITs.

We propose a 3-week long induction program for the UG students entering the institution, right at the start. Normal classes start only after the induction program is over. Its purpose is to make the students feel comfortable in the in new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature.²

The time during the Induction Program is also used to rectify some critical lacunas, for example, English background, for those students who have deficiency in it. The following are the activities under the induction program in which the student would be fully engaged throughout the day for the entire duration of the program.

- (i) IIT Gandhinagar was the first IIT to recognize and implement a special 5-week Foundation Program for the incoming 1st year UG students. It took a bold step that the normal classes would start only after the five week period. It involved activities such as games, art, etc., and also science and other creative workshops and lectures by resource persons from outside.
- (ii) IIIT Hyderabad was the first one to implement a compulsory course on Human Values. Under it, classes were held by faculty through discussions in small groups of students, rather than in lecture mode. Moreover, faculty from all departments got involved in conducting the group discussions under the course. The content is non-sectarian, and the mode is dialogical rather than sermonizing or lecturing. Faculty were trained beforehand, to conduct these discussions and to guide students on issues of life.
- (iii) Counselling at some of the IITs involves setting up mentor-mentee network under which 1st year students would be divided into small groups, each assigned a senior student as a student guide, and a faculty member as a mentor. Thus, a new student gets connected to a faculty member as well as a senior student, to whom he/she could go to incase of any difficulty whether psychological, financial, academic, or otherwise.

The Induction Program defined here amalgamates all the three into an integrated whole, which leads to its high effectiveness in terms of building physical activity, creativity, bonding, and character. It develops sensitivity towards self and one's relationships, builds awareness about others and society beyond the individual, and also in bonding with their own batch-mates and a senior student besides a faculty member. Scaling up the above amalgamation to an intake batch of 1000 plus students was done at IIT(BHU), Varanasi starting from July 2016.

Physical Activity

This would involve a daily routine of physical activity with games and sports. It would start with all students coming to the field at 6 am for light physical exercise or yoga. There would also be games in the evening or at other suitable times according to the local climate. These would help develop teamwork. Each student should pick one game and learn it for three weeks. There could also be gardening or other suitably designed activity where labour yields fruits from nature.

Creative Arts

Every student would choose one skill related to the arts whether visual arts or performing arts.

²Induction Program as described here borrows from three programs running earlier at different institutions: (1) Foundation Program running at IIT Gadhinagar since July 2011, (2) Human Values course running at IIIT Hyderabad since July 2005, and (3) Counselling Service or mentorship running at several IITs for many decades. Contribution of each one is described next.

Examples are painting, sculpture, pottery, music, dance etc. The student would pursue it every day for the duration of the program. These would allow for creative expression. It would develop a sense of aesthetics and also enhance creativity which would, hopefully, flow into engineering design later.

Universal Human Values

It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, take decisions with courage, be aware of relationships with colleagues and supporting staff in the hostel and department, be sensitive to others, etc. Need for character building has been underlined earlier. A module in Universal Human Values provides the base.

Methodology of teaching this content is extremely important. It must not be through do's and dont's, but get students to explore and think by engaging the mini dialogue. It is best taught through group discussions and real life activities rather than lecturing. The role of group discussions, however, with clarity of thought of the teachers cannot be over emphasized. It is essential for giving exposure, guiding thoughts, and realizing values.

The teachers must come from all the departments rather than only one department like HSS or from outside of the Institute. Experiments in this direction at IIT (BHU) are noteworthy and one can learn from them.³

Discussions would be conducted in small groups of about 20 students with a faculty men to reach. It is too pen thinking towards these. If, Universal Human Values discussions could even continue for rest of the semester as a normal course, and not stop with the induction program.

Besides drawing the attention of the student to larger issues of life, it would build relationships between teachers and students which last for their entire4-year stay and possibly beyond.

Literary

Literary activity would encompass reading, writing and possibly, debating, enacting a play etc.

Proficiency Modules

This period can be used to overcome some critical lacunas that students might have, for example, English, computer familiarity etc. These should run like crash courses, so that when normal courses start after the induction program, the student has overcome the lacunas substantially. We hope that problems arising due to lack of English skills, wherein students start lagging behind or failing in several subjects, for no fault of theirs, would, hopefully, become a thing of the past.

Lectures by Eminent People

This period can be utilized for lectures by eminent people, say, once a week. It would give the students exposure to people who are socially active or in public life.

Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized.

³The Universal Human Values Course is a result of along series of experiments at educational institutes starting from IIT-Delhi and IIT Kanpur in the 1980s and 1990s as an elective course, NIT Raipur in late 1990s as a compulsory one-week off campus program. The courses at IIT (BHU) which started from July 2014, are taken and developed from two compulsory courses at IIIT Hyderabad first introduced in July 2005.

This would familiarize them with the area as well as expose them to the under privileged.

Familiarization to Dept./Branch &Innovations

The students should be told about different method of study compared to coaching that is needed at IITs. They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities.

3. Schedule

The activities during the Induction Program would have an Initial Phase, a Regular Phase and a Closing Phase. The Initial and Closing Phases would be two days each.

L	mitiai i nase	
	Time	Activity
	Day 0	Students arrive - Hostel allotment.
	Whole day	(Preferably do pre-allotment)
	Day 1	
	09:00am-03:00pm	Academic registration
	04:30 pm -06:00pm	Orientation
	Day 2	
	09:00 am - 10:00 am	Diagnostic test (for English etc.)
	10:15 am - 12:25 pm	Visit to respective depts.
	12:30 pm - 01:55 pm	Lunch
	02:00 pm - 02:55 pm	Director's address
	03:00 pm - 03:30 pm	Interaction with parents
	03:30 pm - 05:00 pm	Mentor-mentee groups - Introduction within group.
	_	(Same as Universal Human Values groups)

3.1 Initial Phase

3.2 Regular Phase

After two days is the start of the Regular Phase of induction. With this phase there would be regular program to be followed everyday.

3.2.1 Daily Schedule

Some of the activities are on a daily basis, while some others are at specified periods within the Induction Program. We first show a typical daily timetable.

	Sessn. Time	Activity	Remarks	
	Day 3 onwards			
	06:00am	Wake up call		
Ι	06:30 am -07:10am	Physical activity (mild exercise/yoga)		
	07:15am-08:55am Bath, Breakfast, etc.			
II	09:00 am -10:55am	Creative Arts /Universal Human	Half the groups do	
11	09.00 alli -10.33alli	Value	Creative Arts	
III	II 11:00 am -12:55pm	Universal Human Values /Creative	Complementary	
111		Arts	alternate	
	01:00pm-02:25pm	Lunch		
IV	02:30 pm - 03:55 pm	Afternoon Session	See below.	

V	04:00 pm - 05:00 pm	Afternoon Session	See below.
	05:00 pm - 05:25 pm	Break / light tea	
VI	05:30 pm - 06:45 pm	Games / Special Lectures	
	06:50 pm - 08:25 pm	Rest and Dinner	
VII	08:30 pm - 09:25 pm	Informal interactions (in hostels)	

Sundays are off. Saturdays have the same schedule as above or have outings.

3.2.2 Afternoon Activities(Non-Daily)

The following five activities are scheduled at different times of the Induction Program, and are not held daily for everyone:

- 1. Familiarization to Dept./Branch & Innovations
- 2. Visits to Local Area
- 3. Lectures by Eminent People
- 4. Literary
- 5. Proficiency Modules

Here is the approximate activity schedule for the afternoons (may be changed to suit local needs):

Activity	Session	Remarks	
Familiarization with	IV For 3 days (Day 3 to 5)		
Dept./Branch & Innovations	1 V	1 61 5 days (Day 5 to 5)	
Visits to Local Area	IV, V and VI	For 3 days - interspersed (e.g. 3	
VISITS TO LOCALATEA	iv, v anu vi	Saturdays)	
Lectures by Eminent People	IV	As scheduled - 3-5 lectures	
Literary (Play/Book Reading /	IV	Eor 2 5 dava	
Lecture)	1 V	For 3-5days	
Proficiency Modules	V	Daily, but only for those who need it	

3.3 Closing Phase

Time	Activity		
Last But One Day			
08:30 am -12noon	Discussions and finalization of presentation within		
08.30 ani -1210011	each group		
02:00 am -05:00pm	Presentation by each group in front of 4 other groups		
02.00 am -05.00pm	besides their own (about 100 students)		
Last Day			
Whole day	Examinations (if any). May be expanded to last 2		
Whole day	days, in case needed.		

3.4 Follow Up after Closure

A question comes up as to what would be the follow up program after the formal 3-week Induction Program is over? The groups which are formed should function as mentor- mentee network. A student should feel free to approach his faculty mentor or the student guide, when facing any kind of problem, whether academic or financial or psychological etc. (For every 10 undergraduate first year students, there would be a senior student as a *student guide*, and for every 20 students, there would be a *faculty mentor*.) Such a group should remain for the entire 4-5

year duration of the stay of the student. Therefore, it would be good to have groups with the students as well as teachers from the same department/discipline⁴.

Here we list some important suggestions which have come up and which have been experimented with.

3.4.1 Follow Up after Closure – Same Semester

It is suggested that the groups meet with their faculty mentors once a month, within the semester after the 3-week Induction Program is over. This should be a scheduled meeting shown in the timetable. (The groups are of course free to meet together on their own more often, for the student groups to be invited to their faculty mentor's home for dinner or tea, nature walk, etc.)

3.4.2 Follow Up – Subsequent Semesters

It is extremely important that continuity be maintained in subsequent semesters. It is suggested that at the start of the subsequent semesters (upto fourth semester), three days be set aside for three full days of activities related to follow up to Induction Program. The students be shown inspiring films, do collective artwork, and group discussions be conducted. Subsequently, the groups should meet at least once a month.

4. Summary

Engineering institutions were setup to generate well trained man power in engineering with a feeling of responsibility towards oneself, one's family, and society. The incoming undergraduate students are driven by their parents and society to join engineering without understanding their own interests and talents. As a result, most students fail to link up with the goals of their own institution.

The graduating student must have values as a human being, and knowledge and metaskills related to his/her profession as an engineer and as a citizen. Most students who get demotivated to study engineering or their branch, also lose interest in learning.

The *Induction Program* is designed to make the newly joined students feel comfortable, sensitize them towards exploring their academic interests and activities, reducing competition and making them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and building of character.

The Universal Human Values component, which acts as an anchor, develops awareness and sensitivity, feeling of equality, compassion and oneness, draw attention to society and nature, and character to follow through. It also makes them reflect on their relationship with their families and extended family in the college (with hostel staff and others). It also connects students with each other and with teachers so that they can share any difficulty they might be facing and seek help.

⁴We are aware that there are advantages in mixing the students from different depts. However, in mixing, it is our experience that the continuity of the group together with the faculty mentor breaks down soon after. Therefore, the groups be from the same dept. but hostel wings have the mixed students from different depts. For example, the hostel room allotment should be in alphabetical order irrespective of dept.

References:

1. *Motivating UG Students Towards Studies*, Rajeev Sangal, IITBHU Varanasi, Gautam Biswas, IIT Guwahati, Timothy Gonsalves, IIT Mandi, Pushpak Bhattacharya, IIT Patna, (Committee of IIT Directors), 31 March 2016, IIT Directors' Secretariat, IIT Delhi.

Contact: Prof. Rajeev Sangal, Director, IIT(BHU), Varanasi (director@iitbhu.ac.in)

B. Tech Electrical and Instrumentation Engineering SYLLABI for EXAMINATIONS

B. Tech. 2nd YEAR

Course Code:		Course Name: Power Systems-I		L T P C	
EI-PC-201			2 1 -		
Year ar	nd	2 nd year	Contact hours per week: (3Hrs)		
Semest	er	III rd Semester	Exam: (3hrs.)		
Pre-req	uisite of	Basic Electrical Engineering	Evalua	Evaluation	
course			CIE: 40	SEE: 60	
Course	Objective	es:			
1.To int	roduce and	d study the basic concept, layout and s	structure of power syst	em.	
2.To stu	dy types o	of transmission line and type of line co	onductors.		
3.To stu	dy the role	e of insulators and towers in transmiss	sion lines.		
4.To stu	4. To study the various parameters of transmission lines and its performance.				
Course	Course Outcomes: On completion of the course, student would be able to:				
CO1	CO1 To Familiarize with the basic concept, layout and structure of power system.				
CO2	To understand basics of transmission line and transmission line conductors.				
CO3	To understand the significance of insulators and towers in power system.				
CO4	To understand the models of transmission line and analyze the various parameters of				
	transmission lines and its performance.				
CO5	To impart basic technical knowledge of power system and apply it to technological				
	fields. To engage in independent and life – long learning in the technological change.				

Modul e No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	GENERAL SUPPLY SYSTEMS: Introduction to Power System, Per unit system, Layout of power supply network, System interconnection, Importance of electric power, Power system components, power supply network, effect of voltage on conductor size, comparison of conductor volume in typical supply systems, elementary high voltage DC transmission and its advantages & disadvantages. Types of conductors: Hard drawn copper conductors, AAC, AAAC, ACSR and bundled conductors, Resistance, Skin effect, Proximity Effect.	7	CO1, CO2
2	 INSULATORS: Types of insulators, voltage distribution across suspension insulators, string efficiency, methods of improving string efficiency. MECHANICAL DESIGN: Line supports- Towers and Poles, Vibration of conductors, Effect of vibration on transmission lines, Prevention of vibration, Sag and tension–Various methods of sag and tension calculations, Loading on conductors and it affects, Span of equal and unequal lengths, Effect of ice and wind, dampers. 	7	CO1, CO3
3	TRANSMISSION-LINE PARAMETERS Conductance and Inductance: Solid Cylindrical Conductor, Inductance: Single-Phase Two-Wire Line and Three-Phase Three-Wire Line with Equal Phase Spacing, Composite Conductors, Unequal Phase Spacing, Bundled Conductors, Series Impedances: Three-Phase Line with	7	CO2, CO4, CO5

	Neutral Conductors and Earth Return, Electric Field and Voltage: Solid Cylindrical Conductor Capacitance: Single-Phase Two-Wire Line and Three-Phase Three-Wire Line with Equal Phase Spacing, Stranded Conductors, Unequal Phase Spacing, Bundled Conductors		
4	PERFORMANCE OF TRANSMISSION LINES: models of short, medium and long transmission lines, Transmission-Line Differential Equations and detailed performance analysis of these lines including A B C D parameters, Ferranti effect, capacity of synchronous condenser, voltage control, Reactive Compensation Techniques.	7	CO4, CO5

Text/Refrence Books:

- 1. J. Grainger and W. D. Stevenson, "Power System Analysis", McGraw Hill Education, 1994.
- 2. O. I. Elgerd, "Electric Energy Systems Theory", McGraw Hill Education, 1995.
- 3. D. P. Kothari and I. J. Nagrath, "Modern Power System Analysis", McGraw Hill Education, 2003.
- 4. A. R. Bergen and V. Vittal, "Power System Analysis", Pearson Education Inc., 1999.
- 5. B. M. Weedy, B. J. Cory, N. Jenkins, J. Ekanayake and G. Strbac, "Electric Power Systems", Wiley, 2012.
- 6. W.D.Stevenson, "Elements of power system analysis", MGH.
- 7. B.M.Weedy, "Electric Power System", John Wiley & Sons.
- 8. Transmission & Distribution of Electrical Engineering: Westing House & Oxford Univ. Press, New Delhi.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code:	Course Name: Basic Instrumentation Engineering		L	T	Р	С	
EI-PC-203			2	1	0	3	
Year and	2 nd year	Contact hours per week: (3Hrs)					
Semester	3 rd Semester	Exam: (3hrs.)					
Pre-requisite of	Pre-requisite of Physics, Mathematics Evalua		ation				
course	CIE: 40 SEE: 60		50				
Course Objectives:							
1. Gaining factual knowledge that includes terminology, classifications and methods							
 2. Learning fundamental principles, generalizations, or theories 							

3. To	o introduce to the students the operation of various electronic Instruments which are used			
to	measure the electronic parameters			
Course	Course Outcomes: On completion of the course, student would be able to:			
CO1	Analyze the characteristics of each instrument			
CO2	Define terms associated with instrumentation			
CO3	Categorize various types of instruments			
CO4	Explain various types of indicating and recording instruments			
CO5	Apply the knowledge of various transducers to measure the physical quantities of shaft			
	speed and acceleration			
CO6	Apply the knowledge of to identify instrument for measuring quantities like Power,			
	field strength, phase, Q factor			

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Introduction: Block diagram of measuring instruments, characteristics of instruments, classification of instruments, classification of standards, error in measurement, relative, systematic, random error, parabolic errors. Standards, True Value, Errors (Gross, Systematic, Random); Static Characteristic of Instruments (Accuracy, Precision, Sensitivity, Resolution & threshold). Classification of Instruments (Absolute & Secondary Instruments; Indicating, Recording & Integrating instruments; Based upon Principle of operation), Generalized Instrument (Block diagram, description of blocks).	8	CO1, CO2, CO3
2	Indicating Instruments: Three forces in Electromechanical indicating instrument, Comparison between gravity & spring controls; Comparison of damping methods & their suitability, bearing supports, pivot-less supports (Simple & taut-band), Scale information. Recorders: Strip chart recorders, galvanometric recorders, null type recorders, potentiometric recorders, X-Y recorders, ultraviolet recorders, magnetic tape recorders, FM recorders and their merits and demerits, pulse duration modulation (PDM) recorders & digital tape recorders (RB, RZ, NRZ-M and NRZ-C).	6	CO1, CO4
3	Tachometers: DC tachometers, AC tachometers, Bearing tachometers, magnetic speed sensors, impulse tachometers, stroboscopic tachometers, variable-reluctance tachometers, photoelectric tachometers, eddy current tachometers, hydraulic tachometers, vibration measurement. Accelerometers: Bonded strain gauge accelerometer, Piezoelectric accelerometer, seismic mass accelerometer, servo accelerometer and digital accelerometer.	6	CO1, CO5
4	Potentiometers: DC potentiometers, Basic potentiometer circuit, Compton type & multiple range potentiometer, constructional details & precision type potentiometers & their applications, AC potentiometer, Power meter, field strength meter, phase meter, vector impedance meter, Q meter, LCR bridge.	6	CO1, CO6

- 1. Electronic Instrumentation ByH.S.Kalsi, TMH
- 2. Electronic Instrumentation Techniques By Cooper Halfrick, PHI

- 3. Electronic Instrumentation & Measurement By A. K.Sawhney, Dhanpat Rai& Sons
- 4. Electronic Instruments and Measurement By Jones & Chin
- 5. Principles of measurement &Instrumentation by Alan S. Morris
- 6. Electrical, Electronics measurement & Instrumentation, by JB Gupta

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course	e Code:	Course Name: Network Analysis		L	Т	P	С
EI-PC-	205			2	1	-	3
Year a	nd	2 nd year	Contact hours per v	veek:	(3H	[rs)	
Semest	ter	3 rd Semester	Exam: (3hrs.)				
Pre-ree	quisite of	Basic Electrical Engineering	Evalu	ation			
course			CIE: 40		SE	E: 6	0
Course	e Objective	es:					
1. To ir	ntroduce stu	udents with the fundamental concepts	in graph theory				
2. To fa	amiliarize a	about transient response of different ty	pe of circuits.				
	3. To explain concepts of network functions.						
4. To ir	4. To introduce open circuit, short circuit, transmission, hybrid parameters and their						
inter	interrelationship.						
5. To u	understand	and learn network filters					
6. To le	earn the syr	nthesize of network using passive eler	nents.				
Course	e Outcome	s: On completion of the course, stude	nt would be able to:				
CO1	Understa	nd the fundamental concepts of graph	theory.				
CO2	Understa	nd and analyze the transient response	of various type of circ	uits u	nde	r dif	ferent
	excitation						
CO3	Understa	nd poles and zeroes of network funct	tions and interpretation	ns in t	erm	s of	their
	stability.						
CO4		various parameters and their interrela	1	num	eric	al w	ith
	series, cascade, and parallel connection using two port parameters.						
CO5		nderstand and solve problems related	to low-pass, high-pas	s and	bar	nd re	eject,
		K pass filters, m-derived					
CO6		nd and problem solving related to syn	thesization one port ar	nd two	o po	rt	
	networks						

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	 Topology: Principles of network topology, Graph matrices, network analysis using graph theory. Transient Response: Transient response of RC, RLC, RL circuits to various excitation signals such as step, ramp, impulse and sinusoidal excitations using Laplace transform. 	6	CO1, CO2
2	Network Functions: Terminal pairs or ports, network functions for one port and two port networks, pole and zeros of network functions, restrictions on pole and zero locations for driving point functions and transfer functions, time domain behaviour from pole – zero plots, stability criteria of active networks.	6	СОЗ,
3	Two Port Networks: Characteristics and parameters of two port networks, short circuit admittance parameters, open circuit impedance parameters, transmission parameters, hybrid parameters, relationship between parameter sets, interconnection of two port networks, T and π networks.	5	CO4
4	Filter Networks: Fundamentals of filters, network equations, and characteristic impedance of low-pass, high–pass and band reject, constant K pass filters, m-derived.	5	CO5
5	Network Synthesis : Herwitz polynomial, positive real functions, elementary idea of active networks and frequency	4	CO6

Text Books:

- 1. Networks and Systems, D. Roy Choudhary, Wiley Eastern Ltd.
- 2. Network Analysis: A Sudhakar and S P Shyammohan, TMH.
- 3. Network Analysis and Synthesis, CL Wadhwa, New Age International Publishers.
- 4. Circuit Theory, A. Chakrabarti, Dhanpat Rai& Co.

Reference Books:

- 1. An Introduction to Modern Network Synthesis, M E Van Valkenburg, Wiley Eastern Ltd.
- 2. Circuit Theory, T.S.K.V. Iyer, Tata McGraw Hill

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

	Prog	ram Name: B. TechElectrical a		iginee	ring	. <u></u>	
Course		Course Name: Transducers and	Applications	L	T P	С	
EI-PC-2				2	1 -	3	
Year an		2 nd year	Contact hours per	week:	(3Hrs)		
Semeste		III rd Semester	Exam: (3hrs.)				
Pre-req	uisite of	Knowledge of Basic science,	Evalı	uation			
course		Basic Electrical Engineering	CIE: 40		SEE:	50	
Course	Objective	es:					
1. To s	tudy the b	basic concept and fundamental of s	ensors and transducers.				
2. To s	tudy Basi	c principle of operation of strain ga	auge, piezoelectric senso	rs and	its circ	uits.	
3. To s	study the	different types of transducers/ser	nsors for the measurement	ent of	non-el	ectrical	
quar	tities.						
Course	Outcome	es: On completion of the course, stu	udent would be able to:				
CO1		inderstand the fundamental concep		cers.			
CO2		o analyze various electrical and			ransdu	cers by	
	•	ir basic fundamental principles of				- 5	
CO3							
		electrical parameters.					
CO4		rt technical knowledge of sensor	rs and apply it to tech	nologi	cal fiel	ds. To	
		n independent and life – long learn					
Module		COURSE SYLLA					
No		CONTENTS OF MODULE			Hrs	COs	
110	Traned	lucers: Basic concepts of sensor		their			
		cation, characteristics and cho					
		cing the choice of transducers.					
1		operating principle of resistance st	rain gauge type of elec	trical	7	CO1,	
1		auges and their theories: wire gauge			,	CO2	
	U	uges, semiconductor strain gau		0			
	U	als for strain gauges, strain gauge c	0	4500,			
		cement Transducers:Resistive		eters			
	-	g effect, construction of potentio	· •				
	U	cers, Linear Variable Differential					
		le Differential Transformer (RV		•		CO2,	
2		le Capacitive displacement Tra			7	CO3,	
-		ucers. Piezoelectric transducers			-	CO4	
		ectric crystals, properties of piez	1				
	-	of piezoelectric transducers, loa	• •				
		se, impulse response of piezoelectr	U 1	2			
		Fransducers: load Cell, Hydraulic					
		re transducers: Manometers,		cloed		CO2,	
3		Pirani-gauge, Ionization gauge,	,		7	CO3,	
	-	rature Transducers: Resistan	nce Temperature Dete	ector,		CO4	
	-		-	,			
				flow			
			,			CO2,	
4		• -			7	CO3,	
•		1 11	· · · · · · · · · · · · · · · · · · ·			CO4	
		Fransducers : Thermal effect type,	Electric methods IIItra	sonic			
4	Thermine Flow 7 Sensors flow m flow m	stor, Thermocouple, Thermoelectri Transducers: Classification of s, Turbine type, Rotameters, Ane neters, Positive displacement type easurement, E.M. Flow-meter.	c sensors, Pyrometers. flow meter, Volume mometers, Ultrasonic, e flow-meter, Open ch	flow Mass annel	7	C C	

method. Acoustics sensors: Ceramic microphones, capacitor microphones, electric microphones, magnetic microphone. Humidity sensors: Hair hygrometer, electrode hygrometer, moisture	
sensors.	

Text/References Books:

- 1. A. K.Sawhney, "A Course in Electrical and Electronics Measurement and Instrumentation, DhanpatRai & Co.
- 2. D.Patranabis, "Principles of Electronic Instrumentation,", PHI
- 3. D. Patranabis, "Sensors and Transducers", PHI.
- 4. D.A.Bell, "Electronic Instrumentation and Measurements", PHI.
- 5. Rangan, Sharma and Mani, "Instrumentation Devices and Systems", TMH.
- 6. Raman Pallas-Arency and J.G. Webster, "Sensors and Signal Conditioning", John Wiley & Sons.
- 7. Considine DM (ed), "Process Instruments and Controls Handbook", McGraw-Hill.
- 8. Jones B.E "Instrument Science & Technology", Adam Hilger.
- 9. Neubert H.K.P, "Instrument Transducers: An introduction to their performance and design", Oxford.
- 10. Norton H.N, "Sensors and Analyzer Handbook", Prentice Hall.

11. Usher M.J, "Sensors and Transducers", Macmillan.

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Program Name: B. TechElectrical and Instrumentation Engineering							
Course Code:	ourse Code: Course Name: Open Elective-I		L	Т	Р	С	
EI-OE-209	(i) Linear Integrated Circuits		2	1	0	3	
Year and	2 nd year	Contact hours per	wee	ek: (3Hrs)	
Semester	III rd Semester	Exam: (3 Hrs)					
Pre-requisite	EI-ES-108 Basic Electronics	Evaluation					
of course	Engineering	CIE: 40 SEE: 60			0		
Course Objecti	ves:						
1. To impart th	e basic concepts of Analog Electronics.						
2. To impart th	e basic concepts of one of the most widely	used active compone	ents	of an	alog		
electronics Operational Amplifier.							
3. To design and study various circuits using active components mainly OpAmp.							
4. To lay the fo	oundation for the courses in electronics rela	ated to instrumentatio	n.				

Program Name: B. Tech.-Electrical and Instrumentation Engineering (from 2020 - 21 for UTD Only) 9380

Course Out	Course Outcomes: On completion of the course, student would be able to:		
CO1	CO1 Understand the basic design of Operational amplifier and its parameters.		
CO2	Understand the frequency response of Op-amp and various inverting and non- inverting Op amp based applications.		
CO3	Understand the uses of opamp in Instrumentation.		

Module	COURSE SYLLABUS	Hrs	COs
No	CONTENTS OF MODULE		
1	Basics of Operational Amplifier (Op-Amp)emitter coupled differential amplifier, transfer characteristics of differential amplifier, Block Diagram of Op-amp, Op- amp parameters : offset voltages and currents, input bias current, CMRR and measurement of Op-Amp parameters	6	CO1
2	Frequency and Phase Response in Opamp, Op-Amp Circuit Bandwidth. OpAmp applications: Inverting, Concept of virtual ground, Non-inverting, adder, analog integration and differentiation, wave form generators (square wave, pulse and triangle wave generator)	6	CO2
3	Op-Amp Applications II: Instrumentation Amplifier, Precision Half Wave Rectifier, Precision Full Wave Rectifier, limiting Circuits, Clamping Circuits, Peak Detectors, Sample & Hold Circuits, logarithmic Amplifier, Phase Shift Oscillator, Oscillator Amplitude Stabilization, Wien-Bridge Oscillator.	6	CO2 CO3
4	Regulated Power Supplies: Regulator Action, Regulator Performance, Voltage follower Regulator (Design & performance), Adjustable Voltage Regulator (Design & performance), Stabilization, Output Current limiting (Short circuit Protection) (Fold-back Current limiting), I.C. Regulators (Basic Idea). The 555 I.C. Timer, and its applications.	6	CO2 CO3

- 1. Integrated Electronics by MillmanHalkias, McGraw Hill
- 2. Op-Amps & Linear Integrated Circuits by R.A.Gayakwad
- 3. Op-Amps & Linear Integrated Circuits by David A.Bell

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Program Name: B. TechElectrical and Instrumentation Engineering						
Course C	ourse Code: Course Name: Open Elective-I		L	Т	Р	С
EI-OE-20			2	1	0	3
Year and	2 nd Year	Contact hours per week: (3Hrs			rs)	
Semester	III rd Semester	Exam: (3 Hrs)				
Dro room	The course does not assume prior	Evaluation				
Pre-requi of course	knowledge of networking. However, Basic Computer Knowledge is desirable	CIE: 40	: 40 SEI		E: 60	
Course O	bjectives:					
5. To exp	lore the basics of computer networks					
6. To kno	w various computer network protocols.					
7. To gain	h knowledge on fundamentals of network administra	ation.				
8. To exp	lore how tomanage the flow of information. To prov	vide good understa	ndir	ng of	Inte	rnet
and net	working design aspects					
Course O	utcomes: On completion of the course, student wor	uld be able to:				
CO1	To understand the fundamental of computer networ	ks				
CO2	To understand the models of UDP and TCP models					
CO3	To apply the TCP/IP and OSI models with merits a	nd demerits.				
CO4	Students should be able to use his knowledge to dev	velop/design at LA	Ν			

Drogrom Nomes B	Tooh Flootrical and	Instrumontation	Enginopring
Program Name: D.	TechElectrical and	Instrumentation	Engineering

Module	COURSE SYLLABUS	Hrs	COs
No	CONTENTS OF MODULE	nrs	COS
1	 INTRODUCTION TO COMPUTER NETWORKS: Components, Direction of Data flow Types of connections, topologies, protocols and standards of ISO/OSI model, TCP/IP Model. PHYSICAL LAYER:Transmission modes, Multiplexing, Transmission media, Switching, Circuit Switched Networks, Datagram Networks, Virtual Circuit Networks. 	7	CO1, CO2
2	DATA LINK LAYER: Introduction, Framing, Error Detection and Correction-Parity-LRC-CRC Hamming code, flow and error control, Noiseless channels, Noisy Channels, HDLC, Point to Point Protocols. Medium Access Sub Layer: ALOHA, CSMA/CD, LAN-Ethernet IEEE802.5, IEEE 802.11, Random Access, Controlled Access, Channelization.	5	CO2, CO3
3	NETWORK LAYER: Logical Addressing, Internetworking, Tunneling, Address mapping, ICMP, IGMP, Forwarding, Unit-Cast Routing Protocols, Multicast Routing Protocols.	5	CO2, CO3, CO5
4	TRANSPORT LAYER: Process to Process Delivery, UDP and TCP protocols, Data traffic, congestion, congestion control, QoS in switched networks.	5	CO3, CO4
5	APPLICATION LAYER: Domain name space, DNS in Internet, Electronic Mail, SMPT, FTP, WWW, HTTP, SNMP	5	CO4, CO6

TEXT BOOKS

- 1. Computer Networking: A. Top-Down Approach Featuring the Internet, James F Kurose & Keith W. Ross. 3rdEdition Pearson Education.
- 2. Data Communications and Networking, Behrouz. A. Forouzan, Fourth Edition TMH, 2006.
- 3. Computer Networks, Andrew S Tanenbaum 4th Edition Pearson Education, PHI

REFERENCE BOOKS

- 1. Data Communication and Computer Networks, P.C. Gupta, PHI
- 2. An Engineering approach to Computer Networks, S. Keshav, 2nd Edition Pearson Education.
- 3. Understanding communications and Networks, 3rdedition, W.A. Shay, Cengage Learning.
- 4. Data and Computer Communication, William Stallings, 6thEdition, Pearson Education, 2000.

Note for Examiner(s): Question paper will comprise three sections,

- **4.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 5. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 6. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **3.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **4.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code:	Course Name: Basics of Industrial Sc	Course Name: Basics of Industrial Sociology, Economics L T					
EI-HSM-211	and Management		2	0	0	2	
Year and	2 nd year	Contact hours per week: (2Hrs)					
Semester	III rd Semester	Exam: (3 Hrs)	Exam: (3 Hrs)				
Pre-requisite	NIL	Evalua	ntion				
of course		CIE: 40		SE	E: 6)	
Course Object	tives:						
1. Acquire ba	sic knowledge of social processes of social	ety, social institutions	and p	atter	ns of		
social beha	vior						
2. Acquire kr	nowledge of economics to facilitate the pro-	ocess of economic deci	ision	mak	ing		
3. Acquire kr	nowledge of basic management aspects						
4. Develop co	ognizance of the importance of manageme	ent principles					
Course Outco	mes: On completion of the course, studer	nt would be able to:					
CO1 Demor	strate knowledge of core sociological con	cepts					
CO2 Evalua	te the economic theories, cost concepts an	d pricing policies					
CO3 Descri	be the role of economics in the decision m	aking process					
CO4 Demor	strate the roles, skills and functions of ma	inagement					

Modul	COURSE SYLLABUS	Hrs	COs
e No	CONTENTS OF MODULE	піз	COS
1	Meaning of social change, nature of social change, theories of social change. The causes of social change, the process of social change. Factors of social change - the technological factors, the cultural factors, the effect of technology on major social institutions, social relations in industry.	6	CO1
2	Introduction to Industrial Economic, production function and its type;	10	CO2

	least cost combination, law of variable proportion, law of return increasing, constant and diminishing. Fixed and variable costs in short run and long run, opportunity costs. Perfect competition – meaning and characteristics, Monopoly – meaning and characteristics, concept of equilibrium of a firm.		
3	Meaning of management, characteristics of management, Fayol's principles of management. Personnel management - meaning and functions, manpower – process of manpower planning, recruitment and selection – selection procedure. Training – Objectives and types of training, various methods of training. Marketing research – meaning, objectives. Purchasing management – meaning and objectives, purchase procedure, inventory control techniques. Financial management- Introduction, objectives of financial decision.	10	CO3, CO4

TEXT BOOKS

- 1. An introduction to Sociology by D.R.Sachdeva and VidyaBhusan,
- 2. Society- An introductory Analysis by R.N.MaclverCharls H. Page
- 3. Microeconomics- Theory and Applications by D. N. Dwivedi, Vikas Publishing House
- 4. Modern Economics Theory by K.K.Dewett, S.Chand and Co.
- 5. Economic Analysis by K.P.Sundharam and E.N.Sundharam, Sultan Chand & Sons
- 6. Micro Economic Theory by M.L.Jhingam, Konark Publishers Pvt. Ltd.
- 7. Principle of Economics by M.L. Seth, LakshamiNarain Aggarwal Educ. Pub.- Agra
- 8. Principle & Practices of Management by R.S.Gupta, B.D.Sharma, N.S.Bhalla, Kalyani Pub.
- 9. Organization and Management by R.D.Aggarwal TMH
- 10. Business Organization and Management by N.C.Shukla.

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Trogram Tumer D. Teen: Electrical and instrumentation Engineering										
Course Code:	Course Name: Network Analysis Lab			Τ	P	С				
EI-PRPC-09					2	1				
Year and	2 nd Year	Contact hours per week: (2 Hrs)								
Semester	III rd Semester	Exam: (3hrs.)								
Pre-requisite of	Basic Electrical Engg	Evaluation								
course		CIE: 20 SEE: 30				0				

Course	Objectives:
1. Т	To familiarize with different components and equipments used in the laboratory.
2. Т	To study RLC combination circuits practically.
3. Т	To familiarize and practical understanding of two port network.
4. Т	To understand various filter circuits practically.
Course	Outcomes: On completion of the course, student would be able to
CO1	Analyse circuit combinations of R, L and C for transient behaviors.
CO2	Work with two port networks for practical understanding of Y, Z, and ABCD
	parameters.
CO3	Analyse low pass, high pass filters based on their characteristics.

Expt.	COURSE SYLLABUS	COa					
No	CONTENTS OF MODULE	COs					
1	To find resonance frequency, Bandwidth, Q factor of RLC series circuit.						
2	To study and plot the transient response of RL circuit						
3	To study and plot the transient response of RC circuit						
4	Determination of driving point and transfer functions of a two port ladder						
4	network and verify with theoretical values.						
5	To calculate and verify 'Z' parameters of two-port network						
6	To calculate and verify 'Y' parameters of two-port network.						
7	To calculate and verify 'ABCD' parameters of two-port network						
8	To determine equivalent parameters of parallel connection of two-port network	CO3,					
9	To plot the frequency response of High pass filter and determine the half-						
9	power frequency						
10	To plot the frequency response of Low pass filter and determine the half- power						
10	frequency.						
11	To plot the frequency response of High pass filter and determine the half-						
11	power frequency						

Course Code: EI-PRPC-11	Course Name: Transducers Lab			T 0	P 3	C 1.5
Year and	2 nd Year	Contact hours per v	week	: (3I	Hrs))
Semester	III rd Semester	Exam: (3hrs.)				
Pre-requisite of	Basic Science, Basic Electrical	Evalu	atio	n		
course	Engineering Lab	CIE: 20		SE	E: 3	30
Course Objecti	ves:					
1. To study the	basic operation of different type of ser	nsors/transducers.				
2. To familiariz	e with transducers circuits and their ap	oplication.				
3. Familiarize	with the safety rules for transducers lab	ooratory.				
Course Outcom	es: On completion of the course, studen	nt would be able to:				
CO1 Impai	t the conceptual knowledge of transduc	cers /sensors and apply	thes	se to	labo	oratory
work.						
CO2 Abilit	y to analyze the performance as well a	s handling of transduc	er eq	uipn	nent	s
CO3 Ackne	owledge the principles of operation and	d the main features of	senso	ors/ti	anso	ducers.
CO4 Devel	op skills to use these measuring device	es in different technolo	gica	l fiel	d.	

Expt.	COURSE SYLLABUS	COa		
No	CONTENTS OF MODULE	- COs		
1	To study the characteristics of strain gauge for pressure measurement.			
2	To study the characteristics of Load cell for force measurement.			
3	To study the characteristics of Thermistor for temperature measurement.			
4	To study the characteristics of Resistance temperature detector (RTD) for temperature measurement.			
5	To study the characteristics of Thermocouple for temperature measurement.			
6	To study the characteristics and loading effect of Potentiometer.	CO1		
7	To study the characteristics of Elastic transducers.			
0	To study the characteristics and calibration of linear variable differential			
8	transformer (LVDT) transducer for displacement measurement.			
9	To study the characteristics of Piezo-electric Transducer.	CO4		
10	To study the characteristics of Hall-effect Transducer.			
11	To Study and calibration of a flow sensors for flow measurement.			
12	To Study the characteristics and calibration of electrical transducers for level			
12	measurement.			
13	To Study the characteristics and calibration of acoustics sensors for sound			
15	measurement.			
14	To Study the characteristics of light sensors for light measurement.			
15	To Study the characteristics of hygrometer transducers for moisture measurement.			

- 1. Sawhney. A.K, "A Course in Electrical and Electronics Measurements and Instrumentation", 18th Edition, DhanpatRai& Company Private Limited, 2007.
- 2. Renganathan. S, "Transducer Engineering", 4th edition Allied Publishers, Chennai, 2003.

	NT D		T1		Instrumentation	T • •
Program	Name R	I een -	HIPCTLCOL	and	Instrumentation	Hngineering
TIVELAIII	1 and D .	I UUII-	Lucula	anu .	mon amentation	L'IIZIIIUUIIIIZ

Course Co	de: Course Name: Open Electric			L	Т	P	С
EI-PROE-		(i) Linear Integrated Circuits Lab				3	1.5
Year and	2 nd Year	Con	Contact hours per week: (3Hrs) Exan) Exam:
Semester	III rd Semester	(3hrs	s.)				
Pre-requis	ite EI-PRES-06, Basic Electr	onic	Evalu	iatio	n		
of course	Lab		CIE: 20		SI	EE:	30
Course Ob	jectives:						
1. To imp	art the basic practical aspects of one	of the most	widely used acti	ive c	omp	one	nts of
analog	electronics Operational Amplifier.						
2. To desi	gn and study various circuits using a	ctive compo	onents mainly Op	oAm	ıp.		
3. To lay	he experimental foundation for the	ourses in el	lectronics related	to i	nstru	ıme	ntation.
Course Ou	tcomes: On completion of the cours	e, student w	would be able to:				
CO1 UI	derstand the basic design of Operati	onal amplif	ier and its param	eters	s.		
CO2 UI	derstand the basic circuit design usi	g IC opam	p for different ap	plic	atio	ns.	
CO3 U1	derstand the uses of opamp in Instru	mentation.	*				
CO4 UI	derstand the advantages of the appli	ations whe	en performed usin	ng ad	ctive	e cor	nponents
in	integrated form like opamp.						

	COURSE SYLLABUS	
Expt. No	CONTENTS OF MODULE	COs
1	Study opamp as inverter and scale changer.	
2	Study opamp as non inverting amplifier and unity gain amplifier.	
3	Study of Opamp as Differentiator.	
4	Study of opamp as Integrator.	
5	Study and measurement of Opamp Parameters Offset voltages and currents.	
6	Measurement of CMRR for Opamp.	
7	Design and study of Opamp as half wave rectifier.	
8	Design and study of opamp as full wave rectifier.	– CO1,
9	Design and study of opamp as Logarithmic amplifier.	- CO1, CO2,
10	Design and study of opamp as square wave generator.	$-\frac{\rm CO2}{\rm CO3},$
11	Design and study of opamp as triangular wave generator.	- CO3, CO4
12	Design and study of opamp as Astable multivibrator.	
13	Design and study of opamp as monostable multivibrator.	

Program Name: B. Tech.-Electrical and Instrumentation Engineering

riogram Name. B. TechElectrical and instrumentation Engineering									
Course C	Code:	Course Name: Open Elective V La	.b	L	Т	P	С		
EI-PROE	-13	(ii) Computer Networks					1.5		
Year and	l	2 nd Year	Contact hours per w	eek:	(3 H	Hrs)			
Semester	•	III rd Semester	Exam: (3hrs.)						
Pre-requi	isite of	The course does not assume prior	Evalua	tion					
course		knowledge of networking.	CIE: 20		SE	E: 30)		
Course O)bjective	es:							
1. To un	derstand	the functionalities of various layers of	of OSI model						
2. To un	derstand	the operating system functionalities.							
3. To giv	ve compr	ehensive knowledge of TCP/IP layer	S.						
4. To pro	ovide go	od understanding of Internet and netw	orking design aspects.						
Course O	Jutcome	s: On completion of the course, stude	nt would be able to						
CO1 U	Understa	nd the encryption and decryption cond	cepts in Linux environn	nent					
CO2 A									
CO3 (Configure the routing table.								
CO4 S	Students	should be able to use his knowledge t	o develop/design at LA	N.					

System/ Software Requirement

Intel based desktop PCs LAN connected with minimum of 166 MHZ or faster process with at least 64 MB RAM and 100 MB free disk space.

Expt.	COURSE SYLLABUS	COs
No	CONTENTS OF MODULE	COs
1	Implementing the data link layer framing methods such as character, stuffing	
1	and bit stuffing.	CO1,
2	Implement on a data set of characters the three CRC polynomials- CRC 12,	CO2,
2	CRC 16 and CRC CCIP.	CO3,
3	Practice the basic network commands and network configuration commands.	CO4
4	Configure a network topology using packet tracer software.	

5	Configure a network using dynamic source distance vector (DSDV) routing protocol.	
6	Configure a network using link state routing (LSR) protocol.	
7	Configure a network using dynamic source routing (DSR) protocol.	
8	Configure a network using open shortest path first (OSPF) protocol.	
9	Write program for DES Encryption.	
10	Write program for DES decryption.	
11	Write program for RSA Encryption.	
12	Write program for RSA decryption.	

Text Books: Linux Manuals and Lab Manuals

	Progra	m Name: B. TechElectrical and I	Instrumentation Eng	inee	ring		
Course C EI-PRPC		Course Name: Power System-I La	b	L 0	T 0	P 2	C 1
Year and	Year and 2 nd Year Contact hours per		Contact hours per v	veek	: (21	Irs)
Semeste	r	III rd Semester	Exam: (3hrs.)				
Pre-requ	uisite of	Basic Electrical Engineering	Evalu	atio	n		
course		Lab	CIE: 20		SE	E: 3	30
Course (Objective	5:					
1. To st	udy the la	youts of Power system and its compo	onents.				
2. To fa	miliarize	power system elements, devices, equ	ipments and applicati	ons.			
3. To st	udy differ	ent type of transmission line model a	and their applications.				
4. To fa	miliarize	with the safety rules for power system	m laboratory.				
Course O	Outcomes:	On completion of the course, studen	nt would be able to:				
CO1	Impart th	he conceptual knowledge of basic lay	youts of power system	and	its		
	compone	ents.					
CO2	Ability t	o analyze the performance as well as	s handling of electrical	leler	nent	s an	d
	equipme	ents like line conductors, cables, insu	lators etc.				
CO3	Acknow	ledge the principles of operation and	d the main features of transmission line.				
CO4		skills to use power system elements					
	field.					U	

Expt.	COURSE SYLLABUS	COs			
No	CONTENTS OF MODULE	COS			
1	To study and draw the layout of 33KV substation.				
2	To study and draw the layout of 110/220 KV substation.				
3	To study distribution network with measurement of distribution voltage				
5	and current in distributors.				
4	To study different types of Line insulators and obtain breakdown	CO1			
4	characteristics of any one type of insulator.				
5	To study and designing of Earthing / Grounding.	CO2			
	To measure Potential distribution across different units of a string	CO3			
6	insulators: with guard ring and without guard ring and also determine the string	CO4			
	efficiency.				
	To plot equi-potential curve and voltage gradient in				
7	i. Two/three core cable				
	ii. Single-core cable.				

8	To study the different parts of a power cable and measurement of insulation resistance of a cable.	
9	To study the core to core & core to sheath capacitance of a three phase cable.	
10	To study and obtain A B C D parameter of a transmission line (model).	
11	To study Ferranti Effect of transmission line model.	
12	To obtain Voltage Regulation of a long transmission line with resistive,	
12	inductive and capacitive loads	
	To obtain Voltage Profile of a long transmission line when:	
13	i. Open circuited	
15	ii. Using shunt/series capacitive compensation	
	iii. Using shunt inductive compensation.	
14	To study filtration and treatment of transformer oil.	
15	To study and determine dielectric strength of transformer oil.	

- 1. Power System Engg: I.J.Nagrath and D.P.Kothari (TMH)
- 2. A Course in Electrical Power: Gupta, Soni & Bhatnagar (Dhanpat Rai & Sons).
- 3. Electric Power System: B.M.Weedy, John Wiley & Sons.
- 4. Transmission & Distribution of Electrical Engineering: Westing House & Oxford Univ. Press, New Delhi.

0	0			1 1	<u> </u>	D	0			
Course Co		Course Name: Power Electronics-I		L	T	P	<u>C</u> 4			
EI-PC-202				e i v						
Year and		2 nd Year	Contact hours po	er we	ek:	(4H	rs)			
Semester		(IV th Semester)	Exam: (3 Hrs)	re- (interior)						
		Brief knowledge of in the following	Eval	uatio	n					
D		topics: Basic Electrical and								
Pre-requis	site of	Electronics engineering,	CIE 40		ODI		0			
course		Semiconductor devices, Digital	CIE: 40		SEI	E: 6	J			
		Electronics, rectifiers.								
Course Ob	Course Objectives:									
	v	study the Constructional features & chara	cteristics of power	devie	ces.					
2. To stud	ly the v	arious Triggering & switching techniques	s and devices.							
	-	eries parallel operation and thyristors pro								
		ingle phase and three phase thyristors at c		ading	ςs.					
5. To stud	ly the p	principle and different types of cycloconve	erters.	~	-					
	• •	various modes of cycloconverter under co		ontin	uou	s				
	•	ffect of source inductance on the perfe								
		s: On completion of the course, student w								
		iarize with construction and characteristic		5.						
		stand and analyze the various triggering to								
		stand series parallel operation and protect								
		stand the output response of rectifiers at c	-							
CO5 To	o under	stand and analyze the operation of cycloc	onverters under dif	feren	t mo	odes				
CO6 To	o under	stand the effect of source impedance on p	erformance of cycl	ocon	vert	ers.				

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Introduction to power devices: Constructional features & characteristics of thyristors, MOSFET, IGBT, MCT. Triggering & switching: Various triggering devices used for thyristor.	7	I & II
2	Thyristor Analogy: Two transistor analogy, series and parallel operation of thyristors. Protection: Protection of SCR against over current, over voltage, high dv/dt, and high di/dt.	8	III
3	Classification of Rectifiers, Phase Controlled Rectifiers: Single phase half wave controlled, Fully wave and half controlled rectifiers with Resistive, Inductive and e.m.f. loading and their performance parameters. Three phase half wave, full wave and half controlled rectifiers with resistive and inductive and emf loading and their performance.	11	IV
4	Cycloconverter: Introduction & principle of working cycloconverter; types of cycloconverter; enveloped type & phase controlled type, features of cycloconverter; voltage wave form, circulating mode of operation, circulating current free modes, cycloconverter under discontinuous conduction, effect of source inductance on the performance of cycloconverter, network reaction, Advantages and disadvantages of cycloconverter.	10	V & VI

Text Books:

- 1. Modern Power Devices by B.Jayant Balica, New Age Inter.
- 2. Power Electronics by P.C. Sen (TMH)
- 3. An Introduction to Thyristors and Their Applications by M. Ramamurthy (EWP)
- 4. Power electronics by Ned Mohan and Robins, John Wiley and Sons
- 5. Power Electronics by M. Rashid (PHI)
- 6. Thyristor Phase Controlled converters and Cyclo-converters by B.R.Pelly
- 7. Power Electronics by Vendem Subrahmanyam, New Age International

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Program Name: B. TechElectrical and Instrumentation Engineering						
Course Code:	Course Name: Electrical Measurements &	L	Т	P	С	
EI-PC-204	Instrumentation	3	1	0	4	

Year a	nd	2 nd Year	Contact hours p	er week: (4Hrs)
Semest	er	(IV th Semester)	Exam: (3 Hrs)	
Pre-requisite of		Physics, Mathematics, Basic Electrical	Eva	luation
-		Engineering, Basic Electronics	CIE: 40	SEE: 60
course		Engineering, basic Instrumentation.	CIE. 4 0	SEE. 00
	Objective			
		electrical & electronics measurement tech		he varioustypes of
		nd different types of measurements in AC	/DC.	
	•	ow and high resistance measurements.		
		rinciple and performance equations of gal		
	· ·	rinciple and operation of wattmeters and		
	•	Construction, operation, and principle of 1	power factor & fre	equency meters.
		AC bridges and CROs.		
Course		s: On completion of the course, student w		
CO1		different types of Instruments used in AC	& DC supplies an	nd Electrical &
		cs measurement techniques.		
CO2		stand and analyze the how to calculate low	w & high resistanc	es.
CO3	To learn	various types of Galvanometers.		
CO4		stand various types of wattmeters & energy		* *
CO5	To under	stand and analyze the Construction, opera	tion, and principle	e of power factor &
	frequency			
CO6	To under	stand the AC bridges and CROs.		

Modul	COURSE SYLLABUS	Hrs	COs
e No	CONTENTS OF MODULE	1115	COS
1	Fundamentals of Electrical & Electronics measurements: Principle, Construction, Features, Analysis & Performance of moving coil instruments, Moving iron instruments, Electrodynamic instruments, electrostatic instruments and Induction Instruments. Instrument cases (Covers).Construction, operating principle, Torque equation, Shape of scale. MEASURING INSTRUMENTS (AC/DC): use as Ammeter or as Voltmeter (Extension of Range), Use on AC/DC or both, Advantages & disadvantages, Errors (Both on AC/DC) of PMMC types, Electrodynamics Type, Moving iron type (attraction, repulsion & combined types), Induction type.	6	C01
2	LOW & HIGH RESISTANCE MEASUREMENTS: Measurement of resistance (low, medium, high). Limitations of Wheatstone bridge; Kelvin's double bridge method, bridge controlled circuits, Sensitivity- Null indicators Difficulties in high resistance measurements, Measurement of high resistance by direct deflection, loss of charge method, Megaohm bridge. GALVANOMETERS: General principle and performance equations of D'Arsonval Galvanometers, Vibration Galvanometer and Ballistic Galvanometer.	8	CO2, CO3

3	 WATTMETERS & ENEGRY METERS: Construction, operating principle, Torque equation, Shape of scale, Errors, Advantages & Disadvantages of Electrodynamic & Induction type Wattmeters; construction, theory, operation, Two element energy meter, average demand indicator. Single Phase Induction Type Energy meter, Compensation & creep in energy meter. POWER FACTOR & FREQUENCY METERS: Construction, operation, principle, Torque equation, Advantages & disadvantages of Single phase power factor meters (Electrodynamic & Moving Iron types) & Frequency meters (Electrical Resonance Type, Ferrodynamic & Electrodynamic types). 	12	CO4, CO5
4	 A.C. BRIDGES: General balance equation, Ckt. diagram, Phasor diagram, Advantages, disadvantages, applications of Maxwell's, inductance-capacitance, Hays, Owens, Schering & Wein's bridges, Shielding & earthing, wagner's device. CRO: Block diagram, Sweep generation, vertical amplifiers, use of CRG in measurement of frequency, phase, Amplitude and rise time of a pulse. 	10	CO6

TEXT BOOK:

1. A Course in Elect. & Electronic Measurement & Instrumentation by A. K. Sawhney; Khanna Pub.

REFERENCE BOOKS:

- 1. Electrical Measurments by E.W. Golding
- 2. Electronic & Elect. Measurment&Instrumention by J.B.Gupta; Kataria& Sons.
- 3. Electronic Instrumentation & Measurment Technique, W.D. Cooper & A.D. Helfrick.
- 4. Measuring Systems by E.O. Doeblin; TMH.

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Togram Name. D. TeenElectrical and instrumentation Engineering							
Course Code:	ode: Course Name: Program Elective- I				P	С	
EI-PE-206	E-206 (ii) Electrical Energy Conservation and Auditing		2	1	0	3	
Year and	2 nd Year	Contact hours p	er v	veek	x: (3	Hrs)	
Semester	(IV th Semester)	Exam: (3 Hrs)					

Pre-requ	uisite of	Basic Science, Basic Electrical	Eval	luation	
course		Engineering, Basic Instrumentation Engineering	CIE: 40	SEE:	60
	Objectiv				
		resent Energy Scenario and Basics of variou			
		he concept of Energy Management, Action	Planning, Financi	al Manage	ment
and A		Maria in a d'Tracción a sector de	- D C1 C		-1
	•	nergy Monitoring and Targeting system, th	e Power Supply S	ystem and	electric
motor		ne concept of Lighting System, Energy Effi	aiant Tachnologic	20	
		s: On completion of the course, student wo			
COULSE COL		*		of various	forms
	D1 To familiarized with the present Energy Scenario and Basics concept of va of Energy.				1011115
CO2	0	rt conceptual knowledge and analysis of En	ergy Managemen	t. Action	
001	-	, Financial Management and Audit.		.,	
CO3	-	rstand the concept of Energy Monitoring an	d Targeting syste	m, the Pow	ver
		System and electric motors, Lighting System			
CO4		o use and learn the conventional techniques			
	of electr	ical and instrumentation engineering.			
CO5	To impa	rt technical education to learn and engage in	n the related field	s. Ability to	o handle
	administ	rative responsibilities and manage projects	and their related i	ssues.	
Module		COURSE SYLLABUS			~ ~
No		CONTENTS OF MODULE	1	Hrs	COs
	Energy	Scenario and Basics of Energy: Energy	scenario in world	and	
	India, E	Energy Conservation and its Importance, Er	nergy Strategy for	the	
	Future,	The Energy Conservation Act, 2001 and	its Features, Vari	ious	
		of Energy, Electrical Energy Basics			
1		Management and Audit: Definition & O	-	/	CO1,
1	U	ement, Energy Audit: Types and Methodolo	0,		CO2
		ng Format, Understanding Energy Costs, B			
		Performance, Matching Energy Usage to R			
		izing System Efficiency, Fuel and Energy S	Substitution, Energ	gy	
		nstruments.	amont. Introduct	ion	
		Action Planning and Financial Manag Management System, Introduction, Investr			
	0.	riteria, Financial Analysis, Financial A	· • •		
		vity and Risk Analysis, Financing Option	• •		CO3,
2		Project Management.		7	CO4,
	-	Monitoring and Targeting: Defin	ition, Elements	of	CO5
		ring & Targeting System, A Rationa	,		
		ng and Reporting, Data and Information		-	
	Energy	Consumption and Production, CUSUM, Ca	ase Study.		
		cal System and Motors :Electrical Loa			
		um Demand Control, Power Factor Improv			CO3,
3		nics, Analysis of Electrical Power System			CO3, CO4,
5		Efficient Motors, Factors Affecting En	•••••••••••••••••••••••••••••••••••••••	and	CO4,
	Minimi	zing Motor Losses in Operation, Rewindin	ng Effects on Ene	ergy	
		ncy, Speed Control of AC Induction N	· · · · -		

	Survey: Methodology.		
4	 Lighting System: Introduction, Basic Terms in Lighting System and Features, Lamp Types and their Features, Recommended Illuminance Levels for Various Tasks/Activities/Locations, Methodology of Lighting System, Energy Efficiency Study, Case Examples, Some Good Practices in Lighting. Energy Efficient Technologies in Electrical Systems: Maximum Demand Controllers, Automatic Power Factor Controllers, Energy Efficient Motors, Soft Starter, Variable Speed Drives, Energy Efficient Transformers, Electronic Ballasts, Energy Efficient Lighting Controls. 	7	CO3, CO4, CO5

Text/References:

- 1. B.R.Gupta, "Generation of Electrical Energy", Eurasia Publishing House, New Delhi.
- 2. A Ter-Gazarian, "Energy Storage for Power Systems", Peter Peragrinus Ltd.
- 3. Quarterly journals on Energy Managements, Energy Management Centre, Govt. of India, Ministry of Power, New Delhi.
- 4. Anthony J. Pansini, Kenneth D. Smalling, "Guide to Electric Load Management", Pennwell Pub; 1998
- 5. Howard E. Jordan, "Energy-Efficient Electric Motors and Their Applications", Plenum Pub Corp; 2ndedition, 1994.
- 6. Giovanni Petrecca, "Industrial Energy Management: Principles and Applications", The Kluwerinternational series -207, 1999.
- 7. Y P Abbi and Shashank Jain, "Handbook on Energy Audit and Environment Management", TERI,2006
- 8. Albert Thumannand William J. Younger,, "Handbook of Energy Audits", Terry Niehus, 2009.

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code:	Course Name: Program Elective- I		L	Т	P	С	
EI-PE-206 (i) Control System Components		2	1	0	3		
Year and	2 nd Year (IV th Semester)	Contact hours pe	r we	ek:	(3]	Hrs)	
Semester	2 Year (IV Semester)	Exam: (3 Hrs)					
Pre-requisite of	Mathematics, Physics, basic electrical	Evalı	atio	n			
course	and electronic engineering	CIE: 40		SE	E: 6	0	

Course	Objectives:						
1. Introduction, concept of Open loop & closed loop operation and to study the components for							
	Mechanical, pneumatic, hydraulic and electrical systems						
	y of Mathematical Modeling of Dynamic system and find out the Transfer fu	inction	of				
	m by block diagram, reduction technique, signal flow graphs techniques						
	udy the Basic control action & Industrial pneumatic automatic controllers a	nd the	r				
	atical Modeling and analysis						
	udy Hydraulic control system and their mathematical Modeling and analysis						
	udy Electronic control system and their mathematical Modeling and analysi	S					
	duction the concept of control valve, their sizing and applications						
	Outcomes: On completion of the course, student would be able to:	1					
CO1	Student understands the concept of Open loop & closed loop control familiarized with the Machenical proventia hydroulia and closet						
	familiarized with the Mechanical, pneumatic, hydraulic and elect components.	fical s	systems				
CO2	Ability to derive Mathematical Modeling of various dynamical systems ar	nd able	to find				
02	out the Transfer function of system by block diagram, reduction techniqu						
	graphs techniques.	e, sign					
CO3	Ability to identify, formulate and solve a problem using pneum	aticsvs	em in				
000	instrumentation control engineering						
CO4	Ability to identify, formulate and solve a problem using hydraul	ic sys	tem in				
	instrumentation and control engineering	2					
CO5	Ability to identify, formulate and solve a problem using electron	ic sys	tem in				
	instrumentation and control engineering	•					
CO6	Ability to understand and use the concept of control valve, their sizing and	l applic	ations				
		11					
Modul							
Module No		Hrs	COs				
	e COURSE SYLLABUS						
	e COURSE SYLLABUS CONTENTS OF MODULE Control System: Open loop & closed loop operation, Introduction to control system components, Representation of control components:						
	e COURSE SYLLABUS CONTENTS OF MODULE Control System: Open loop & closed loop operation, Introduction to control system components, Representation of control components: Mechanical, Electrical, hydraulic and pneumatic. Transfer function of		COs				
No	e COURSE SYLLABUS CONTENTS OF MODULE Control System: Open loop & closed loop operation, Introduction to control system components, Representation of control components: Mechanical, Electrical, hydraulic and pneumatic. Transfer function of control system, Mathematical Modeling of Dynamic system:	Hrs	COs CO1				
	COURSE SYLLABUS CONTENTS OF MODULE Control System: Open loop & closed loop operation, Introduction to control system components, Representation of control components: Mechanical, Electrical, hydraulic and pneumatic. Transfer function of control system, Mathematical Modeling of Dynamic system: Mechanical, Electrical, Analogous system, Electromechanical system,		COs				
No	COURSE SYLLABUS CONTENTS OF MODULE Control System: Open loop & closed loop operation, Introduction to control system components, Representation of control components: Mechanical, Electrical, hydraulic and pneumatic. Transfer function of control system, Mathematical Modeling of Dynamic system: Mechanical, Electrical, Analogous system, Electromechanical system, hydraulic and pneumatic transfer function by block diagram, reduction	Hrs	COs CO1				
No	COURSE SYLLABUS CONTENTS OF MODULE Control System: Open loop & closed loop operation, Introduction to control system components, Representation of control components: Mechanical, Electrical, hydraulic and pneumatic. Transfer function of control system, Mathematical Modeling of Dynamic system: Mechanical, Electrical, Analogous system, Electromechanical system, hydraulic and pneumatic transfer function by block diagram, reduction technique, signal flow graphs techniques, Meson's gain formula for	Hrs	COs CO1				
No	COURSE SYLLABUS CONTENTS OF MODULE Control System: Open loop & closed loop operation, Introduction to control system components, Representation of control components: Mechanical, Electrical, hydraulic and pneumatic. Transfer function of control system, Mathematical Modeling of Dynamic system: Mechanical, Electrical, Analogous system, Electromechanical system, hydraulic and pneumatic transfer function by block diagram, reduction technique, signal flow graphs techniques, Meson's gain formula for signal flow graph.	Hrs	COs CO1				
No	COURSE SYLLABUS CONTENTS OF MODULE Control System: Open loop & closed loop operation, Introduction to control system components, Representation of control components: Mechanical, Electrical, hydraulic and pneumatic. Transfer function of control system, Mathematical Modeling of Dynamic system: Mechanical, Electrical, Analogous system, Electromechanical system, hydraulic and pneumatic transfer function by block diagram, reduction technique, signal flow graphs techniques, Meson's gain formula for signal flow graph. Basic control action & Industrial automatic controller: On/Off or two	Hrs	COs CO1				
No	COURSE SYLLABUS CONTENTS OF MODULE Control System: Open loop & closed loop operation, Introduction to control system components, Representation of control components: Mechanical, Electrical, hydraulic and pneumatic. Transfer function of control system, Mathematical Modeling of Dynamic system: Mechanical, Electrical, Analogous system, Electromechanical system, hydraulic and pneumatic transfer function by block diagram, reduction technique, signal flow graphs techniques, Meson's gain formula for signal flow graph. Basic control action & Industrial automatic controller: On/Off or two position, proportional, integral, proportional-Integral, proportional-	Hrs	COs CO1				
No	COURSE SYLLABUS CONTENTS OF MODULE Control System: Open loop & closed loop operation, Introduction to control system components, Representation of control components: Mechanical, Electrical, hydraulic and pneumatic. Transfer function of control system, Mathematical Modeling of Dynamic system: Mechanical, Electrical, Analogous system, Electromechanical system, hydraulic and pneumatic transfer function by block diagram, reduction technique, signal flow graphs techniques, Meson's gain formula for signal flow graph. Basic control action & Industrial automatic controller: On/Off or two position, proportional, integral, proportional-Integral, proportional-derivative and proportional-integral-derivative control action.	Hrs	COs CO1				
No	COURSE SYLLABUS CONTENTS OF MODULE Control System: Open loop & closed loop operation, Introduction to control system components, Representation of control components: Mechanical, Electrical, hydraulic and pneumatic. Transfer function of control system, Mathematical Modeling of Dynamic system: Mechanical, Electrical, Analogous system, Electromechanical system, hydraulic and pneumatic transfer function by block diagram, reduction technique, signal flow graphs techniques, Meson's gain formula for signal flow graph. Basic control action & Industrial automatic controller: On/Off or two position, proportional, integral, proportional-Integral, proportional-derivative and proportional-integral-derivative control action. Pneumatic controller: Pneumatic amplifiers, pneumatic proportional	Hrs 8	COs CO1 CO2				
No	COURSE SYLLABUS CONTENTS OF MODULE Control System: Open loop & closed loop operation, Introduction to control system components, Representation of control components: Mechanical, Electrical, hydraulic and pneumatic. Transfer function of control system, Mathematical Modeling of Dynamic system: Mechanical, Electrical, Analogous system, Electromechanical system, hydraulic and pneumatic transfer function by block diagram, reduction technique, signal flow graphs techniques, Meson's gain formula for signal flow graph. Basic control action & Industrial automatic controller: On/Off or two position, proportional, integral, proportional-Integral, proportional-derivative and proportional-integral-derivative control action. Pneumatic controller: Pneumatic amplifiers, pneumatic proportional controller, pneumatic derivative and integral control action, PID	Hrs 8	COs CO1 CO2				
No	COURSE SYLLABUS CONTENTS OF MODULE Control System: Open loop & closed loop operation, Introduction to control system components, Representation of control components: Mechanical, Electrical, hydraulic and pneumatic. Transfer function of control system, Mathematical Modeling of Dynamic system: Mechanical, Electrical, Analogous system, Electromechanical system, hydraulic and pneumatic transfer function by block diagram, reduction technique, signal flow graphs techniques, Meson's gain formula for signal flow graph. Basic control action & Industrial automatic controller: On/Off or two position, proportional, integral, proportional-Integral, proportional-derivative and proportional-integral-derivative control action. Pneumatic controller: Pneumatic amplifiers, pneumatic proportional controller, pneumatic derivative and integral control action, PID controller, PI controller action.	Hrs 8	COs CO1 CO2				
No	COURSE SYLLABUS CONTENTS OF MODULE Control System: Open loop & closed loop operation, Introduction to control system components, Representation of control components: Mechanical, Electrical, hydraulic and pneumatic. Transfer function of control system, Mathematical Modeling of Dynamic system: Mechanical, Electrical, Analogous system, Electromechanical system, hydraulic and pneumatic transfer function by block diagram, reduction technique, signal flow graphs techniques, Meson's gain formula for signal flow graph. Basic control action & Industrial automatic controller: On/Off or two position, proportional, integral, proportional-Integral, proportional-derivative and proportional-integral-derivative control action. Pneumatic controller: Pneumatic amplifiers, pneumatic proportional controller, pneumatic derivative and integral control action, PID controller, PI controller action. Hydraulic controller: Advantage and disadvantage of Hydraulic	Hrs 8	COs CO1 CO2				
No	COURSE SYLLABUS CONTENTS OF MODULE Control System: Open loop & closed loop operation, Introduction to control system components, Representation of control components: Mechanical, Electrical, hydraulic and pneumatic. Transfer function of control system, Mathematical Modeling of Dynamic system: Mechanical, Electrical, Analogous system, Electromechanical system, hydraulic and pneumatic transfer function by block diagram, reduction technique, signal flow graphs techniques, Meson's gain formula for signal flow graph. Basic control action & Industrial automatic controller: On/Off or two position, proportional, integral, proportional-Integral, proportional-derivative and proportional-integral-derivative control action. Pneumatic controller: Pneumatic amplifiers, pneumatic proportional controller, pneumatic derivative and integral control action, PID controller, PI controller action.	Hrs 8	COs CO1 CO2				
No	COURSE SYLLABUS CONTENTS OF MODULE Control System: Open loop & closed loop operation, Introduction to control system components, Representation of control components: Mechanical, Electrical, hydraulic and pneumatic. Transfer function of control system, Mathematical Modeling of Dynamic system: Mechanical, Electrical, Analogous system, Electromechanical system, hydraulic and pneumatic transfer function by block diagram, reduction technique, signal flow graphs techniques, Meson's gain formula for signal flow graph. Basic control action & Industrial automatic controller: On/Off or two position, proportional, integral, proportional-Integral, proportional-derivative and proportional-integral-derivative control action. Pneumatic controller: Pneumatic amplifiers, pneumatic proportional controller, pI controller action. Hydraulic controller: Advantage and disadvantage of Hydraulic controller; Hydraulic integral controller, proportional controller, proportional controller; Proportional controller, proportional controller, proportional controller; P	Hrs 8	COs CO1 CO2 CO3				
No 1 2	COURSE SYLLABUS CONTENTS OF MODULE Control System: Open loop & closed loop operation, Introduction to control system components, Representation of control components: Mechanical, Electrical, hydraulic and pneumatic. Transfer function of control system, Mathematical Modeling of Dynamic system: Mechanical, Electrical, Analogous system, Electromechanical system, hydraulic and pneumatic transfer function by block diagram, reduction technique, signal flow graphs techniques, Meson's gain formula for signal flow graph. Basic control action & Industrial automatic controller: On/Off or two position, proportional, integral, proportional-Integral, proportional-derivative and proportional-integral-derivative control action. Pneumatic controller: Pneumatic amplifiers, pneumatic proportional controller, PI controller action. Hydraulic controller: Advantage and disadvantage of Hydraulic controller, Hydraulic integral controller, proportional controller, Hydraulic PD controller. Comparison between pneumatic and hydraulic systems Electronic controller: On/Off or two position, proportionelr, hydraulic pD controller, proportional, integral, proportional action, PID	Hrs 8 7	COs CO1 CO2				
No 1 2	COURSE SYLLABUS CONTENTS OF MODULE Control System: Open loop & closed loop operation, Introduction to control system components, Representation of control components: Mechanical, Electrical, hydraulic and pneumatic. Transfer function of control system, Mathematical Modeling of Dynamic system: Mechanical, Electrical, Analogous system, Electromechanical system, hydraulic and pneumatic transfer function by block diagram, reduction technique, signal flow graphs techniques, Meson's gain formula for signal flow graph. Basic control action & Industrial automatic controller: On/Off or two position, proportional, integral, proportional-Integral, proportional-derivative and proportional-integral-derivative control action. Pneumatic controller: Pneumatic amplifiers, pneumatic proportional controller, ple controller: Advantage and disadvantage of Hydraulic controller; Hydraulic integral controller, proportional controller, Hydraulic integral controller. Comparison between pneumatic and hydraulic systems Electronic controller: On/Off or two position, proportional, integral, proportional controller, hydraulic systems	Hrs 8 7	COs CO1 CO2 CO3				
<u>No</u>	COURSE SYLLABUS CONTENTS OF MODULE Control System: Open loop & closed loop operation, Introduction to control system components, Representation of control components: Mechanical, Electrical, hydraulic and pneumatic. Transfer function of control system, Mathematical Modeling of Dynamic system: Mechanical, Electrical, Analogous system, Electromechanical system, hydraulic and pneumatic transfer function by block diagram, reduction technique, signal flow graphs techniques, Meson's gain formula for signal flow graph. Basic control action & Industrial automatic controller: On/Off or two position, proportional, integral, proportional-Integral, proportional-derivative and proportional-integral-derivative control action. Pneumatic controller: Pneumatic amplifiers, pneumatic proportional controller, PI controller action. Hydraulic controller: Advantage and disadvantage of Hydraulic controller, Hydraulic integral controller, proportional controller, Hydraulic PD controller. Comparison between pneumatic and hydraulic systems Electronic controller: On/Off or two position, proportionelr, hydraulic pD controller, proportional, integral, proportional action, PID	Hrs 8 7	COs CO1 CO2 CO3				

criteria concept. Calculation of control valve size, positioner, necessity	
type & effects on performance of control valve. Pneumatic control	
valve characteristics, Auxiliary process components: Hydraulic pumps	
& power supply, Hydraulic servomotor, Hydraulic integrator,	
Amplidyne.	

- 1. Process Control and Instrument Technology by C.D.Jhonson.
- 2. Instrumentation for Process Measurement and Control By N.A.Anderson
- 3. Automatic Control Engineering by Raven
- 4. Automatic Control System by C.Kuo
- 5. Modern Control Engineering by Katsuhiko & Ogata
- 6 Control System by Nagrath & Gopal

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

1 Togram Name. D. TeenElectrical and instrumentation Engineering								
Course Code:		Course Name: Electrical Machin	Course Name: Electrical Machines - I		Τ	P	C	
EI-PC-208				3	1	0	4	
Year and Se	mostor	II nd Year	Contact hours per	wee	ek: ($4H_1$	rs)	
i ear anu se	mester	IVth Semester	Exam: (3 Hrs)					
Pre-requisit	e of	Posic Flootricol Fuga	Eval	uatio	on			
course		Basic Electrical Engg	CIE: 40	SEE: 60				
Course Obj	ectives:							
1. To introd	uce stude	ents with the fundamentals of energy	gy conversion.					
2. To famili	arize and	gain knowledge about DC genera	tors and DC motors	con	stru	ction	1,	
working,	staring a	nd performance.						
3. To have §	good und	erstanding of single phase transfor	mers based on worki	ng a	nd o	pera	ation	
under dif	ferent loa	ding conditions.						
4. To introd	uce open	circuit, short circuit, transmission	, hybrid parameters a	and t	heir			
interrelati	ionship.							
5. To gain a	nalytical	skills based on operation of three	phase transformers.					
Course Out	comes: C	On completion of the course, studen	nt would be able to:					
CO1	Acquire	knowledge about the fundamental	principles and electr	oma	gnet	tic e	nergy	
	conversi	on.			-			
CO2	Acquire	knowledge about the construction	al details and princip	le of	ope	eratio	on of dc	
	-				-			

Program Name: B. TechElectrical and Instrumentation Engineering

	machines, starting and speed control, including numerical problems.
CO3	Acquire knowledge about testing and applications of dc machines
CO4	Acquire knowledge about the constructional details, principle of operation, testing and applications of transformers.
CO5	Acquire knowledge about the constructional details, operation, testing, Analytical capability, and applications of single and 3 phase transformers.
CO6	Operate single phase and three phase transformers in parallel sharing the load. And Numerical analysis of this operation.

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	Cos
1	Principles of Electro-mechanical Energy Conversion: Introduction, Review of magnetic system, Force and torque in magnetic field system, Energy balance equation, Energy conversion via electrical field, Determination of the Force and Torque from energy and co-energy, Generation of EMF in Machines.	5	CO1, CO2
2	DC Machines-I: Principle, Construction, and Classification of DC generators, EMF equation of generator, Armature winding, Armature reaction, Commutation, Performance characteristics of DC generators, and applications.	8	CO2
3	DC Machines-II: Principle, Construction, and Classification of DC motor, back emf, power equation, condition for maximum efficiency, armature torque and shaft torque, losses and efficiency, power stages, Performance characteristics of DC motors, Starting of DC motors; 3 point and 4 point starters, Speed control of DC motors; Field control, Armature control and Voltage control (Ward Leonard method); Efficiency and Testing of DC machines (Hopkinson's and Swinburne's Test).	9	CO2, CO3.
4	Single Phase Transformer: Construction & Principle, Ideal and practical transformer, shifting impedances, exact and approximate equivalent circuit, resistive, inductive and capacitive loading with phasor diagrams, losses in transformers. Efficiency and condition for maximum efficiency, voltage regulation, Testing of Transformers-O.C. and S.C. tests, Polarity test, Sumpner's test, parallel operation and load sharing, Auto Transformer- Single phase autotransformers, merits and de-merits and applications.	10	CO4,
5	Three Phase Transformers: Construction, Three phase transformer, phasor groups and their connections, open delta connection, three phase to 2 phase conversion, Three winding transformers from three single phase transformers. Parallel operation of three phase transformers.	6	CO5, CO6

Text Books:

- 1. Electrical Machines", I J Nagrath& D.P. Kothari, Tata McGraw Hill
- 2. Electrical Machines", Rajendra Prasad, PHI
- 3. Electrical Machines", S K Sahadev, Cambridge University Press.
- 4. Electrical Machinery", P S Bimbhra, Khanna Publisher.

Reference Books:

1. Electric Machinery, AE Fitggerald, C. Kingsley Jr and Umans, McGraw Hill, International.

- 2. Electrical Technology, H. Cotton, CBS Publication.
- 3. The Performance and Design of AC machines, M G Say, Pit man& Sons.
- 4. Generalized Theory, P S Bimbhra, Khanna Publishers

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

	Progra	am Name: B. TechElectrical and Ins	strumentation Engine	eern	<u>ig</u>		
Course	Code:	Course Name: Open Elective- II		L	Τ	Р	С
EI-OE-	210	(i) Digital Techniques		2	1	0	3
Year a	nd	2 nd Year	Contact hours per v	veek	:(3	BHr	s)
Semest	er	(IV th Semester)	Exam: (3 Hrs)				
Pre-rec	uisite of	EI-ES-108: Basic Electronics	Evalua	tion			
course		Engineering IInd Semester	CIE: 40		SEI	E: 6	i0
Course	Objective	es:					
1. To i	mpart the b	basic concepts of Digital Electronics.					
	<u> </u>	study various logic circuits.					
3. To s	tudy vario	us switching applications.					
	•	dation for the courses in electronics rel	ated to microprocesso	rs ar	nd		
	ocomputer						
Course		s: On completion of the course, student					
CO1	Understand the basic concepts of Boolean theory and concepts of logic gates in digital						
	electronic	ctronics.					
CO2		nd the concept of sequential and combined					
CO3	-	design capability in synchronous and as	* *				
CO4	0	f memory cells and different memory ci	ircuits. Classify differe	ent s	emio	con	ductor
	memories						
Modul	e	COURSE SYLLABU			Hr	c	COs
No		CONTENTS OF MODU			111	5	005
		er system and codes, Boolean relat					
1		d, algebraic simplification, k-Maps, K	• •		7		
	-	addition, binary subtraction, Gates:					CO1
		(enable) operation, XOR circuits,	6				~~.
		rgan's Laws, Logic Hardware: DTL,		DS,			
		Logic and their characteristics, Dyna					~~~
2	Binary	Adders (Half Adder, Full adder,)). Arithmetic function	ns	7		CO2

	(True/Complement, Zero/One Element, Binary Subtraction, Digital Comparator), Tristate logic and its uses in computers, Flip flops: RS Latches, Level clocking (Clocked SR flip flop), D latch, Edge triggered JK Flip Flop, JK Master Slave flip flop, T type Flip Flop.		
3	Decoder, Encoders, Multiplexers, Demultiplexures Registers, parallel and Shift Registers, MOS Shift registers, synchronous & Asynchronous counters, up/down counters, Applications of Counters.	5	CO2 CO3
4	A/D & D/A converters and their design. Digital storage devices: ROM, RAM, EPROM, EEPROM, MOS ROM, ROM Applications	5	CO4

- 1. Digital Electronics by Gothman, Prentice-Hall
- 2. Digital Principals & Applications by Malvino& Leach, TMH
- 3. System Design by Sonde, TMH
- 4. Digital Computer Electronics by A.P.Malvino, TMH
- 5. Integrated Electronics by Millman&Halkias, McGraw Hill

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Program Name: B. TechElectrical and Instrumentation Engineering							
Course Code:	Course Name: Open Elective – II		L	Τ	P	С	
EI-OE-210	EI-OE-210 (ii) Computer Organization			1	0	3	
Year and	Year and 2 nd Year Contact hours pe			eek:	(3)	Hrs)	
Semester	(IV th Semester)	Exam: (3 Hrs)					
	Brief knowledge in the following:	Eval	uatio	n			
Pre-requisite of	Logic Circuit Design, Sequential						
course	Circuits, Fundamental programming	CIE: 40	SEE: 60			0	
	skills						
Course Objectiv	es:						
1. Understand	the basics of computer organization: strue	cture and operation	ofc	omp	uter	s and	
their periph	erals.						
2. Understand	the concepts of programs as sequences or	machine instruction	ons.				
3. Expose diff	3. Expose different ways of communicating with I/O devices and standard I/		rd I/O interfaces.			s.	
4. Describe hi	4. Describe hierarchical memory systems including cache memories and virtual memory.			у.			
5. Describe arithmetic and logical operations with integer and floating-point operands.							
6. Understand	basic processing unit and organization of	simple processor,	conc	ept o	of		

p	ipelining and other large computing systems.
Course	e Outcomes: On completion of the course, student would be able to:
CO1	The basic structure of computers & machine instructions and programs, Addressing
	Modes, Assembly Language, Stacks, Queues and Subroutines. Input/output
	Organization such as accessing I/O Devices, Interrupts and Memory system
CO2	Some Fundamental Concepts of Basic Processing Unit organization and execution of
	instruction, buses, buses peripheral devices etc.
CO3	Apply the knowledge gained in the design of Computer.
CO4	Analyse and design arithmetic and logical units
CO5	Design and evaluate performance of memory systems
CO6	Understand the importance of life-long learning

Module			COa
No	CONTENTS OF MODULE	Hrs	COs
1	Basic Structure of Computers : Basic Operational Concepts, Bus Structures, Performance – Processor Clock, Basic Performance Equation and Measurement. Machine Instructions and Programs : Memory Location and Addresses, Memory Operations, Instructions and Instruction Sequencing, Addressing Modes, Assembly Language, Basic Input and Output Operations, Stacks and Queues, Subroutines, Additional Instructions, Encoding of Machine Instructions.	7	CO1, CO2
2	Input/Output Organization: Accessing I/O Devices, Interrupts – Interrupt Hardware, Enabling and Disabling Interrupts, Handling Multiple Devices, Controlling Device Requests, Exceptions, Direct Memory Access, Buses, Interface Circuits,	6	CO2, CO3
3	Memory System: Basic Concepts, Semiconductor RAM Memories, Read Only Memories, Speed, Size, and Cost, Cache Memories – Mapping Functions, Replacement Algorithms, Performance Considerations, Virtual Memories, and Secondary Storage.	7	CO2, CO3, CO5
4	Basic Processing Unit : Some Fundamental Concepts, Execution of a Complete Instruction, Multiple Bus Organization, Hard-wired Control, Micro programmed Control.	6	CO3, CO4, CO6

Text Books:

1. Carl Hamacher, Zvonko Vranesic, Safwat Zaky: Computer Organization, 5th Edition, Tata McGraw Hill, 2002.

Reference Books:

- 1. William Stallings: Computer Organization & Architecture, 9th Edition, Pearson, 2015.
- 2. Patterson and Hennessy: Computer Organization & Design: The Hardware/Software Interface, Fourth Edition, Morgan Kaufmann Publishers, 2012.
- 3. J.P. Hayes: Computer Architecture and Organization, TMH
- 4. Microprocessor and Interfacing –Douglas V. Hall, TMGH 2nd edition

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.

3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Program Name: B. TechElectrical and Instrumentation Engineering							
Course	Code:	Course Name: Project Planning Estimation and			Τ	P	С
EI-HSN	M -212	Assessment		2	0	0	2
Year a	nd	2 nd Year	Contact hours per w	eek:	(21	Hrs)	
Semest	er	(IV th Semester)	Exam: (3 Hrs)				
Pre-rec	quisite of	NII	Evalua	ntion			
course	_	Nil	CIE: 40		SE	E: 6	0
Course	Objective	es:					
1. Ho	w to prepa	are project proposal and appraisal					
2. Ho	w to make	e market survey and demand analysis					
3. Ho	w to make	e technical analysis					
4. Ho	w to make	e finance planning					
5. Ho	be to achiev	ve project objectives and policies					
Course	Outcome	s: On completion of the course, stude	ent would be able to:				
CO1	Project appraisal documentation						
CO2	Based on make market survey and demand analysis, to give demand forecast						
CO3	Choice of	Choice of Technology					
CO4	Cost of the	Cost of the project and means of finance					
CO5	To develo	To develop tools to arrive at project objectives					

Program Name: B. Tech.-Electrical and Instrumentation Engineering

Module			Cos
No	CONTENTS OF MODULE	Hrs	COS
1	Project Development Cycle: Pre-investment phase, implementation phase, operational phase. Aspects of Appraisal: Market Appraisal, Technical Appraisal, Financial Appraisal, Economic Appraisal. Objectives of investment decision making. Scouting for project ideas; Preliminary Screening, compatibility with the promoter, consistency with governmental prioritize, availability of inputs, Adequacy of the market, Reasonableness of cost, Acceptability of Risk Level.	6	CO1
2	 Market and Demand Analysis: Information required for Market and Demand Analysis, Secondary sources of information, Market Survey Steps in sample survey, Demand Forecasting, Uncertainty in Demand forecasting, Method of Forecasting, Environmental Changes, coping with uncertainties. Technical Analysis: Material and inputs; Product Technology; Choice of Technology, Acquiring Technology, Appropriateness, of Technology, Product Mix, Plant Capacity, Location of site. 	6	CO2
3	Financial Estimates: Cost of Project, Main Components, Means	6	CO3

	of financing, Planning the Capital structure of a new company, Norms of the Controller of Capital issue, Norms and requirements of All India Financial Institutions, Stock Exchange stipulation, Difficulty in raising External Finance, Designing the capital structure.		CO4
4	 Project Planning & Control: Functions of Planning, Areas of planning, Project objectives and policies, life cycle of a project, Tools of Planning, Hierarchy of plans; Project Control- Reasons for ineffective control, variance Analysis Approach, Performance Analysis, Modern Approach to Control. 	6	CO5
5			

- 1. Project Preparation, Appraisal, Budgeting Implementation by Prasanna Chandra, Tata Mc-Graw Hill. (2017)
- 2. O.P. Khanna Industrial Engineering and Management Dhanpat Rai and Sons, 2001
- 3. S. Elion Elements of Production planning and control Macmillan Co. 2007
- 4. I.M. Pandey Financial Management Vikas Publishing Co.
- 5. E.S. Baffa Modern production management John Wiley and Sons. 2008
- 6. I.W.Burr Engineering Statistics and Quality Control McGraw Hill, 2011
- 7. A.J. Ducan Quality control and industrial statistics Richard.D.Irwing Inc.

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Program Name: B. TechElectrical and Instrumentation Engineering						
Course Code: EI-PRPC-10	Course Name: Power Electronics-I Lab.			Т 0	P 2	C 1
Year and	2 nd Year	Contact hours pe	er we	eek:	(2H	rs)
Semester	IV th Semester	Exam: (3hrs.)				
	Brief knowledge of in the following	Eval	uatic	n		
Pre-requisite of course	topics: Basic Electrical and Electronics engineering, Semiconductor devices, Digital Electronics, rectifiers.	CIE: 20		SE	E: 30	0
Course Objectives:						
1. Understand the Construction, principles and Characteristics of Power Devices Such as SCR,						
IGBT, MosFF	ET etc.					

|--|

- 3. Understand different types of supplies used for turning on of SCRs.
- 4. Understand the output characteristics of converters at different firing angles and different types of loadings.

71	0				
Course	Course Outcomes: On completion of the course, student would be able to:				
CO1	To understand the Construction, principles and Characteristics of Power Devices.				
CO2	To understand the various types of SCR triggering circuits and its firing techniques.				
CO3	To understand different methods of turning on of SCRs.				
CO4	To understand the output characteristics of converters at different firing angles and				
	different types of loadings.				

Expt.	COURSE SYLLABUS	COs
No	CONTENTS OF MODULE	COS
	LIST OF EXPERIMENTS STUDY EXPERIMENTS :	
1.	To Study the characteristics of SCR. find out the holding and latching current.	
2.	To plot the output characteristics of MOSFET	
3.	To plot the output characteristics of IGBT.	
4.	To trigger the SCR with DC triggering	
5.	To trigger the SCR with μ - controller based firing circuit.	
6.	To synchronize UJT firing circuit.	
7.	To perform the time delay with the help of UJT.	
8. t	To trigger single phase converter at different firing angles.	
9.	To study the resistance R and resistance-capacitance RC triggering of SCR.	
10.	To trigger SCR with digital circuit.	
11.	To turn on SCR using different methods.	
	SIMULATION EXPERIMENTS :	
1.	Single Phase Half wave controlled converter with R,RL&RLE Load (for	CO1,
	firing angles 30,60,90) with/without FD	CO2,
2.	Single Phase Half controlled converter with R,RL&RLE Load (for firing	CO3,
۷.	angles 30,60,90) with/without FD	CO4
3.	Single Phase Full controlled converter with R,RL&RLE Load (for firing	
5.	angles 30,60,90) with/without FD	
4.	Three Phase semi controlled converter with R,RL&RLE Load	
5.	Three Phase full controlled converter with R,RL&RLE Load	
6.	Single phase AC Voltage Controller with R&RL Loads	
7.	Boost converter and buck converter with open loop and closed loop operations	
8.	Single Phase cyclo converter	
	HARDWARE EXPERIMENTS :	
1.	Thyristorised drive for PMDC motor with speed measurement and Single	
1.	Phase Half controlled rectifier and full controlled rectifier	
2.	Three Phase input Thyristorised drive for Dc Motor with closed loop control	
3.	Single Phase Series Inverter	
4.	Single Phase Parallel Inverter	

REFERENCE BOOKS:

- 1. Modern Power Devices by B.Jayant Balica, New Age Inter.
- 2. Power Electronics by P.C. Sen (TMH)
- 3. An Introduction to Thyristors and Their Applications by M. Ramamurthy (EWP)
- 4. Power electronics by Ned Mohan and Robins, John Wiley and Sons

- Thyristor Phase Controlled converters and Cyclo-converters by B.R.Pelly
 Power Electronics by Vendem Subrahmanyam, New Age International

Progr	am Name: B. TechElectrical and Instrumentation Engine	eeri	ng	

Course Code:	Course Name: Electrical Measurements	&	L T P C	
EI-PRPC-12			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Year and				
Semester IV th Semester Exam: (3hrs.)				
	Brief knowledge of in the following	Eva	luation	
Pre-requisite	f topics: Basic Electrical and Electronics			
course	engineering, Semiconductor devices,	CIE: 20	SEE: 30	
	Digital Electronics, rectifiers.			
Course Objec	tives:	· · ·		
1. Unders	and the Construction and principles of Const	ruction and working	ng principles of	
wattme	ter and energy meters			
2. Unders	and the concepts of measurements of high an	d low resistances.		
3. Unders	and the null deflection and implement it in C	T & PT.		
Course Outco	mes: On completion of the course, student we	ould be able to:		
CO1 To un	CO1 To understand the Construction and working principles of wattmeter and energy meters.			
CO2 To un	To understand the methods to measure high and low resistances			
CO3 To un	To understand how to implement null deflection and in CT & PT.			
CO4 To un	To understand the displacement measurements in LVDT.			

Expt.	t. COURSE SYLLABUS		
No	CONTENTS OF MODULE	COs	
	LIST OF EXPERIMENTS STUDY EXPERIMENTS :		
1.	To calibrate D.C. Energy Meter at different loads.		
2.	To study the error in wattmeter at various p.f,s (power factors)		
3.	To measure resistance of the order of 5/10 ohm using (a) Ammeter, Voltmeter method. (b) Method of substitution (c) Carrey foster bridge.To measure the inductance and resistance of given inductor at different audio frequencies 200 Hz to 10Kz, using Maxwell's inductance, capacitance bridge, Hays Bridge.		
4.			
5.	To measure low resistance using Kelvin's Double Bridge.		
6.	To determine the current ratio and phase angle of the given current transformer at different nominal current ratio using direct deflection method		
7.	To study Lloyd fisher square and separate hysterises and eddy current losses of the specimen in the square.	CO2, CO3,	
	Calibration of D.C. Voltmeter 0-300 V and Ammeter 0-10 mA using Crompton potentiometer.	CO4	
8.	Measurement of displacement with the help of LVDT.		
9.	Dielectric oil testing using H.T. testing Kit.		
10.	Calibration and Testing of single phase energy Meter.		
11.	Measurement of 3 - Phase reactive power with single-phase wattmeter.		
12.	Measure the capacitance using Schering bridge and find out the balance equation.		
13.	Measure the self-inductance using Anderson bridge and find out the balance equation.		

14.	Resistance strain gauge – strain measurements and Calibration.
15	C.T. testing using mutual Inductor – Measurement of % ratio error and phase
15.	angle of given CT by Null method.
16	PT testing by comparison – V. G. as Null detector – Measurement of % ratio
16.	error and phase angle of the given PT.

REFERENCE BOOKS:

1. A Course in Elect. & Electronic Measurement & Instrumentation by A. K. Sawhney; Khanna Pub.

REFERENCE BOOKS:

- 1. Electrical Measurments by E.W. Golding
- 2. Electronic & Elect. Measurment&Instrumention by J.B.Gupta; Kataria& Sons.
- 3. Electronic Instrumentation & Measurment Technique, W.D. Cooper & A.D. Helfrick.
- 4. Measuring Systems by E.O. Doeblin; TMH.

Course	ourse Code: Course Name: Open Elective-II Lab. L T P (
EI-PROE-14		(i) Digital Techniques	-	
Year a	Year and2 nd YearContact hours per week: (2 Hrs)			
Semeste	er	IV th Semester	Exam: (3 hrs.)	
Pre-req	uisite of	Basic Electronics	Evalua	ation
course		Basic Electronics	CIE: 20	SEE: 30
Course	Objective	es:		
1. To in	mpart the	basic practical aspects of Digital Elec	tronics.	
2. To n	nake a dif	ferentiation between the Analog Elect	ronics and Digital elec	tronics through
prac	tical mode	es.		
3. To la	ay the four	ndation for the courses in electronics	related to microprocess	sors,
micr	ocompute	ers and computers which are more adv	anced courses based of	n digital
elect	ronics and	the revolution in electronics		
Course	Outcome	s: On completion of the course, stude	nt would be able to:	
CO1	Well vers	se with the fundamentals and the para	meters of digital compo	onents related to
	their fabrication and internal circuitry.			
CO2				
CO3				

Expt.	COURSE SYLLABUS	
No	CONTENTS OF MODULE	COs
1	Design and study Diode logic circuit AND and OR gate and verify the truth	
	table.	
2	Design and study DTL circuit NAND and NOR gate and verify the truth table.	
3	Design and study TTL NAND gate Circuit and verify the truth table.	
4	Draw EX-OR and EX-NOR logic circuit with the help of 7400 and verify its	
4	truth table.	
5	Draw the circuit of half adder and full adder and verify its truth table.	CO1,
6	Draw the SR and D flip flop and verify the truth table with the help of 7400.	CO2,
7	Draw the JK Flip flop and JK Master slave flip flop with 7400 and verify the	
/	truth table.	
8	Draw the Parallel in Parallel out registers with 7476 and verify its operation	

9	Draw the shift registers with 7476 and verify its operation.	
10	Draw the circuit of synchronous counter with 7476 and perform the up	
	counting.	
11	Draw the circuit of asynchronous counter with 7476 and perform the up	
	counting.	
10	Draw the circuit of asynchronous counter with 7476 and perform the down	
12	counting.	
13	Draw the mode 10 asynchronous up counter with 7476.	

Course	Code:	Course Name: Open Elective-II Lab).	L T P C	
EI-PRO	E-14	(ii) Computer Organization	0 0 2 1		
Year an	d	2 nd Year	Contact hours per w	veek: (2Hrs)	
Semeste	er	IV th Semester	Exam: (3hrs.)		
		Brief knowledge of in the	Evalua	ation	
Pre-req	uisite of	following topics: Logic Circuit			
course		Design, Sequential Circuits,	CIE: 20	SEE: 30	
		Fundamental programming skills			
	Objective				
1. Unde	erstand the	e basics of computer organization: stru	acture and operation of	f computers and	
their	periphera	ls.			
		e concepts of programs as sequences of			
		nt ways of communicating with I/O d			
		rchical memory systems including cad		•	
5. Desc	ribe arithi	metic and logical operations with integ	ger and floating-point	operands.	
6. Unde	erstand ba	sic processing unit and organization o	f simple processor, co	ncept of pipelining	
and o	other large	e computing systems.			
Course		s: On completion of the course, stude			
CO1		structure of computers & machine in	1 0	, 0	
		Assembly Language, Stacks, Queues a	1	1	
		tion such as accessing I/O Devices, In			
CO2		ndamental Concepts of Basic Processi	6	and execution of	
	instruction, buses, buses peripheral devices etc.				
CO3	Apply the knowledge gained in the design of Computer.				
CO4		and design arithmetic and logical units			
CO5	Design and evaluate performance of memory systems				
CO6	Understa	nd the importance of life-long learning	5		

Expt.	COURSE SYLLABUS	COs
No	CONTENTS OF MODULE	COS
	Exercises in Micro Processor programming:	
1	Write the working of 8085 simulator GNUsim8085 and basic architecture of	
1	8085 along with small introduction.	CO1,
2	Study the complete instruction set of 8085 and write the instructions in the	CO2,
2	instruction set of 8085 along with examples.	CO3,
3	Write an assembly language code in GNUsim8085 to implement data transfer	CO4
5	instruction.	

4	Write an assembly language code in GNUsim8085 to store numbers in reverse
4	order in memory location.
5	Write an assembly language code in GNUsim8085 to implement arithmetic
5	instruction.
6	Write an assembly language code in GNUsim8085 to add two numbers using
6	lxi instruction.
7	Write an assembly language code in GNUsim8085 to add two 8 bit numbers
/	stored in memory and also storing the carry.
8	Write an assembly language code in GNUsim8085 to find the factorial of a
0	number.
9	Write an assembly language code in GNUsim8085 to implement logical
9	instructions.
10	Write an assembly language code in GNUsim8085 to implement stack and
10	branch instructions.
	Write assembly language programs for the following using GNU
	Assembler.
	Write assembly language programs to evaluate the expressions:
	i) $a = b + c - d * e$
	ii) $z = x * y + w - v + u / k$
11	a. Considering 8-bit, 16 bit and 32 bit binary numbers as b, c, d, e.
	b. Considering 2 digit, 4 digit and 8 digit BCD numbers.
	Take the input in consecutive memory locations and also Display the results by
	using "int xx" of 8086. Validate program for the boundary conditions.
10	Write an ALP of 8086 to take N numbers as input. And do the following
12	operations on them.
	a. Arrange in ascending and descending order.
	Write an ALP of 8086 to take N numbers as input. And do the following
	operations on them.
13	a. Find max and minimum b. Find average
15	Considering 8-bit, 16 bit binary numbers and 2 digit, 4digit and 8 digit BCD
	numbers. Display the results by using "int xx" of 8086. Validate program for
	the boundary conditions.
	Write an ALP of 8086 to take a string of as input (in 'C' format) and do the
	following Operations on it.
	a. Find the length
14	b. Find it is Palindrome or n.
	Considering 8-bit, 16 bit binary numbers and 2 digit, 4 digit and 8 digit BCD
	numbers. Display the results by using "int xx" of 8086. Validate program for
	the boundary conditions.
	Write an ALP of 8086 to take a string of as input (in 'C' format) and do the
15	following Operations on it.
	a. Find whether given string substring or not.
	Write an ALP of 8086 to take a string of as input (in 'C' format) and do the
	following Operations on it
16	a. Find the Armstrong number
	b. Find the Fibonacci series for n numbers
	Display the results by using "int xx" of 8086.
17	Write the ALP to implement the above operations as procedures and call from

	the main procedure.	
18	Write an ALP of 8086 to find the factorial of a given number as a Procedure	
	and call from the main program which display the result.	

REFERENCE BOOKS:

- 1. Switching theory and logic design -A. Anand Kumar PHI, 2013
- 2. Advanced microprocessor & Peripherals-A. K. Ray and K. M. Bherchandavi, TMH, 2nd edition.
- 3. Switching and Finite Automatic theory-Zvi Kohavi, Niraj K.Jha Cambridge, 3rd edition
- 4. Digital Design Morris Mano, PHI, 3rd edition
- 5. Microprocessor and Interfacing –Douglas V. Hall, TMGH 2nd edition

Course Code: EI-PRPC-16	$(Ourso Nomo H H (' CR (' A M A ('H N H S_1) A R H)$		L T 0 0	P 3	C 1.5
Year and	II nd Year	Contact hours pe	er week:	(3H	rs)
Semester	IV th Semester	Exam: (3hrs.)			
Pre-requisite	Basic Electrical Engg	Evalu	lation		
of course	Dasic Electrical Eligg	CIE: 30	SE	E: 4	5
Course Object	ives:				
1. To have	e practical knowledge about working of DC	machines.			
2. To be a	ble to test DC machines for their performance	ce.			
3. To have	e practical knowledge of working of single a	nd three phase trans	formers	•	
4. To be a	ble to conduct experimentation on single and	d three phase transfo	ormers.		
Course Outcon	nes: On completion of the course, student w	ould be able to:			
CO1 have s	ound practical understanding of DC generated	ors and DC motors.			
CO2 condu					
CO3 have p	have practical understanding of single phase and three phase transformers.				
CO4 condu	et various tests on single and three phase tran	nsformers.			

Expt.	COURSE SYLLABUS	Cos
No	CONTENTS OF MODULE	
1	Measurement of induced emf and magnetising current under open circuit	
	condition in D.C. generators.	
2	Determination of the relationship between terminal voltage and load current	
	keeping speed constant for(a) Separately excited generator keeping excitation	
	constant (b) D.C. shunt generator.	
3	To measure the variation in no load speed of a separately excited d.c. motor for	
	the variation in (a) Armature circuit resistance(b) Field circuit resistance.	
4.	To study the working of DC motor starters.	
5	Speed control of DC shunt motor using (a) armature control (b) field control.	
6	To conduct brake test on dc shunt motor.	
7	To Perform Load test on a single phase transformer.	
8	To perform Open circuit and short circuit tests on a single phase transformer	
0	and hence find Equivalent circuit, voltage regulation and efficiency.	
9	To find the efficiency and voltage regulation of single phase transformer under	
9	different loading Conditions	
10	To perform parallel operation of two single phase transformers.	
11	Polarity test and 3-phase connections of single phase transformers.	

B. Tech Electrical and Instrumentation Engineering SYLLABI for EXAMINATIONS B. Tech. 3rd YEAR

Program Name: B. Tech.-Electrical and Instrumentation Engineering

Course Code: Course Name: Open Elective-III		L	Τ	P	С		
EI-OE-301		(i) Environment Monitoring Instrumentation		3	1	0	4
Year and		3 rd Year	Contact hours per week: (4Hrs)			Hrs)	
Semester		V th Semester	Exam: (3hrs.)				
Pre-requisite of course		NIL	Evaluation				
			CIE: 40	CIE: 60		0	
Course Objectives:							
1. To understand the concept of pollution monitoring							
2. To Understand the concepts of Air pollution							
3. To study the various air pollution monitoring instruments and methods							
4. To study water pollution and its monitoring equipment							
Course Outcomes: On completion of the course, student would be able to:							
CO1							
CO2	Sample and analyze air pollutants						
CO3	Understand the air quality monitoring instruments						
CO4							
CO5	D5 Understand the water quality monitoring instruments						

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Air and water Pollution: Sources & Effects: Definition and concentrations, classification, emission sources, Air pollution standards, sources of pollutions, effects of Air pollution, Sources of contamination of surface and ground water.	9	CO1
2	Air Pollution Sampling and Measurements: Ambient air sampling, Collection of gaseous air pollutants, Collection of particulate pollutants, stack sampling, Analysis of Air pollutants.	9	CO1, CO2
3	Air Pollution Monitoring Instruments: Photometry, Mass spectrometry, NMR, X-ray Fluorescence, Infra-red spectrometry, Flame photometry, Atomic absorption spectroscopy, chromatography, Coulometry etc. for measurement of SO2, Nitrogen oxides, carbon monoxide, hydrocarbons and particulate matter.	9	CO2, CO3
4	 Water Pollution sampling and Measurements and Monitoring Instruments: Sampling and Analysis, Samplers-Bailers, Heavy metal and trace metal analyzers, pH meters, Resistivity meters, Induced Polarization (IP) Meter for monitoring of industrial contamination. Waste water management and recycling equipment. 		CO1, CO4, CO5

Recommended Books:

- 1. A Text Book in Environmental Pollution and control, Bhatia H.S., Galgotia Publication (1998)
- 2. Environmental Engineering and Management, Dhameja S.K., S.K Kataria (2000)
- 3. Air Pollution, Rao M.N. and Rao H.V., Tata McGraw Hill (2004)
- 4. Environmental Pollution Control, Rao. C.S., New Age International (P) Limited, Publishers (2006) 2nd ed.
- 5. Environmental Pollution Analysis, S M Khopkar, New Age International.
- 6. Industrial Pollution, V P Kudesa, PragatiPrakashan
- 7. Ground Water Hydrology, David Keith Todd, Wiley Publications

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code:	Course Name: Open Elective-III		L T P C					
EI-OE-301	(ii) Electromagnetic Filed Theory	-						
Year and	3 rd Yr.	Contact hours per v	ırs per week: (4Hrs)					
Semester	5 th Semester	Exam: (3 Hrs)						
Pre-requisite of	NIL	Evaluation						
course	INIL	CIE: 40	SEE: 60					
Course Objectiv	Course Objectives:							
1. To introduce	1. To introduce the basic mathematical concepts related to electromagnetic vector fields.							
2. To impart know	owledge on the concepts of electrostation	ics, electrical potential	l, energy density					
and their app	and their applications.							
3. To impart kno	3. To impart knowledge on the concepts of magnetostatics, magnetic flux density, scalar and							
vector potenti	vector potential and its applications							
4. To impart knowledge on the concepts of Faraday's law, induced emf and Maxwell's								
equations.								
5. To impart kno	wledge on the concepts of Concepts of	f electromagnetic wav	es and Pointing					
vector.								
6. To acquaint mathematically with transmission lines circuits and their characteristics.								
Course Outcomes: On completion of the course, student would be able to:								
CO1 Have a g	ood understanding of various principle	es and phenomenon of	felectrostatics					
through	through analytical illustrations.							
CO2 Gain sou	CO2 Gain sound knowledge of magnetostatics in terms of magnetic field, flux density,							

	current density, and time varying equations (Maxwell's equations).
CO3	Understand and apply Maxwell's equations for time varying fields.
CO4	Understand and explain the characteristics, propagation of EM waves under different
	media and conditions.
CO5	Have knowledge of transmission times in terms of Characteristics Impedance,
	Propagation Constant, Phase and Group Velocities, Input Impedance Relations through
	illustrations.

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs		
1	Electrostatics: Coulomb's Law, Electric Field Intensity - Fields due to Different Charge Distributions, Electric Flux Density, Gauss Law and Applications, Electric Potential, Relations Between E and V, Maxwell's Two Equations for Electrostatic Fields, Energy Density, Illustrative Problems, Convection and Conduction Current, Dielectric Constant, Isotropic and Homogeneous Dielectrics, Continuity Equation, Relaxation Time.	8	CO1		
2	Magnetostatics: Biot - Savart's Law , Ampere's Circuital Law and Applications, Magnetic Flux Density, Maxwell's Two Equations for Magnetostatic Fields, Magnetic Scalar and Vector Potentials, Forces due to Magnetic Fields, Ampere's Force Law, Inductance and Magnetic Energy, Illustrative Problem.	6	CO2		
3	Time Varying Fields (Maxwell's equations): Ampere's Law and Displacement Current Density, Maxwell's Equations in Different Forms and Word Statements, Conditions at a Boundary Surface: Dielectric - Dielectric and Dielectric - Conductor Interfaces, Illustrative Problems				
4	EM Wave Characteristics Wave Equations for Conducting and Perfect Dielectric Media, Uniform Plane Waves - Definition, All Relations Between E & H, Sinusoidal Variations, Wave Propagation in Lossless and Conducting Media, Conductors & Dielectrics - Characterization, Wave Propagation in Good Conductors and Good Dielectrics, Polarization, Illustrative Problems. Reflection and Refraction of Plane Waves - Normal and Oblique Incidence for both perfect Conductor and perfect Dielectrics, Brewster Angle, Critical Angle and Total Internal Reflection, Surface Impedance, Poynting Vector and Poynting Theorem - Applications, Power Loss in a Plane Conductor., Illustrative Problems.	10	CO4		
5					

 Electromagnetism – Theory and Applications, Ashutosh Pramanik, , PHI Learning Private Limited, New Delhi, Second Edition-2009.

- 2. Engineering Electro-magnetics : E. C. Jordan.
- 3. Electromagnetic Field Theory (including Antennaes and wave propagation,K.A. Gangadhar, P.M. Ramanthan 16th Edition, Khanna Publications, 2007.

Reference Books:

- 1. Field & Wave Electromagnetic: Cheng, Pearson Education
- 2. Principles of Electromagnetics', Mathew N. O. Sadiku, 4th Edition ,Oxford University Press Inc. First India edition, 2009.
- 3. Electromagnetics: Edminister, Schaum series, 2nd Ed.

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Cod	le: Course Name: Open Elective-III	L T P C					
EI-OE-301	(iii) Mathematics– III	3 1 0 4					
Year and	3 rd Year	Contact hours p	er week: (4 Hrs)				
Semester	5 th Semester	Exam: (3 Hrs)					
	The course assume prior knowledge of	Eval	uation				
Pre-requisi	te Infinite series, Trigonometric relations,						
of course	e Partial Differentiation, Probability CIE: 40 SEE:						
	concepts						
Course Obj	jectives:						
9. To und	erstand power series and possible application for	or solving different	tial equation				
10. To kno	w and understand the Fourier series expansions	and its utilities.					
11. To gain	n knowledge on complex domains and evaluate	residues of series e	expansions in				
comple	ex domains.						
12. To exp	lore and analyze Probability distributions and pr	obe its utilities in	various situations.				
Course Out	Course Outcomes: On completion of the course, student would be able to:						
CO1 U	Understand the fundamental of series expansions.						
CO2 A	Apply the series expansions to solve various Mathematical problem situations.						
CO3 U	nderstand and analyze complex functions handl	ing and its applicat	tions to solve				
va	arious problems.						

CO4 Students should be able to use his knowledge of probability to analyze and apply to communicate in technical ways.

Module	le COURSE SYLLABUS				
No	CONTENTS OF MODULE	Hrs	COs		
1	Bessel functions: series solution of Bessel differential equation, Bessel function of first kind $Jn(x)$, recurrence relations. Legendre Polynomials: Legendre differential equation, Legendre polynomials $P_n(x)$ as solution of Legendre differential equation for (n>0), recurrence relations.	10	CO1, CO2		
2	Fourier Series: Euler's formulae, conditions for Fourier expansions, Fourier expansion of functions having points of discontinuity, change of interval, odd & even functions, half range series. Fourier Transforms: Fourier Integrals, Fourier transforms, Fourier cosine and sine transforms, Properties of Fourier Transforms: convolution theorem, Parseval's identity, relation between Fourier and Laplace transforms	8	CO1, CO2		
3	Function of a complex variables: Cauchy-Riemann equations, necessary and sufficient conditions for a function to be analytic, harmonic functions, Taylor and Laurent series, singular points, residues, evaluation of residues at poles, and poles of m th order, Cauchy's residue theorem, the Cauchy's principle value, evaluation of definite integrals.	10	CO1, CO2, CO3		
4	Probability Distributions: Probability, Bayes theorem, Discrete & Continuous probability distributions, discrete random variable, probability function, distribution function, Mathematical expectation, expectation of a sum of random variables, expectation of product of independent variables, covariance, Moment generating function, probability generating function.	8	CO1, CO2, CO4		

TEXT BOOKS:

- **1.** Advanced Engineering Mathematics by E. Kreyszig. 10th Edition, John Wiley
- 2. Higher Engineering Mathematics by B.S. Grewal. 43rd Edition, Khanna Publications
- **3.** Schaum's Outline of Complex Variables by Murray R. Spiegel, 2nd Edition, McGraw-Hill Education
- 4. Probability and Statistics for Engineers by J. Ravichandran, Wiley India Publication.

REFERENCE BOOKS:

- 1. Engineering Mathematics Part-I: S.S. Sastry, 4th Edition, PHI.
- 2. Advanced Engineering Mathematics: R.K. Jain, S.R.K. Iyengar, 3rd Edition, Narosa Publications
- **3.** Probability and Statistics for Engineers by Richard A Johnson, 9th Edition, PHI

Note for Examiner(s): Question paper will comprise three sections,

1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.

- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course	Code:	Course Name: Open Elective-III		L	Τ	P	С
EI-OE-3	0E-301 (iv) Energy Efficient Systems				1	0	4
Year a	ar and 3 rd Year Contact hours per week: (4Hrs)						lrs)
Semest	er	41-					
Due no	Brief knowledge of in the following Evaluation						
	quisite of	topics: Electrical Machines, Electrical	CIE: 40		CEI	F . ()	0
course		Power System and Generation.	CIE: 40		SEI	E: 60	J
Course	Objective	es:					
1. To	introduce	the concept of single phase and three phase	se motors.				
2. To	introduce	the concept of Energy efficient machines	and Economics of	Pow	er fa	ctor	
im	provement	s.					
3. To	study the	concept of Energy efficient lighting and E	conomics of Energy	gy po	wer		
ger	neration.						
4. To	study the	concept of economics of electrical energy	distribution and el	lectrio	cal d	lrive	s.
Course	Outcome	s: On completion of the course, student w	vould be able to:				
CO1	To Famil	iarize with the concept of single phase and	three phase motor	rs.			
CO2	To understand the concept of Energy efficient machines and Economics of Power factor						
	improvements.						
CO3	To Famil	iarize with the concept of Energy efficien	t lighting and Eco	nomic	es of	Ene	rgy
	power ge	1 00					
CO4	1 0	stand the concept of economics of electric	al energy distribut	ion a	nd e	lectr	rical
	drives.						

Module	COURSE SYLLABUS	Hrs	COs
No	CONTENTS OF MODULE	1115	COS
1	THREE PHASE INDUCTION MOTROS: Cage motors-equivalent circuit-speed-torque characteristics-performance characteristics voltage unbalance-over motoring-slip ring induction motor characteristics multi speed motors. SINGLE PHASE INDUCTION MOTORS: Starting & running performance-split phase-capacitor type motor-characteristics reluctance motor.	7	CO1
2	ENERGY EFFICIENT MOTORS: Constructional details-factors affecting	8	CO2

	efficiency-losses distribution-characteristics calculation of pay back period. ECONOMICS OF POWER FACTOR IMPROVEMENT: Simple pay back method-return on investment-life cycle analysis.		
3	ENERGY EFFICIENT LIGHTING: Terminology-cosine law of illumination-types of lamps-characteristics-design of illumination systems- good lighting practice-lighting control-steps for lighting energy conservation.ECONOMICSOFELECTRICALENERGY GENERATION:Definitions-connected load, maximum demand-demand factor-curve-base load and peck load.	11	CO3
4	 ECONOMICS OF ELECTRICAL ENERGY DISTRIBUTION: Electrical load analysis-type of consumers& tariffs-line losses-corner losses- types of distribution systems- Kevin's law-loss load factor. ECONOMICS OF ELECTRICAL DRIVES: Selection of motors- types of loads-energy consumption during starting of ac and dc motors braking of motors-plugging-regenerative braking. 	10	CO4

- 1. Electrical Machinery: Fitzerland, Kingsley, Kusko-MC Graw Hill Ltd.
- 2. Energy-Efficient Electrical motors: John C.Andreas-Marcel Decker Inc.
- 3. Electrical Technology: Edward Hughes-ElLBS. Energy Management and good lighting practice: Fuel Efficiency Booklet 12-eeo.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Program Name: B. TechElectrical and Instrumentation Engineering	Program	Name: B.	. TechElectrical	and Instrumentation	Engineering
---	---------	----------	------------------	---------------------	-------------

Course Code: EI-PC-303	PC-303 Course Name: Power Electronics-II				P 0	C 4
Year and	3 rd Year	Contact hours per week: (4Hrs)				Irs)
Semester	(V th Semester)	Exam: (3 Hrs)				
	Brief knowledge of in the following	owing Evalu				
Pre-requisite of course	topics: Power Electronics I, Basic Electrical and Electronics engineering, Semiconductor devices, Digital Electronics, rectifiers.	CIE: 40		SEI	E: 6	0
Course Objectives:						

1. To introduce the concept of Choppers.					
2. To introduce the concept of Inverters and types of inverters.					
3. To study the modulation & harmonics and techniques to remove harmonics.					
4. To study various types of chopper drives and its applications.					
Course Outcomes: On completion of the course, student would be able to:					
CO1 To Familiarize with control strategies of choppers, types of choppers.					
CO2 To understand the working of Inverters.					
CO3 To Familiarize with inverters, types of choppers and their mode of angles of operation	ıs.				
CO4 To understand the applications of choppers and at different stages.					

Module	COURSE SYLLABUS	Hrs	COs		
No	CONTENTS OF MODULE	1115	COS		
1	Second-Quadrant or Type-b choppers, Two-Quadrant Type-a Chopper or Type-C chopper, Two-Quadrant Type-b Chopper or Type-D chopper, Four-Quadrant Type-a Chopper or Type-E chopper.				
2	Inverters: operating Principle of Single Phase Voltage source inverter; Single –Phase bridge inverter, Force-commutated thyristor inverter; Modified Mcmurray-Bedford Half-bridge Inverter, Modified Mcmurray-Bedford Full-bridge Inverter, Three Phase Bridge Inverter; Three –Phase 180 ⁰ Mode VSI and Three –Phase 120 ⁰ Mode VSI.	8	CO2		
3	Modulation and Harmonics; Pulse Width Modulated Inverter; Single-Phase Modulation, Multiple Phase Modulation, Sinusoidal Pulse Modulation (Sin M), Reduction Of Harmonics in the inverter output Voltage; Harmonics Reduction by PWM, Harmonics Reduction by Transformer connection, Harmonics Reduction by Stepped wave Inverter.	11	CO3		
4	Chopper Drives and Applications: Thyristor Chopper Circuits; Voltage commutated choppers, Current-commutated choppers and Load commutated choppers. Chopper Drives; Power Control or Motoring Control. Regenerative-Breaking control, Two Quadrant chopper control and Four Quadrant Chopper control, Static Kramer Drives, Static Scherbius Drive. (No quantitative analysis)	10	CO4		

- 1. Modern Power Devices by B.Jayant Balica, New Age Inter.
- 2. Power Electronics by P.C. Sen (TMH)
- 3. An Introduction to Thyristors and Their Applications by M. Ramamurthy (EWP)
- 4. Power electronics by Ned Mohan and Robins, John Wiley and Sons
- 5. Power Electronics by M. Rashid (PHI)
- 6. Thyristor Phase Controlled converters and Cyclo-converters by B.R.Pelly
- 7. Power Electronics by Vendem Subrahmanyam, New Age International

Note for Examiner(s): Question paper will comprise three sections,

1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.

- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Co	de: C	ourse Name: Program Elective-I	I	L T P C		
EI-PE-305		(i) Microprocessors 3 1 -				
Year and		3rd Yr. Contact hours per week: (4Hrs)				
Semester	5 ^{ti}	^h Semester	Exam: (3 Hrs)			
Pre-requis		I-OE-210 DIGITAL	Evalu	ation		
course	TI	ECHNIQUES IV th Semester	CIE: 40	SEE: 60		
Course Ob	jectives:					
1. To equ	ip the stuc	dents with architecture and working	g of basic microproces	ssors.		
2. To ma	ke the stuc	lents understand the instructions se	ets of basic microproce	essors and various		
assemb	oly langua	ge programs.				
3. To imp	oart the kn	owledge of various programmable	interfacing chips.			
4. To des	ign and stu	udy the various instrumentation sy	stems with programm	able chips.		
Course Ou	itcomes: (On completion of the course, stude	nt would be able to:			
CO1 UI	nderstand t	the basic of the internal organisation	on of 8086 Microproce	essor.		
CO2 UI	nderstand of	different addressing modes and ins	tructions of 8086, des	ign and develop		
as	assembly language programs using software interrupts, subroutines, macros.					
CO3 UI	Understand to interface memory and I/O devices with 8086 through programmable					
int	interface chips					
CO4 UI	nderstand i	interrupt structure in 8086 and few	case studies using int	erfacing chips		
us	eful in inst	trumentation systems.		_		

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Introduction and Evolution of microprocessors, Introduction to Microcomputer systems, 8086 Microprocessor - Architecture and signals, Pin diagram, Memory organisation,, Minimum mode 8086 system and Timing diagrams, Maximum Mode 8086 system and Timing diagrams.	8	CO1
2	8086 Addressing Modes, 8086 Instruction set and Assembler Directives - Assembly Language Programming, Basic interfacing concepts in a microprocessor, Peripheral and Memory mapped I/O, PPI 8255, Modes of operation – Mode-0 and BSR Mode		CO2

3	Block diagram, Control word format and modes of operation of Keyboard displace interface 8279 , DMA controller 8257 and Programmable interval timer 8253, Basic concepts of Serial Communication interface chip (e.g.8251)	8	CO2 CO3
4	nterrupts study - Types of Interrupts and Interrupt Service Routine. Handling Interrupts in 8086, Interrupt programming, Programmable nterrupt Controller - 8259 – Architecture only.		CO2 CO3 CO4

Reference Books:

- 1. Microprocessor Architecture Programming and Applications by Gaonkar, Penram International
- 2. Microprocessor system: The 8086/8088 family IInd ed. By Yu.Cheng & Gibson
- 3. Microprocessors and interfacing by D.V.Hall
- 4. Bhurchandi and Ray, Advanced Microprocessors and Peripherals, Third Edition McGraw Hill.

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code:	8		L	Т	P	С
EI-PE-305 (ii) Analog and Digital Communication		3	1	-	4	
Year and 3 rd Yr. Contact hours per we		reek: (4Hrs)				
Semester	5 th Semester	Exam: (3 Hrs)				
Pre-requisite of	NIL	Evalua	Evaluation			
course	NIL	CIE: 40		SEE: 60		
Course Objective	es:					
1. To introduce	students with the need for electronic	communication.				
2. To familiarize	e with analog modulation and its form	nats.				
3. To have understanding of angle modulation and its types.						
4. To have knowledge of pulse modulation and digital modulation.						
5. To gain analy	tical skills based information theory.					

6. To	have basic knowledge about source coding and error controlling codes.
	e Outcomes: On completion of the course, student would be able to:
CO1	Acquire knowledge about the analog modulation and its different formats including power and current relations in and AM wave.
CO2	Have good understanding of angle modulation including frequency modulation and phase modulation and respective demodulation techniques.
CO3	Acquire knowledge about pulse analog modulation and digital modulation and respective demodulation techniques.
CO4	To have acquaint about the basics of information theory and associated codes.
CO5	Acquire basic knowledge about source coding and error control coding techniques together with solving simple numerical problems.
CO6	

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Amplitude Modulation: Need for modulation, Amplitude Modulation - Time and frequency domain description, single tone modulation, power relations in AM waves, Generation of AM waves, Detection of AM Waves - Envelope detector, DSBSC modulation, Generation of DSBSC Waves - Balanced Modulators, SSB modulation and demodulation.	7	CO1
2	Angle Modulation: Basic concepts of Phase Modulation, Frequency Modulation: Single tonefrequency modulation, Spectrum Analysis of Sinusoidal FM Wave, Narrow band FM and Wide band FM, Transmission bandwidth of FM Wave, Generation of FM Signal, Demodulation of FM, Comparison of FM and AM.,	7	CO2
3	Pulse Modulation: PCM Generation and Reconstruction, Differential Pulse code modulation, Delta Modulation and Adaptive Delta Modulation. Digital Modulation Techniques: ASK- Modulator, Coherent ASK Detector, FSK- Modulator, Non- Coherent FSK Detector, BPSK- Modulator, Coherent BPSK Detection. Principles of QPSK, Differential PSK.	10	CO3
4	Information Theory: Information, Average Information, Mutual Information, Entropy, Information Sources, Communication Channels, Channel Models, Channel Matrix, Joint probability Matrix, Binary Symmetric Channel, Channel Capacity.	7	CO4
5	Source Coding: Source coding theorem, Prefix Codes, Krafts inequality, Shannon's Encoding Algorithm Shannon Fano Encoding Algorithm, Huffman codes. Basics of Error Control coding: Longitudinal Redundancy Check (LRC), Vertical Redundancy Check (VRC), linear block codes, cyclic codes.	7	CO5

- 1. Communication systems, Sanjay Sharma, Katson, Publications
- 2. <u>Modern Digital and Analog Communication Systems, B P Lathi, Zhi Ding, H M Gupta,</u> <u>Oxford publishers.</u>

3. Electronics & Communication System, George Kennedy and Bernard Davis, TMH 2004 **Reference Books:**

- 1. Principles of Communication Systems" Herbert Taub, Donald L Schilling, Goutam Saha, 3rd Edition, McGraw-Hill, 2008.
- 2. Electronic Communications" Dennis Roddy and John Coolean , 4th Edition , PEA, 2004.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Co	de:	Course Name: Program Elective-I	I	L	Τ	P	С	
EI-PE-305	600		3	1	0	4		
Year and	d 3 rd Year Contact hours per wee		veek: (4Hrs)					
Semester		(V th Semester)	Exam: (3 Hrs)					
Pre-requisi	ito of	Brief knowledge of in the	Evalua	tion				
-		following topics: Electrical	CIE: 40	SEE: 60				
course		Machines, Power Electronics.	CIE: 40		SEE: 00			
Course Ob	jective	s:						
1. To intro	oduce t	he concept of Electric Protection.						
2. To Fam	niliarize	e with Circuits Breakers and Lightnin	ng Arresters.					
3. To und	erstand	the Protective relays.						
4. To stud	ly the p	rotection schemes.						
Course Ou	tcomes	: On completion of the course, stude	nt would be able to:					
CO1 To	Famili	arize with Switches and Fuses.						
СО2 То	To understand the Circuits Breakers and Lightning Arresters.							
СОЗ То	o understand the Protective relays.							
СО4 То	unders	tand the protection schemes.						

Module	COURSE SYLLABUS	Hrs	COs					
No	No CONTENTS OF MODULE							
1	SWITCHES AND FUSES: Introduction, energy management of power system, definition of switchgear, switches - isolating, load	7	CO1					

	breaking and earthing. Introduction to fuse, fuse law, cut -off characteristics,: Time current characteristics, fuse material, HRC fuse, liquid fuse, Application of fuse PRINCIPLES OF CIRCUIT BREAKERS: Introduction, requirement of a circuit breakers, difference between an isolator and circuit breaker, basic principle of operation of a circuit breaker, phenomena of arc, properties of arc, initiation and maintenance of arc, arc interruption theories - slepian's theory and energy balance theory, Restriking voltage, recovery voltage, Rate of rise of Restriking voltage, DC circuit breaking, AC circuit breaking, current chopping, capacitance switching, resistance switching, Rating of Circuit breakers.		
2	CIRCUITS BREAKERS LIGHTNING ARRESTERS: CIRCUITS BREAKERS: Air Circuit breakers – Air break and Air blast Circuit breakers, oil Circuit breakers - Single break, double break, minimum OCB, SF6 breaker - Preparation of SF6 gas, Puffer and non-Puffer type of SF6 breakers. Vacuum circuit breakers - principle of operation and constructional details. Advantages and disadvantages of different types of Circuit breakers, Testing of Circuit breakers, Unit testing, synthetic testing, substitution test, compensation test and capacitance test. LIGHTNING ARRESTERS: Causes of over voltages – internal and external, lightning, working principle of different types of lightning arresters. Shield wires.	7	CO2
3	 PROTECTIVE RELAYING:Requirement of Protective Relaying, Zones of protection, primary and backup protection, Essential qualities of Protective Relaying, Classification of Protective Relays. INDUCTION TYPE RELAY:Non-directional and directional over current relays, IDMT and Directional characteristics. Differential relay Principle of operation, percentage differential relay, bias characteristics, distance relay – Three stepped distance protection, Impedance relay, Reactance relay, Mho relay, Buchholz relay, Negative Sequence relay, Microprocessor based over current relay – block diagram approach. 	10	CO3
4	PROTECTION SCHEMES: Generator Protection - Merz price protection, prime mover faults, stator and rotor faults, protection against abnormal conditions – unbalanced loading, loss of excitation, over speeding. Transformer Protection - Differential protection, differential relay with harmonic restraint, Inter turn faults Induction motor protection - protection against electrical faults such as phase fault, ground fault, and abnormal operating conditions such as single phasing, phase reversal, over load.	12	CO4

REFERENCE BOOKS:

- 1. Chakraborti, A., Soni, M.L., Gupta, P.V. and Bhatnagar, U.S., a Text Book on Power System Engineering, DhanpatRai and Co. (P) Ltd. (2008).
- 2. Pathinkar, Y.G. and Bhide, S.R., Fundamentals of Power System Protection, PHI Learning Pvt. Limited (2008).
- 3. Rao, S.S., Switchgear and Protection, Khanna Publishers (2007).

- 4. Deshpande, M.V., Switchgear and Protection, Tata McGraw-Hill (2005).
- 5. Elmore, W.A., Protective Relaying Theory and Applications, ABB Power T and D Company Inc. (2003).

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course	Code:	Course Name: Power System - II		L	Т	P	С
EI-PC-3	307			3	1	-	4
Year ar	nd	3 rd year	Contact hours per v	week:	(4H	Irs)	
Semest	er	5 th Semester	Exam: (3hrs.)				
Pre-req	uisite of	Basic Electrical Engineering,	Evaluation				
course		Power System-I	CIE: 40		SE	E: 6	0
Course	Objective	es:					
1. To s	tudy the c	oncept of corona and its impact in trai	nsmission line.				
2. To s	tudy the c	onstruction, features and types of und	erground cables.				
3. To i	ntroduce t	he concept of per unit system to study	different faults in pov	wer sy	vsten	n.	
4. To s	tudy the b	ehavior of travelling waves on transm	ission lines.				
5. To s	tudy the c	oncept of power system stability and	methods to improve st	ability	/.		
Course	Outcome	s: On completion of the course, stude	nt would be able to:				
CO1	To under	stand the concept of corona and its im	pact in transmission l	ine.			
CO2	To under	stand the construction, features and ty	pes of underground ca	ables.			
CO3	Understa	nd and implement the per-unit system	and utilize it for fault	analy	sis j	purp	ose.
CO4	To analys	Fo analyse the impact of travelling waves on transmission lines.					
CO5	Understa	nd the problem of power system sta	bility and its impact	on the	e sy	vsten	n. The
	methods	to improve stability.					

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Corona: Phenomenon of corona, disruptive critical voltage, visual critical voltage, corona loss, radio interference.	9	CO1, CO2

	Underground Cables: Classification and construction, insulation resistance, capacitance, capacitance determination, power factor in cables, capacitance grading, use of inter-sheaths, losses, heat dissipation and temperature rise in cables, current rating, comparison with overhead lines.		
2	 Per Unit System: Change of base, per unit quantities in three phase system, selection of base values, base quantities in terms of KV and MVA, per unit load impendence, advantages of per unit representation, one-line diagrams, preparation of impendence and reactance diagrams. Fault Analysis: Transients on a transmission line, short circuit of synchronous machine at no load and on full load, Symmetrical component transformation, phase shift in star-delta transformation, sequence impedances, Single line to ground fault, line to line fault, double line to ground fault, open conductor fault. 	8	CO3
3	 Travelling Waves on Transmission Line: Lumped and Distributed Parameters – Wave Equation – Reflection, Refraction, Behaviour of Travelling waves at the line terminations – Lattice Diagrams – Attenuation and Distortion – Multi-conductor system and Velocity wave. Transients of Transmission lines: Transmission-line transients, Transient Analysis: Travelling Waves, reflections and refraction of waves. 	9	CO4
4	Power Systems Stability: Definitions: angular stability- steady state stability, dynamic stability, transient stability, mechanics of angular momentum, swing equation, equal area criteria, critical clearing angle, solution of swing equation, stability study in multi-machine system, Technique of improving transient stability, Voltage stability, Voltage collapse, V-P and V-Q curves.	8	CO5

Suggested Text / Reference Books:

- 1. John J. Grainger, William D. Stevenson, "Power System Analysis", McGraw-Hill
- 2. B.Ram, D.N.Vishvakarma, "Power System protection and switchgear", TMH.
- 3. B. M. Weedy, B. J. Cory, "Electric Power Systems", John Wiley& Sons.
- 4. I.J. Nagrath and D.P. Kothari, "Power System Engg", TMH.
- 5. Soni, Gupta and Bhatnagar, "A course in Electrical Power", DhanpatRai& Sons.
- 6. K.R. Padiyar, "Power System Dynamics, Stability and Control", B. S. Publications, 2002.
- 7. P. Kundur, "Power System Stability and Control", McGraw Hill, 1995.
- 8. P. Sauer and M. A. Pai, "Power System Dynamics and Stability", Prentice Hall, 1997..

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code: EI-PC-309		Course Name: Linear Automatic Control System		L T 3 1	P C 0 4			
Year a	nd	3rd Year	Contact hours per w	veek: (4H	lrs)			
Semest	er	(V th Semester)	Exam: (3 Hrs)					
Pre-rec	quisite of	Control system components	Evalua	aluation				
course		Control system components	CIE: 40	SEF	E: 60			
Course	Objective	es:						
1. Stuc	1. Study the time response of various types (0, 1, 2, 3, etc.) of system Execute time response							
anal	analysis of a second order control system using MATLAB/ simulation software							
2. Stuc	ly the Stab	oility analysis of Linear system, Analy	ze and interpret stabili	ty of the s	ystem			
		Locus, Bode plot and Nyquist plot.						
3. Stuc	ly Lag, Le	ad, Lead-Lag compensators and verify	y experimental results	using MA	TLAB.			
4. Stuc	ly the conc	cept of state, state variables and varia	ous state models techn	iques and	concept			
of c	ontrollabil	ity and observability, pole placement	by state feedback					
Course	Outcome	s: On completion of the course, stude	ent would be able to:					
CO1	Ability t	o derive Mathematical Modeling varie	ous types (0, 1, 2, 3, et	c.) of syst	em and			
	anayze t	heir time responses						
CO2	Able to A	Analyze the effect of P, PI, PD and PI	D controllers on a con	trol system	n and			
	design su	itable controller for a typical process						
CO3	Ability to	Analyze and interpret stability of the	e systemthroughRoot	Locus, Bo	de plot			
	and Nyqu	list plot.						
CO4	Able to a	design lead, lag, lead-lag compensator	rs using time domain a	nd frequei	ncy			
		analysis techniques.						
CO5	An abilit	ty to understand concept of state, state	e variables and the desi	gn output	feedback	K		
	controlle	er in state space.						

D D. NI.	Table Flagfard and	Instrumentation Engineering
Program Name R	Tech -Electrical and	Instrumentation Engineering
I I Ogi um I (ume) D	Leent Diecerical and	mot amontation Engineering

Module	COURSE SYLLABUS	Hrs	COs
No	CONTENTS OF MODULE	1115	COS
1	TIME DOMAIN ANALYSIS: Standard test signal (step, ramp, impulse, parabolic) time response of various types (0, 1, 2, 3, etc.) of system. Steady state error analysis, Design consideration of 2 nd order system, design of higher order system, performance indices.	9	CO1 CO2
2	STABILITY OF A CONTROL SYSTEM : Concept of stability, necessary conditions of stability, Hurwitz Stability criterion, Routh stability criterion, relative stability analysis, more on the Routh stability criterion, The Root locus technique: The root locus concept construction of root loci, root contours, system with transportation Lag.	9	CO3 CO4
3	FREQUENCY DOMAIN ANALYSIS: Correlation between time and frequency response, polar plots, bode plots, all- pass and minimum-	10	CO3 CO4

	phase system, experimental determination of transfer functions, log magnitudeversus phase plots. Stability in frequency domain: Nyquist stability criterion, assessment of relativestability using Nyquist criterion, closed-loop frequency response.		
4	STATE VARIABLE ANALYSIS AND DESIGN: Concept of state, state variables and state models, state models for linear continuous time system, diagonization, solution of state equations, concept of controllability and observability, pole placement by state feedback.	10	CO5

Reference Books:

- 1. Automatic Control System By Kuo
- 2. Feedback Control System By D'Azzo and Houpis
- 3. Modern Control Engineering By Oagata
- 4. Control Systems Engineering By Nagrath & Gopal.

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code: EI-PRPC-17	Course Name: Power Electronics Lab	L T P C 0 0 3 1.5		
Year and	3rd Year	Contact hours p	er week: (3Hrs)	
Semester	V th Semester	Exam: (3hrs.)		
	Brief knowledge of in the following	Eval	luation	
Pre-requisite	topics: Basic Electrical and Electronics			
of course	engineering, Semiconductor devices,	CIE: 30	SEE: 45	
	Digital Electronics, rectifiers.			
Course Objectiv	ves:			
1. Understand	operation of different types of choppers.			
2. Understand	the operation of series and parallel inverter	ſS.		
3. Understand	half & full wave Single phase and three ph	ase converters.		
4. Understand the concept of Dual Converter.				
5. Understand the motor control				
Course Outcomes: On completion of the course, student would be able to:				
CO1 To under	rstand the operation of John's and Morgon	's of choppers.		

CO2	To understand the operation of series and parallel inverters.
CO3	To understand the output characteristics of half & full wave Single phase and three
	phase converters.
CO4	To understand the significance and operation of Dual Converter.
CO5	To understand the motor control.

Expt.	COURSE SYLLABUS	COs
No	CONTENTS OF MODULE	
	LIST OF EXPERIMENTS STUDY EXPERIMENTS :	
1.	To Study the parallel inverter.	
2.	To study John's Chopper	
3.	To study the three phase full controlled converter.	
4.	To study the Morgon.s Chopper.	
5.	To study the three phase half controlled converter.	
6.	To Study the series inverter.	
7.	To study dual converter.	
8.	To study the single phase half and full controlled converter.	
9.	To study speed control of DC motor.	
10.	To study half controlled bridge converter under reactive load.	
	SIMULATION EXPERIMENTS :	
11.	Single Phase Half wave controlled converter with R,RL&RLE Load (for	CO1,
11.	firing angles 30,60,90) with/without FD	- CO1, CO2,
12.	Single Phase Half controlled converter with R,RL&RLE Load (for firing	CO2, CO3,
12.	angles 30,60,90) with/without FD	- CO3, CO4
13.	Single Phase Full controlled converter with R,RL&RLE Load (for firing	004
	angles 30,60,90) with/without FD	
14.	Three Phase semi controlled converter with R,RL&RLE Load	
15.	Three Phase full controlled converter with R,RL&RLE Load	
16.	Single phase AC Voltage Controller with R&RL Loads	
17.	John's Chopper	
18.	Morgon.s Chopper	
	HARDWARE EXPERIMENTS :	
19.	Thyristorised drive for PMDC motor with speed measurement and Single	
	Phase Half controlled rectifier and full controlled rectifier	
20.	Three Phase input Thyristorised drive for Dc Motor with closed loop control	
21.	Single Phase Series Inverter	
22.	Single Phase Parallel Inverter	

REFERENCE BOOKS:

- 1. Modern Power Devices by B.Jayant Balica, New Age Inter.
- 2. Power Electronics by P.C. Sen (TMH)
- 3. An Introduction to Thyristors and Their Applications by M. Ramamurthy (EWP)
- 4. Power electronics by Ned Mohan and Robins, John Wiley and Sons
- 5. Thyristor Phase Controlled converters and Cyclo-converters by B.R.Pelly
- 6. Power Electronics by Vendem Subrahmanyam, New Age International

	8	am Name: B. TechElectrical and	mști unicitation En	Smeetin	<u> </u>	
Course EI-PRPC	Code: C-19	Course Name: Power System-II I	AB	L T 0 0	P 3	C 1.5
Year a	nd	3rdYear	Contact hours per	week: (3	BHrs)	
Semest	er	5th Semester	Exam: (3hrs.)			
Pre-ree	quisite of	Basic Electrical Engineering	Evalu	uation		
course	-	Lab, Power System-I Lab	CIE: 30	S	EE: 4	5
Course	Objective	s:	·			
To stud	ly the work	ing operation of relays and its main	components.			
To fam	iliarize with	h the power system elements, device	es, equipments and app	olication	s.	
To stud	ly different	type of transmission cables and the	r applications.	-		
		h the safety rules for power system				
		• • •	•			
Course	Outcomes:	: On completion of the course, stude	ent would be able to:			
CO1	Impart t	he practical knowledge of basic of e	quipments of power s	ystem ar	nd its	
	operatio	n.		-		
CO2	Ability t	to analyze the performance as well a	s handling of electrica	al elemei	nts an	d
	equipme	ents like underground cables, insulat	ors etc.			
CO3	Acknow	ledge the operation and main featur	es of protective relays			
CO4	Develop	skills to use power system element	s and devices in differ	ent tech	nolog	ical
	field.				U	
Expt.	•	COURSE SYL	LABUS			COa
No		CONTENTS OF	MODULE			COs
1	Single line	e diagram of electrical power flow o	f generalized power s	ubstatior	1 .	
2	To study a	and designing of Earthing / Groundi	ng			
		ui-potential curve and voltage gradi	-			
3	iii. Tw	vo/three core cable				
	iv. Sir	ngle-core cable.				
4	To study	the different parts of a power ca	ble and measurement	t of		CO1
4	insulation	resistance of a cable.				CO2
5	To study t	he core to core & core to sheath cap	acitance of a three pha	ase cable	.	CO3
6	To draw th	he operating characteristics of IDM	Γ over Voltage relay.			CO4
7	To draw th	he operating characteristics of Diffe	rential current relay.			
8	To draw th	he operating characteristics of negat	ive sequence relay.			
9	To draw th	he operating characteristics of IDM	Γ over current relay.			
10		burden effect on the performance of		error.		
11		he sequence components of currents			and	
11		ransformer and compare their result				
12		ine the earth resistance using Megg				
D 0	nce books:					

Due aver Merre D	Tool Flootwice	lond Instrumentation	F ucino comina
Program Name: B	. Tech.=PJectrica	l and Instrumentation	i Knyineeriny
I I OSI um I (umo) D	· I celle Diccellea	i una moti unicitation	Lingineering

- 1. Power System Engg: I.J.Nagrath and D.P.Kothari (TMH)
- 2. A Course in Electrical Power: Gupta, Soni & Bhatnagar (Dhanpat Rai & Sons).
- 3. Electric Power System: B.M.Weedy, John Wiley & Sons.
- 4. Transmission & Distribution of Electrical Engineering: Westing House & Oxford Univ. Press, New Delhi.

Program Name: B. Tech.-Electrical and Instrumentation Engineering

Course	Code:	Course Name: Program Elective	- II Lab (i)	L	Τ	Р	С
EI-PRP	E-21	Microprocessors lab.		0	0	3	1.5
Year ar	nd	3 rd Year	Contact hours per w	eek:	(3Hrs	s) E	xam:
Semeste	er	V th Semester	(3hrs.)				
Pre-req	uisite	EI-PROE-14, Digital Techniques	Evalu	ation			
of cours	se	Lab.	CIE: 30		SEE	: 45	
Course	Objectiv	es:					
1. Und	erstand th	he basics of microprocessors, archite	cture and operation of	micro	proc	essor	s and
their	peripher	als.					
2. Und	erstand th	ne concepts of machine instructions,	assembly language and	l prog	grams	5.	
3. Exp	ose differ	ent ways of communicating with I/C) devices and standard	I/O ir	ıterfa	ces.	
4. Ana	lyze and o	design microprocessor based instrum	nentation system.				
Course	Outcome	es: On completion of the course, stu	dent would be able to:				
CO1	Get fami	liarized with the microprocessor bas	sed system.				
CO2	Create and develop ALPs with arithmetic and logical Instructions, Loop instructions,						
	use of directives and others.						
CO3	Work on the ALPs involving the peripheral chips interface.						
CO4	Design a	nd develop programs for microproc	essor based instrumenta	ation	syste	m.	

Expt.	COURSE SYLLABUS	COs	
No	CONTENTS OF MODULE		
1	Write the working of 8086 and basic architecture of 8086 along with small		
1	introduction		
2	Study the complete instruction set of 8086 and write the instructions with		
2	examples.		
3	Write the note on assembly directives in 8086 with few examples.		
4	Write an ALP for 16 bit arithmetic operations for 8086 (using various		
4	addressing modes)		
5	Write an ALP of 8086 to take N numbers as input and arrange in ascending and		
5	descending order.		
6	Write an ALP of 8086 to take N numbers as input and find max and minimum	CO1,	
0	number.	CO2,	
7	Write an ALP of 8086 to take N numbers as input and find average.	CO3,	
8	Program for searching for a number or character in a string for 8086.	CO4	
9	Program for digital clock design using 8086		
10	Interfacing ADC and DAC to 8086.		
11	Parallel communication between two microprocessors using 8255.		
12	Serial communication between two microprocessor kits using 8251.		
13	Interfacing and programming of 8086 and to control stepper motor		

Program Name: B. Tech.-Electrical and Instrumentation Engineering

Course Code:	Course Name: Program Elective –II LAB	L	Т	Р	С
EI-PRPE-21	(ii) Analog and Digital Communication Lab	0	0	3	1.5

Program Name: B. Tech.-Electrical and Instrumentation Engineering (from 2020 - 21 for UTD Only) 9428

Year a	and	III ^{ed} Year	Contact hours per week: (3Hrs)		
Semes	ster	V th Semester	Exam: (3hrs.)		
Pre-re	equisite	Pagia Electronics Enga	Evalua	ation	
of cou	rse	Basic Electronics Engg	CIE: 30	SEE: 45	
Cours	e Objectiv	/es:			
1. To	familiarize	e the students practically about different t	ypes of communication	on systems.	
2. To	make stud	ents able to work on electronic circuits us	sed in communication	engineering.	
3. To	have know	wledge about the analog and digital com	nunication systems a	nd also be able to	
per	rform expe	rimentation on various techniques.			
Course	e Outcome	s: On completion of the course, student w	yould be able to:		
CO1	Able to p	perform experimentation on analog comm	unication techniques	and able to	
	analyze	the results.			
CO2	Able to perform experimentation on pulse and digital communication, modulation and				
	demodulation techniques.				
CO3	To have	practical knowledge about delta modulati	on and demodulation	•	

Expt.	COURSE SYLLABUS	Cos
No	CONTENTS OF MODULE	Cos
1	Analog Communication Concepts and Circuit Board Familiarization	
	To study the function of Amplitude Modulation & Demodulation (under	
2	modulation, perfect modulation & over modulation) and also to calculate the	
	modulation index.	
3	To study the working of the Balanced Modulator and demodulator.	
4.	To study frequency modulation and demodulation techniques.	CO1
5	Study of 4 Channel Analog Multiplexing and De multiplexing Techniques.	CO1, CO2,
6	To study the frequency division multiplexing and De multiplexing Techniques.	CO2, CO3,
7	To study the Pulse amplitude modulation & demodulation Techniques.	C03,
8	To study the Pulse Width Modulation (PWM) and Demodulation Techniques	
9	To study the generation Pulse Position Modulation (PPM) and Demodulation.	
10	To study ASK Signal Generation and Asynchronous Detection.	
11	To study FSK Signal Generation, Asynchronous Detection, Synchronous	
11	Detection.	
12	To study PSK Signal Generation and Synchronous Detection.	
13	To study pulse code modulation and demodulation.	
14.	To study Delta modulation and demodulation.	
15.	To different gain pattern on antenna training system kit.	

Course Code:	Course Name: Program Elective-II Lab			Τ	P	С	
EI-PRPE-21	(Switch Gear and Protection)		-	-	3	1.5	
Year and	3 rd Yr.	rd Yr. Contact hours per wee			veek: (3Hrs)		
Semester	5 th Semester Exam: (3 Hrs)						
	Brief knowledge of in the	Evaluation					
Pre-requisite of	following topics: Basic Electrical	1					
course	and Electronics engineering,	CIE: 30 SEE: 45					
	Semiconductor devices, Digital						

		Electronics, rectifiers.				
Course	Objective	es:				
4.	4. Understand the Construction and principles of Construction and working principles of					
	various typ	bes of relays				
5.	Understand	d the concepts of fuses.				
6.	Understand	d the null deflection and implement it	in CT & PT.			
Course	Outcome	s: On completion of the course, stude	ent would be able to:			
CO1	Identify v	various types of faults in Power system	m			
CO2	Explain v	working of different types of circuit be	reakers in power syste	em.		
CO3	Explain v	working of different types of relays in	power system.			
CO4	Maintain	the protection of transmission line an	d feeder from various	s faults		
CO5	Protect tr	cansformer, alternator, motor and bus	bar			
CO6	Protect p	ower system against over voltages				

Event No.	COURSE SYLLABUS	COs
Expt. No	CONTENTS OF MODULE	COS
	LIST OF EXPERIMENTS STUDY EXPERIMENTS :	
17.	Check the Polarity of Current Transformer and Potential	
18.	Transformer and connect it with the relay.	
19.	Principle of working, construction and operation of electromagnetic	
19.	induction (shaded pole, watt-hour meter and induction cup), Thermal relay.	
20.	Principle of working, construction and operation of Distance relay	
21.	Principle of working, construction and operation of Directional relay	CO1, CO2,
22. t	Find the fusing factor of a given fusing material.	CO2, CO3,
23.	Dismantle a Vacuum circuit breaker.	- CO3,
24.	Identify the various components of SF6 circuit breaker.	04
25.	Working principle of arc quenching in HVDC circuit breaker	
26.	Test overload relay and plot Time-Current characteristic	
27.	C.T. testing using mutual Inductor – Measurement of % ratio error and	
27.	phase angle of given CT by Null method.	
28.	PT testing by comparison – V. G. as Null detector – Measurement of %	
20.	ratio error and phase angle of the given PT.	

REFERENCE BOOKS:

2. A Course in Elect. & Electronic Measurement & Instrumentation by A. K. Sawhney; Khanna Pub. **REFERENCE BOOKS:**

- 1. Electrical Measurments by E.W. Golding
- 2. Electronic & Elect. Measurment&Instrumention by J.B.Gupta; Kataria& Sons.
- 3. Electronic Instrumentation & Measurment Technique, W.D. Cooper & A.D. Helfrick.
- 4. Measuring Systems by E.O. Doeblin; TMH.

Course Code EI-PRPC-23	e:	Course Name: Control System Lab. L T P 003				C 1.5	
Year and		3 rd Year	Contact hours per	week	: (3]	Hrs)
Semester		V th Semester	Exam: (3hrs.)		`		
Pre-requisite	e of	Control components	Evalu	atio	n		
course		engineering	CIE: 30		SE	E: 4	5
Course Obje	ectives		· · · · · · · · · · · · · · · · · · ·				
1. Study the	time r	esponse of various types (0, 1, 2, 3,	etc.) of system Execu	te tin	ne re	espo	nse
analysis c	of a var	ious order control system.					
2. To study	and tu	ned the different modes of Linear co	ontroller(PID)				
3. To study	the per	formance characteristics of a D.C.	Motor Speed and ang	ular p	osit	ion	Control
System.							
4. To Relay	contro	l system					
5. To Comp	ensatio	on Design study and designing contr	oller for different phy	vsics	varia	ables	5
control							
6. To Study	Digita	l control System with programming	skill				
		On completion of the course, studer					
		derive the response of a variety of s	simulated linear system	ms an	d to	cor	relate
		s with theoretical results.					
CO2 Abi	ility to	analyze and tuned the different mod	des of Linear controll	er(PI	D) a	and a	able to
	0	ntroller for different Linear process					
CO3 Ability to understand DC, AC, stepper motors and implements their application			n in				
	trol sy						
	•	Design and develop digital control	•	syste	em u	ising	g an 8-
bit	microc	computer with development of progr	ramming skill				

Expt.	COURSE SYLLABUS	COs		
No	CONTENTS OF MODULE	COS		
1	To Study Potentiometric Error Detector :- To study the performance			
1	characteristics of an angular position error detector using potentiometers			
2	To Study PID control Trainer: To study the performance characteristics of an			
2	analog PID controller using simulated systems.			
3	To Study Linear Systems Simulator: - To study the response of a variety of			
5	simulated linear systems and to correlate the studies with theoretical results.			
4	To Study DC Motor speed Control: - To study the performance characteristics			
4	of a D.C. Motor Speed Control System.	CO1		
5	To Study DC Position Control: - To study the performance characteristics of a	CO1, CO2,		
5	d.c. motor angular position control system.	CO2, CO3,		
6	To Study Stepper Motor Trainer: - To study the operation of a Stepper Motor.	CO3, CO4		
7	To Study Digital control System: to study of digital control system of a	0.04		
/	simulated system using an 8-bit microcomputer			
8	Relay control system: study of relay control system and to observe the effect			
0	of dead zone and hysteresis on stability			
9	Compensation Design: To design, implement and study the effect of different			
	cascade compensation network for a given system			
10	To Study PID Temperature Control Trainer			
11	To Study Synchro Devices			

		A DAY OF ANY A DAY OF
12	To Study AC Motor Study Trainer	
13	To Study DC Motor study Trainer	
14	To Study Light Intensity Control	

	Progr	am Name	e: B. TechElectrical and Inst	trumentation Eng	ineering			
Course	Code:	Course	Name: Program Elective-III		L T P C			
EI-PE-	302	(i)	Electrical Machine Design	2 1 - 3				
Year a	Vear and 3 rd Yr. Contact hours per week: (3H							
Semest	-	6 th Seme		Exam: (3 Hrs)				
Pre-rec	quisite of	EI-PC-2	08:Electrical Machines-I	Eva	luation			
course		EI-PC-3	04: Electrical Machines-II	CIE: 40	SEE: 60			
Course	Objective	es:						
1. To :	familiarize	the stude	nts about design and materials	used in electrical m	nachines.			
2. To	design the	DC mach	ines and its parts as per given d	ata.				
3. To	design sing	gle phase	and three phase transformer bas	sed on given param	neters.			
			tor as per given parameters and		S			
5. To	design syn	chronous	machines as per given parame	ters.				
Course	Outcome	s: On cor	npletion of the course, student	would be able to:				
CO1	Identify	and list,	limitations, modern trends in	n design, manufac	cturing of electrical			
		L	erties of materials used in the e					
CO2			equation of DC machine, disc					
			f DC machines, design the fiel	d windings of DC	machine, and design			
			ture circuits of a DC machine.					
CO3			equations of transformer, disc	uss selection of sp	ecific loadings, and			
	•		her based on given parameters.					
CO4	-	-	t equation of induction motor,					
	and magnetic circuits of induction motor, and design he stator and rotor circuits of an							
~~~~	induction							
CO5			put equation of alternator an	nd design the slot	ts and windings of			
	Synchron	nous mach	ine.					

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	Cos
1	<ul> <li>Fundamental Aspects of Electrical Machine Design: Design of Machines, Design Factors, Limitations in design, Modern Trends in design,</li> <li>Electrical Engineering Materials: Desirability of Conducting Materials, Comparison of aluminum and Copper wires. Ferromagnetic Materials: Soft Magnetic materials – Solid Core Materials, Electrical Sheet and Strip, Cold Rolled Grain Oriented Steel. Insulating Materials: Desirable Properties, Temperature Rise and Insulating Materials, Classification of Insulating materials based on Thermal Consideration.</li> </ul>	3	CO1
2	<b>Design of DC Machines:</b> Output Equation, Choice of Number of Poles, Main Dimensions of armature, Design of Armature Slot Dimensions, Commutator and Brushes. Estimation of Ampere Turns for the Magnetic Circuit. Dimensions of Yoke, Main Pole and Air Gap, Design of Shunt	5	CO2



	and Series Field Windings.		
3	<b>Design of Transformers:</b> Output Equations of Single Phase and Three Phase Transformers, Choice of Specific Loadings, Expression for Volts/Turn, Determination of Main Dimensions of the Core, Estimation of Number of Turns and Conductor Cross Sectional area of Primary and Secondary Windings, No Load Current. Expression for the Leakage Reactance of core type transformer with concentric coils, and calculation of Voltage Regulation. Design of Tank and Cooling (Round and Rectangular) Tubes.	8	CO3
4	<b>Design of Three Phase Induction Motors:</b> Output Equation, Choice of Specific Loadings, Main Dimensions of Stator. Design of stator slots and Winding, Choice of Length Air Gap, Estimation of Number of Slots for Squirrel Cage Rotor. Design of Rotor Bars and End Ring. Design of Slip Ring rotor. Estimation of No Load Current and Leakage Reactance.	5	CO4
5	<b>Design of Three Phase Synchronous Machines:</b> Output Equation, Choice of Specific Loadings, Short Circuit Ratio, Main Dimensions of Stator. Design of stator slots and Winding. Design of Salient and non- salient Pole Rotors. Magnetic Circuit and Field Winding.	5	CO5

- 1. A course in Electrical Machine design A.K.Sawhney DhanpatRai 6th Edition, 2013.
- 2. Performance and Design of Alternating Current Machines M.G. Say CBS Publisher 3rd Edition, 2002
- 3. Design Data Handbook A. Sanmugasundaram Et al New Age International 1st Edition, **Reference Books:**
- 1. Electric Machinery, AE Fitggerald, C. Kingsley Jr and Umans, McGraw Hill, International.
- 2. Electrical Technology", H. Cotton, CBS Publication.
- 3. The Performance and Design of AC machines", M G Say, Pitman& Sons.

**Note for Examiner(s)**: Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.



Course	Course Code: Course Name: Program Elective-III		L	Т	P	С	
EI –PE-	I – PE-302 (ii) Mechanical Measurements in Instrumentation				1	0	3
Year ar	nd	3 rd Year	Contact hours per w	veek:	(3 I	Hrs.)	
Semeste	er	VI th Semester	Exam: (3 Hrs.)				
Pre-req	uisite of	NIL	Evalua	ation			
course			CIE: 40		SE	E: 6	)
Course	Objective	es:					
1. 7	Го introdu	ce techniques and instrumentation use	ed in mechanical meas	urem	ent		
2. 1	Imparting	the principles of measurement which	include the working m	lecha	nisn	n of	
	various sei	nsors and devices					
3. 7	Го highlig	ht the importance of measurement of	non-electric quantities	in in	stru	ment	ation
Course	Outcome	s: On completion of the course, stude	ent would be able to:				
CO1	Apply me	ethods of measurement for various ph	ysical quantities				
CO2	Select appropriate device for the measurement of physical parameters						
CO3	Justify th	Justify the use of particular device through characteristics and performance					
CO4	Design a	measurement system using acquired l	knowledge base				

## Program Name: B. Tech.-Electrical and Instrumentation Engineering

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Introduction, Significance of mechanical measurements. Pressure measurement – pressure measurement terminology, Manometers – U tube manometer, bell type manometer, inclined tube manometer, Ring Balance manometer, Micromanometer. Bell gauges – balanced lever gauge, beam bell gauge, spring balanced bell gauge. Bourdon tube and its types, bellows and diaphragms	9	CO1, CO2, CO3
2	Measurement of torque – torque reaction method, strain gauge torque meter, stroboscopic method, inductance torque meter, Digital torque meter, magneto-strictive torque meter. Measurement of Angular velocity – Mechanical tachometers, Electrical tachometers, digital tachometers, stroboscopic tachometers. Measurement of Vibration.	9	CO1, CO2, CO3
3	Temperature measurements – liquid in glass thermometer, pressure gauge thermometer, liquid filled systems, gas filled systems and liquid vapor filled systems thermometer, static errors in filled systems thermometers, speed of response of filled systems. Bimetallic thermometers, Thermocouples – working principle, thermoelectric laws, series and parallel connection of thermocouples.	9	CO1, CO2, CO3

## **Text Books:**

- 1. A course in mechanical measurements and instrumentation, A. K. Swahney, Dhanpatrai and Company, 2017
- 2. Mechanical Measurements and control, D.S. Kumar, Metropolitan Book Co. Pvt. Ltd., 2015
- 3. Measurement Systems, E. O. Doeblin, McGraw Hill, 2020



### Note for Examiner(s):

Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Program Name: B. TechF	Electrical and Instrumentation	Engineering
------------------------	--------------------------------	-------------

Course	Code:	Course Name: Program Elective-	III	L T P C
EI-PE-3	02	(iii) Electric and Hybrid Vehicles	ic and Hybrid Vehicles 2 1 - 3	
Year an	d	3 rd year	Contact hours per v	week: (3Hrs)
Semeste	r	6 th Semester	Exam: (3hrs.)	
Pre-requ	uisite of	Electrical Machines, Power	Evalu	ation
course		Electronics, Basic Science	CIE: 40	SEE: 60
		Engineering		
	Objective			
		he upcoming technology of electric an		
2. To st	udy the b	asics theory, operation and modeling	of electric Hybrid syst	tem.
3. To st	udy differ	rent topologies of electric Hybrid syst	em	
4. To st	udy election	ric propulsion system in electric hybri	id system	
Course	Outcome	s: On completion of the course, stude	nt would be able to:	
CO1	To famili	arize with upcoming technology of el	ectric and hybrid syste	em
CO2	To under	stand the basics theory, operation and	modeling of electric H	Hybrid system.
CO3	To under	rstand and analyze different drive train	n topologies electric of	f Hybrid system.
CO4				
	application.			
CO5	To impar	t basic technical knowledge of elect	ric hybrid vehicle sys	stem and apply it to
	technolog	gical fields.	-	

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	<b>Introduction:</b> Introduction to hybrid electric vehicles: history of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Conventional vehicles: basics of vehicle performance, vehicle power source characterization, transmission characteristics, and mathematical	7	CO1, CO2



	models to describe vehicle performance.		
2	<b>Hybrid Electric Drive:</b> Hybrid electric drive-trains: basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis.	7	CO3
3	<b>Electric Propulsion Unit:</b> Introduction to electric components used in hybrid and electric vehicles, configuration and control of DC motor drives, configuration and control of induction motor drives, configuration and control of permanent magnet motor drives, configuration and control of switch reluctance motor drives, drive system efficiency.	7	CO4
4	<b>Case Studies:</b> Design of a hybrid electric vehicle (HEV), design of a battery electric vehicle (BEV).	5	CO5

### **Suggested Text / Reference Books:**

- 1. Iqbal Hussein, "Electric and Hybrid Vehicles, Design Fundamentals", CRC Press, 2003.
- 2. MehrdadEhsani, YimiGao, E Sebastian Gay, Ali Emadi, "Modern Electric, Hybrid Electric and Fuel Cell VehiclesFundamentals", Theory and Design, CRC Press, 2004.
- 3. James Larminie, John Lowry, "Electric Vehicle Technology Explained", Wiley, 2003.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

I fogram frame, D. feen,-Electrical and instrumentation Engineering						
<b>Course Code:</b> EI-PC-304	Course Name: Electrical Machines-II		L 3	T 1	P -	<u>С</u> 4
Year and	3 rd Yr.	<b>3rdYr. Contact hours per week:</b> (4Hrs)				
Semester	6 th Semester	Exam: (3 Hrs)				
Pre-requisite of	ite of Evaluati		tion	ion		
course	INIL I	NIL CIE: 40		SEE: 60		
Course Objectives:						
1. To study three phase induction motors and its associated numerical problems and						
applications.						
2. To study single phase and factional horse power motors.						
3. To have knowledge of three phase synchronous generators.						

<b>D N D</b>			
Program Name [,] R	Tech -Electrical	and Instrumentation	Engineering
I I UZI am I tame, D	i com-Encourca	and more uncheation	L'ingineering



4. To	4. To gain knowledge about three phase synchronous motors				
Course	e <b>Outcomes:</b> On completion of the course, student would be able to:				
CO1	Have theoretical as well as analytical knowledge of three phase synchronous motors in				
	terms of working, testing and operation.				
CO2	Understand single phase induction motors and special (FHP) motors and their applications.				
CO3	Explain the working and operation of three phase alternator under different loading conditions, synchronization, parallel operation and load sharing and related phasor diagrams.				
CO4	Acquire knowledge about the constructional details and principle of operation of synchronous motors, excitations (under, normal and over), effect of variation of excitation under constant load and V curves, inverted V curves, associated numerical problems.				

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	<b>Three Phase Induction Machines:</b> Constructional details, Types of rotors, Principle of operation, Slip, cogging and crawling, Equivalent circuit, Torque-Slip characteristics, Condition for maximum torque, Losses and efficiency, Load test, No load and blocked rotor tests, Separation of losses, Double cage induction motors, Induction generators, Need for starting – Types of starters – DOL, Rotor resistance, Autotransformer and Star delta starters, Speed control, Voltage control, Frequency control and pole changing Cascaded connection-V/f control.	12	CO1
2	<b>Single Phase Induction Motors:</b> Constructional details of single phase induction motor, Double field revolving theory and operation – Equivalent circuit, Starting methods of single-phase induction motors, Capacitor-start capacitor run Induction motor, Shaded pole induction motor, Repulsion motor, Hysteresis motor, AC series motor.	6	CO2
3	<b>Synchronous Generators:</b> Constructional details – Types of rotors – winding factors- emf equation – Synchronous reactance – Armature reaction, Synchronizing and parallel operation – Synchronizing torque -Change of excitation and mechanical input- Voltage regulation – EMF, MMF, ZPF, steady state power- angle characteristics– Two reaction theory –slip test -short circuit transients.	10	CO3
4	<b>Synchronous Motors:</b> Principle of operation, Torque equation, Operation on infinite bus bars, V and Inverted V curves, Power input and power developed equations, Starting methods, Current loci for constant power input, constant excitation and constant power developed-Hunting, natural frequency of oscillations, damper windings- synchronous condenser.	10	CO4

- A course in Electrical Machine design A.K.Sawhney DhanpatRai 6th Edition, 2013.
   Performance and Design of Alternating Current Machines M.G. Say CBS Publisher 3rd Edition, 2002

Program Name: B. Tech.-Electrical and Instrumentation Engineering (from 2020 - 21 for UTD Only) 9437



3. Design Data Handbook A. Sanmugasundaram Et al New Age International 1st Edition, **Reference Books:** 

- 1. Electric Machinery", AE Fitggerald, C. Kingsley Jr and Umans, McGraw Hill, International.
- 2. Electrical Technology", H. Cotton, CBS Publication.
- 3. The Performance and Design of AC machines", M G Say, Pitman& Sons. **Note for Examiner(s)**: Question paper will comprise three sections,
- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

### Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code: EI-PC-306	Course Name: Power Plant Engineering.		L         T         P         C           2         1         0         3		
Year and	3 rd Year	Contact hours per v	week: (3Hrs)		
Semester	(VI th Semester)	Exam: (3 Hrs)			
	Brief knowledge of in the	Evalu	ation		
Due veguigite	following topics: Electrical				
Pre-requisite o	Machines, Electrical Power	CIE: 40	SEE. 40		
course	System and Generation, Power	CIE: 40	SEE: 60		
	System Engineering.				
<b>Course Object</b>	ives:				
1. To introduc	e the concept of trends in power Genera	tion.			
2. To introduc	e the Techniques of load forecasting and	d Generation planning.			
3. To study the	e concept types of energy sources.				
4. To study the	e concept of Energy Conservation and N	Ianagement.			
<b>Course Outcon</b>	nes: On completion of the course, stude	ent would be able to:			
CO1 To Fai	niliarize with available Energy sources	and trends in power Ge	eneration.		
CO2 To und	lerstand different types of loads, load fo	recasting and Generati	on planning.		
CO3 To Fai	To Familiarize with the Conventional and Non-Conventional types of energy sources.				
CO4 To und	lerstand the concept of Energy manager	nent, Energy Auditing	etc.		

Module         COURSE SYLLABUS         Hrs         COs
--------------------------------------------------------



No	CONTENTS OF MODULE		
1	<b>INTRODUCTION</b> : Energy sources, their availability, Recent trends in Power Generation, Interconnected Generation of Power Plants.	7	Ι
2	<b>POWER GENERATION PLANNING:</b> Load forecasting, load curves, load duration curve, Base load and Peak load Power Plants, connected Load, maximum demand, demand factor, Group diversity factor, load factor, significance of load factor, plant factor, capacity factor, selection of unit size, No. of Units, reserves, cost of power generation, Depreciation, tariff.	7	п
3	<ul> <li>CONVENTIONAL ENERGY SOURCES: Selection of site, capacity calculations, classification, Schematic diagram and working of Thermal Power Stations, Hydro Electric Plant, Nuclear Power Plant and Diesel Power Stations.</li> <li>NON-CONVENTIONAL ENERGY SOURCES: Wind, Solar, Tidal, Ocean, and Geothermal sources of Energy, fuel cell, Magneto Hydro Dynamic (MHD) system.</li> </ul>	7	ш
4	ELECTRICENERGYCONSERVATION&MANAGEMENT: Energymanagement,EnergyAudit,EnergyEfficient Motors, Co-generation.EnergyEnergyEnergy	7	IV

### **TEXT BOOKS:**

- 1. Electric Power Generation, B.R.Gupta
- 2. Power Generation, Operation and Control, Wood and Wollenberg, John Wiley & Sons, 1984.

## **REFERENCE BOOKS:**

- 1. A Course in Electric Power System, Soni, Gupta, Bhatnagar, Dhanpat Rai & Sons
- 2. Power System Engineering, Nagrath & Kothari, Tata Mc-Graw Hill, New Delhi
- 3. Power Plant Engg: G.D. Rai
- 4. Electric Power: S.L. Uppal (Khanna Publishing)

**Note for Examiner(s)**: Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.



Course Code	<b>Course Name:</b> Digital Signal Proce	Course Name: Digital Signal Processing       L       T       P		
EI-PC-308		-	3 1 - 4	
Year and	3 rd year	<b>Contact hours per week:</b> (4Hrs )		
Semester	6 th Semester	Exam: (3hrs.)		
Pre-requisite	of Mathematics	Evalua	ation	
course		CIE: 40	SEE: 60	
Course Obje	tives:			
	e basic of Z transform and its application			
2. To study t	e Discrete linear Time Invariant systems	in Z domain and in free	equency domain.	
3. To study	different structure realization of Finite	e Impulse Response s	systems and Finite	
Impulse R	sponse systems.			
4. To study the basic of Discrete-Fourier Transform (DFT), Fast Fourier Transform (FFT)				
algorithms	and its application.			
5. To study the digital filters for filtering applications.				
<b>Course Outc</b>	mes: On completion of the course, stude	ent would be able to:		
CO1 To le	<b>CO1</b> To learn the basic of Z transform and its application in LTI discrete-time systems.			
CO2 To a	alyze the Discrete linear Time Invariar	t systems in Z domai	n and in frequency	
doma	domain.			
CO3 To u	derstand the different structure realizatio	n of Finite Impulse Re	sponse systems and	
	Impulse Response systems.			
	rn the basic of Discrete-Fourier Transfe	orm (DFT), Fast Fouri	er Transform (FFT)	
algor	thms and its applications.			
<b>CO5</b> To D	esign digital filters for filtering application	ns.		

Program Name: B. Tech.-Electrical and Instrumentation Engineering

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	<b>Discrete Time Systems &amp; Analysis of LTI System:</b> Discrete system and its types, Z-transform and its properties, inverse Z-transform, region of convergence and its properties, Z-Domain analysis of Linear Time Invariant systems: transient and steady-state response, causality and stability. Frequency domain analysis of Linear Time Invariant systems: Frequency domain characteristics of LTI systems and frequency response of LTI systems.	9	CO1, CO2
2	<b>Structure Realization of Discrete Time Systems:</b> Introduction to structure realization and factor influencing structure realization, Structure realization of Finite Impulse Response (FIR) system: Direct form, transposed form, cascade form, frequency selective form and lattice form. Structure realization of Infinite Impulse Response (IIR) system: Direct form-I, Direct form-II, cascade form, parallel form and lattice form.	9	CO3
3	<b>Discrete and Fast Fourier Transform (DFT &amp; FFT):</b> Discrete Fourier Transform (DFT), Inverse Discrete Fourier Transform (IDFT), relationship between DFT and Z-transform, Fast Fourier Transform: Decimation-in-time (DIT) FFT algorithm, decimation-in-frequency (DIF) FFT algorithm, Radix-2 FFT algorithms, linear filtering approach: Goertzel algorithm and Chirp z-transform algorithm, Quantization effect	9	CO4



	in computations, Effect of word length in digital filter.	
4	<b>Digital Filter Design:</b> Characteristics and properties of digital filter, FIR digital filter design by using Fourier series method, Use of window functions method, frequency sampling method. Design of IIR filter from analog filter: Approximations of derivatives method, Impulse Invariant method, Bilinear - transformation method.	CO5

### **Suggested Text / Reference Books:**

- 1. John G. ProakisandDimitris G. Manolakis, "Digital Signal Processing", PHI Pub.
- 2. Allan Y. Oppenhein& Ronald W. Schater, "Digital Signal Processing", PHI, 2004.
- 3. J. R. Jhohnson, "Introduction to Digital Signal Processing", PHI, 2000.
- 4. B. Somanthan Nair, "Digital Signal Processing: Theory, Analysis & Digital Filter Design", PHI, 2004
- 5. Sanjit K. Mitra, "DSP a Computer based approach", TMH, 2nd Ed., 2001.
- 6. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", PHI, Second Edition, 2008.
- 7. S. Salivahanan, C. Gnanapriya, "Digital Signal Processing", McGraw Hill.
- 8. S. Sridhar, "Digital Image Processing", Oxford, 2011.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

### Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code:	Course Name: Microcontroller & E	L T P C			
EI-PC-310			3 1 0 4		
Year and	3 rd Year	rd <b>Year</b> Contact hours per week: (4Hrs)			
Semester	Semester VI th Semester Exam: (3 Hrs)				
Pre-requisite of	Digital logic Circuits,	Evaluation			
course	microprocessors	CIE: 40	SEE: 60		
<b>Course Objective</b>	es:				
1. In depth study	1. In depth study of 8051 Architectures and programming of microcontrollers: embedded				
system applications.					
2. Use of assemb	2. Use of assembler directives and programming in assembly language using Assembler				



3. Thi	s course concerns with Embedded systems basic knowledge: embedded architectures:			
4. To	analyze and design the RTOS and applications.			
Course	• Outcomes: On completion of the course, student would be able to:			
CO1	Understand the fundamental concepts of Microcontroller Organization and Architecture			
	(Intel 8051), Data Representation and Memory Usage			
CO2	Apply the basic programming skills of microcontrollers for Problem Solving and			
	Algorithm Development, Assembling/Compiling and Execution			
CO3	Understand the basic of Embedded system, Understand the Embedded Product			
	Development Life Cycle, Design embedded system in RTOS			
CO4	Illustrate and design the hardware using Embedded System.			
CO5	Apply various algorithms in solving sorting problems.			
CO6	After study of this course it is expected that students will be able to develop interface for			
	real time industrial process and write programs for different applications, Further it is			
	expected that students will be able to do of their own for higher processors and			
	microcontrollers.			

Module	COURSE SYLLABUS		COs
No	CONTENTS OF MODULE	Hrs	0.03
1	Aicrocontrollers:- Introduction; comparison of microprocessors & nicrocontrollers; A survey of microcontrollers, Architecture of 0051: Input/Output Pins; Ports and Circuits; External memory; ounter & timers; serial data input/output; & Interrupts. Addressing modes, 8051 Instruction Set – Data movement Instruction, rithmetic instruction, Logic instruction, Branch group Instruction		CO1, CO2
2	8051 software and programming memory interfacing and address decoding, programming Input/ Output port/ timer/ ADC/DAC, Serial data communication controller and interrupts controller for different application with respect to instrumentation & control.	9	CO2, CO3
3	Introduction to Embedded Systems – The build process for embedded systems- Structural units in Embedded processor, selection of processor & memory devices- DMA – Memory management methods- Timer and Counting devices, Memory Devices, Processor and Memory Selection, Memory Map and Applications, Memory Blocks for Different Structures.	9	CO2, CO3, CO5
4	Watchdog Timer, Real Time Clock, In circuit emulator, TargetHardware Debugging.Embedded Networking – Introduction – I/O		CO3, CO4, CO6

- 1. Embedded System Design Frank Vahid, Tony Givargis, John Wiley.
- 2. The 8051 Microcontroller Architecture Programming & Application by Kenneth J. Ayala, Penram Inter.
- 3. The 8051 Microcontroller and Embedded Systems- Muhammad Ali Mazidi; Pearson Education India



- 4. Programming and Customizing the 8051 Microcontroller by Fredko Mike, TMH
- 5. Embedded Systems Architecture, Programming, and Design by Raj Kamal, TMH

## **REFERENCE BOOKS**:

- 1. Microcontroller Architecture, Programming, Interfacing and System Design by Raj Kamal, Pearson Education India
- 2. Design with Micro-controllers by John. B. Pitman, Mc-Graw Hill

3. Introduction to Embedded Systems - Shibu K.V, Mc Graw Hill

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

## Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code: EI-PRPC-18	Course Name: Electrical Machines Lab-II		L         T         P         C           -         -         3         1.5	
Year and	3 rd Yr.	Contact hours per w	/eek: ( 3Hrs )	
Semester	6 th Semester	Exam: (3 Hrs)		
Pre-requisite of	NIL	Evalua	ation	
course	NIL	CIE: 30	<b>SEE: 45</b>	
<b>Course Objectiv</b>	es:			
1. To familiariz	e the students practically about worki	ng and operation of the	ree phase induction	
motors				
2. To provide ha	ands on experimentation on single pha	ase induction motors.		
3. To explain pr	ractically the operation of three phase	alternator along with p	erforming standard	
test on it.			-	
4. To know the	working and starting of three phase sy	nchronous motors.		
<b>Course Outcome</b>	es: On completion of the course, stude	ent would be able to:		
CO1 Work pr				
CO2 Operate	Operate and test three phase synchronous generators (alternators).			
CO3 Operate	Operate and test three phase synchronous motors.			

Expt. No.	COURSE SYLLABUS CONTENTS OF MODULE	COs
1	To perform load test on three-phase squirrel cage induction motor	CO1,



2	To perform load test on three-phase slip ring induction motor	CO2,
3	To perform No-load & blocked rotor test on three-phase induction motor	CO3,
4.	To perform load test on single-phase induction motor	
5	To perform No-load & Blocked rotor test on single-phase induction motor	
6	To study and implement Starting methods on single-phase induction motor	
7	To Study and Measure Synchronous Impedance and Short circuit ratio of	
/	Synchronous Generator.	
	To perform O.C. test on synchronous generator and determine the full load	
8	regulation of a three phase synchronous generator by synchronous impedance	
	method	
	To conduct the process of synchronization of two Three Phase Alternators, by	
9	a) Synchroscope Method b) Three dark lamp Method c) Two bright one dark	
	lamp Method	
10	To study Load sharing between two Three Phase alternators in parallel	
10	operation condition.	
10	To plot and analyse V- Curve of synchronous motor.	
11	To plot and analyse inverted V curves of synchronous motor.	

Course Code: EI-PRPC-20	Course Name: Micro-controller Lab		L         T         P         C           0         0         3         1.5		
Year and	3 rd Year	Contact hours per v	week: (3Hrs)		
Semester	VI th Semester	Exam: (3hrs.)			
Pre-requisite of	Digital logic Circuits,	Evalu	ation		
course	microprocessors	CIE: 30	SEE: 45		
Course Objecti	ves:				
1. To provide i	n depth knowledge of 8051 and assemb	oly language programm	ning		
2. To learn how	v to interface devices with different mo	dules on a microcontro	oller.		
3. To expertise	working with Keil compiler and embed	dded C programming.			
4. To impart th	e I/O interfacing concepts for developing	ng real time embedded	l systems.		
5. To encourag	e the students in building real time app	lications.			
<b>Course Outcon</b>	nes: On completion of the course, stude	ent would be able to			
CO1 Familia	<b>CO1</b> Familiarize with the assembly level programming using lob kits.				
CO2 Familia	O2 Familiarize with the Keil and Embedded Workbench tools.				
CO3 Design	D3 Design circuits for various applications using microcontrollers.				
CO4 Apply t	he concepts on real- project design and	development			

Expt.	COURSE SYLLABUS	COs
No	CONTENTS OF MODULE	COS
	Programming	
1	Data Transfer - Block move, Exchange, Sorting, Finding largest element in an	CO1,
	array.	CO2,
2	Arithmetic Instructions - Addition/subtraction, multiplication and division,	CO2, CO3,
2	square, Cube(16 bits Arithmetic operations – bit addressable).	CO3, CO4
3	Timers/Counters.	CO4



4	Boolean & Logical Instructions (Bit manipulations).	
5	Conditional CALL & RETURN.	
6	Code conversion: BCD – ASCII; ASCII – Decimal; Decimal - ASCII;	]
7	HEX - Decimal and Decimal - HEX.	]
8	Programs to generate delay, Programs using serial port and on-Chip timer	]
0	/Counter.	
	Interfacing	
9	Simple Calculator using 6 digit seven segment displays and Hex Keyboard	1
9	interface to 8051.	
10	Alphanumeric LCD panel and Hex keypad input interface to 8051.	
11	External ADC and Temperature control interface to 8051.	1
12	Generate different waveforms Sine, Square, Triangular, Ramp etc. using DAC	1
12	interface to 8051; change the frequency and amplitude.	
13	Stepper and DC motor control interface to 8051.	1
14	Elevator interface design and testing using 8051.	1

### Note:

- 1. For Programming exercise is to be done on both 8051 & simulator.
- **2.** For interfacing Write C and ALP programs to interface 8051 chip to Interfacing modules to develop single chip solutions.

### **Text Books:**

- 1. Embedded System Design Frank Vahid, Tony Givargis, John Wiley.
- 2. The 8051 Microcontroller Architecture Programming & Application by Kenneth J. Ayala, Penram Inter.
- 3. The 8051 Microcontroller and Embedded Systems- Muhammad Ali Mazidi; Pearson Education India
- 4. Programming and Customizing the 8051 Microcontroller by Fredko Mike, TMH
- 5. Embedded Systems Architecture, Programming, and Design by Raj Kamal, TMH **REFERENCE BOOKS**:
- 1. Microcontroller Architecture, Programming, Interfacing and System Design by Raj Kamal, Pearson Education India
- 2. Design with Micro-controllers by John. B. Pitman, Mc-Graw Hill
- 3. Introduction to Embedded Systems Shibu K.V, Mc Graw Hill

Course Code: EI-PRPC-22Course Name: Digital Signal Processing Lab		L 0	T 0	P 3	C 1.5	
Year and	3 rd Year	Contact hours per w	eek: (3Hrs)			
Semester	5 th Semester	Exam: (3hrs.)				
Pre-requisite of	Knowledge of programming and	Evaluation				
course	Mathematics	CIE: 30 SEE: 45			15	
<b>Course Objective</b>	s:					
1. To study the fundamentals of MATLAB programming in digital signal processing.						
2. To study the mathematical concept of discrete system and implement it in MATLAB						
programming.						



3. To utilize MATLAB programming for the analysis of discrete systems.		
4. To utilize MATLAB programming for the design digital filters.		
Course Outcomes: On completion of the course, student would be able to:		
CO1	To introduce the MATLAB programming in discrete signal and system.	
CO2	Ability to use MATLAB programming to get solutions of mathematical of discrete	
	system.	
<b>CO3</b>	To develop a skill to do the analysis of discrete systems by MATLAB programming.	
CO4	To develop a skill to do the design digital filters by MATLAB programming.	

Expt.	COURSE SYLLABUS	COs
No	CONTENTS OF MODULE	COS
1	Develop a program to represents basic elementary discrete signals.	
2	Develop a program P to calculate the convolution and correlation of two discrete signals.	
3	Develop a program to determine Z-transform and inverse z-transformof given discrete signal.	
4	Develop a program to determine Fast Fourier transform of given discrete signal.	CO1 CO2
5	Develop a program to describe discrete LTI system in Z-domain and draw its plot pole-zero.	CO3 CO4
6	Develop a program to determine the impulse response and step response of given LTI discrete system.	
7	Develop a program to determine the Frequency response of Discrete LTI system.	
8	Develop a program to describe a digital filter and determine its output response.	
9	Develop a program to design a FIR filter by using window techniques.	
10	To design analog filter (low-pass, high pass, band-pass, band-stop)	
11	Develop a program to design a Butterworth IIR filter.	
12	To develop a program for computing direct forms realization values of IIR digital filter	
13	To develop a program for computing parallel realization values of IIR digital filter	
14	To develop a program for computing direct form realization values of FIR digital filter	



#### B. Tech Electrical and Instrumentation Engineering SYLLABI for EXAMINATIONS B. Tech. 4th YEAR

Program Name: B. TechElectrical and Instrumentation Engineering							
Course	Code:	Course Name: Open Elective IV	U	L	Ť	P	С
EI-OE-	401	(i) Computer Graphics and CAD/C	AM	3	1	0	4
Year a	nd	4 th Year	Contact hours per w	eek: (	(4H	rs)	
Semest	er	VII th Semester	Exam: (3 Hrs)				
Pre-rec	uisite of	Programing in C, General Math	Evalua	tion			
course		Tiogramming in C, General Math	<b>CIE: 40</b>		SEI	E: 6	)
Course	Objective	es:					
1. To 1	learn and u	inderstand Graphics fundamentals.					
		e algorithm design capability for creat		3-D gr	aph	nical	
obje	ects To lear	rn creation of animated scenes for vir	tual objects creations				
3. To t	further the	acquired knowledge to utilize it in dia	fferent research works	on Pat	tteri	n	
	0	nd Image Processing.					
4. To 3	learn and u	inderstand Graphics fundamentals.					
Course	Outcome	s: On completion of the course, stude	nt would be able to:				
CO1	Understa	nd how to write algorithms for genera	ting different 2-D and	3-D g	rapl	hica	1
	objects.						
<b>CO2</b>	Apply the	e knowledge to create and filling poly	gon (solid area fill),				
CO3	Implemen	nt the different techniques of 2-D					
<b>CO4</b>	Implemen	nt different line and polygon clipping	algorithms,				
CO5	Draw dif	ferent types of projections in 3-D vect	tor algebra, different 3-	D trar	nsfo	rma	tion
	techniques, curves and surfaces and rendering methods						
CO6	Animate	scenes entertainment and apply the ki	nowledge to research w	ork.			

Module	e COURSE SYLLABUS CONTENTS OF MODULE		COa
No			COs
1	Introduction of computer Graphics and its applications, Overview of Graphics systems, Video display devices, Raster scan display, Raster scan systems, video controller, Raster scan display processor, Random scan display, random scan systems, color CRT monitor, Flat panel display, Interactive input devices, Logical classification of input devices, Keyboard, mouse, Trackball and spaceball, Joysticks, Image scanner, Light pens, Graphics software, Coordinates representations, Graphics primitives and functions.		CO1, CO2
2	Points and lines, Line drawing algorithms, midpoint circle and ellipse algorithms. Filled area primitives: scan line polygon fill algorithm, boundary-fill and flood fill algorithms. Translation, scaling, rotation, reflection and shear transformations, matrix representations and homogeneous coordinates, composite transforms, transformation between coordinate systems. 2-D Viewing: The viewing pipeline, viewing coordinate reference frame, window to viewport coordinate transformation, viewing functions, Cohen- Sutherland and Cyrus beck line clipping algorithms	9	CO2, CO3, CO5
3	Polygon surfaces, quadric surfaces, spline representation, Hermite	9	CO3,



	Curve, Bezier Curve and BSpline curves, Bezier and B-Spline surfaces, sweep representations, 3-D Geometric Transformations: Translation, Rotation, Scaling, Reflection and Shear transformations, composite transformations, 3-D viewing, viewing pipeline, viewing coordinates, view volume and general projection transforms and clipping.		CO4
4	Classification, back-face detection, depth-buffer, scan line, depth sorting, BSP- tree methods, are subdivision and octree methods Illumination models and surface rendering methods: Basic illumination models, polygon rendering methods. Design of animation sequence general computer animation functions, raster animation, computer animation languages, key frame systems, motion specifications.	9	CO4, CO6

#### **TEXT BOOKS**

- 1. COMPUTER GRAPHICS C VERSION by Donald Hearn and M. Pauline Baker, Pearsosn Education.
- 2. Principles of Interactive Graphics, Neuman and Sproul, TMH
- 3. Computer Graphics second edition "Zhigand Xiang, Roy Plastock, Schaum's outlines Tata McGraw Hill Edition.

#### **REFERENCE BOOKS**

- 1. Computer Graphics Principles & Practice", Second Edition in C, Foley, VanDam, Feiner and Hughes, Pearson Education.
- 2. Procedural Elements for Computer Graphics, David F Rogers, Tata McGraw Hill, 2nd edition.
- 3. An Integrated Introduction to Computer Graphics and Geometric Modelling, R. Goldman, CRC Press, Taylor & Francis Group.

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

#### Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Trogram Name, D. Teen,-Electrical and instrumentation Engineering							
<b>Course Code:</b>	Course Name: Open Elective-IV			Т	P	С	
EI-OE-401	(ii) IoT and It's Applications			1	0	4	
Year and	<b>4st Year Contact hours per week:</b> (4 Hrs.)						
Semester	VII th Semester	Exam: (3 Hrs.)					
Pre-requisite of	Microprocessor, Microcontrollers	Evaluation					
course	and Embedded Systems	CIE: 40 SEE: 60					



Социа	e Objectives:				
	understand what Internet of Things is.				
	is course, student will explore various components of Internet of things suc	h as So	ncore		
	networking and cyber space.	II as se	118018,		
	e end they will also be able to design and implement IoT circuits and soluti	one			
	<b>Outcomes:</b> On completion of the course, student would be able to:	0115.			
	*				
CO1	Identify the main components of Internet of Things.Program the sensors and controller as part of IOT.				
CO2					
CO3	Assess different Internet of Things technologies and their applications.				
CO4	Design a component or a product applying all the relevant standards and w constraints.	itnin re	eanstic		
CO5	Identify a suitable hardware and software solution for the given electrical a	and			
	instrumentation problems.				
CO6	Execute their electrical and instrumentation product ideas into a real-time	workin	g		
	model.				
Modu	COURSE SYLLABUS				
le No	CONTENTS OF MODULE	Hrs	COs		
	INTRODUCTION TO INTERNET OF THINGS:				
	Definition & Characteristics of IoT - Challenges and Issues - Physical				
	Design of IoT, Logical Design of IoT - IoT Functional Blocks, Security.				
1	COMPONENTS IN INTERNET OF THINGS:	9	CO1,		
	Control Units – Communication modules –Bluetooth – Zigbee –Wifi –		CO2		
	GPS- IOT Protocols (IPv6, 6LoWPAN, RPL, CoAP), MQTT, Wired				
	Communication, Power Sources. Current trends in IoT.				
	PROGRAMMING THE MICROCONTROLLER FOR IOT:				
	Introduction of Raspberry Pi 3 $B+$ - About Raspberry version and				
	processor, specification, pin details, features. Raspberry OS, IP		<b>G 0 1</b>		
2	configuration, Wi-Fi configuration, supporting package installation.	9	CO2,		
	Basic Linux commands, basic python programming, web server		CO3		
	installation, Basic HTML and PHP, connecting My SQL data base.				
	Different type of IoT Gate way				
	HARDWARE INTERFACING:				
	Working principles of sensors - IOT deployment for Raspberry Pi -				
3	Reading from Sensors, Communication: Connecting microcontroller	9	CO2,		
5	with mobile devices - communication through Bluetooth, Wi-Fi and	"	CO3		
	USB - Contiki OS. Camera interface, Think speck IoT platform,				
	Android interface with IoT.				
	<b>RESOURCE MANAGEMENT IN IOT:</b>				
	Clustering, Clustering for Scalability, Clustering Protocols for IoT -				
	From the internet of things to the web of things - The Future Web of		CO2,		
	Things – Set up cloud environment – Cloud access from sensors– Data		CO3,		
4	Analytics for IOT- Case studies- Open Source 'e-Health sensor	10	CO4,		
	platform' – 'Be Close Elderly monitoring' – Other recent projects.		CO5,		
	IOT APPLICATIONS:		CO6		
	Business models for the internet of things, Home energy management,				
	home automation etc.				
Text Bo					

#### **Text Books:**

1. Architecting the Internet of Things, Dieter Uckelmann et.al Springer, 2011



2. Internet of Things – A Hand-on Approach, ArshdeepBahga and Vijay Madisetti, Universities press, 2015

#### **Reference Books**:

- 1. Building Internet of Things with the Arduino, CharalamposDoukas, Create space, April 2002.
- 2. Internet of Things: From research and innovation to market deployment, Dr.OvidiuVermesan and Dr. Peter Friess, River Publishers 2014.
- 3. 8051 Microcontroller: An Application Based Introduction, David Calcutt, Fred Hassan, Newness, 2008.
- 4. Contiki: The open source for IOT, www.contiki-os.org
- 5. Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-on-Approach)", 1st Edition, VPT, 2014
- 6. Francis daCosta, **"Rethinking the Internet of Things: A Scalable Approach to Connecting Everything"**, 1st Edition, Apress Publications, 2013
- 7. CunoPfister, Getting Started with the Internet of Things, O"Reilly Media, 2011, ISBN: 978-1-4493- 9357-1

#### List of Open Source Software/learning website:

1. https://github.com/connectIOT/iottoolkit

ъ.т

- 2. https://www.arduino.cc/
- 3. Contiki (Open source IoT operating system)
- 4. https://www.ubuntupit.com/best-iot-operating-system-for-your-iot-devices/
- 5. Arduino (open source IoT project)
- 6. IoT Toolkit (smart object API gateway service reference implementation)
- 7. Zetta (Based on Node.js, Zetta can create IoT servers that link to various devices and sensors)

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

#### Note for Students:

-

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

. .

. ..

-

Program Name: B. TechElectrical and Instrumentation Engineering						
<b>Course Code:</b>	Course Name: Program Elective-	IV	L	Т	P	С
EI-PE-403	(i) Bio Medical Instrumentation		2	1	0	3
Year and	4 th Year Contact hours per week: (3Hrs)					
Semester	(VII th Semester)	Exam: (3 Hrs)				
Due neguiaite of	Brief knowledge of in the	Evaluation				
Pre-requisite of course	following topics: Physics, Basic Electrical Engg.	CIE: 40		SE	E: 6	0
Course Objectives:						
1. To introduce the concept of Bio Medical Instrumentation.						



2. To int	To introduce Bio Potential Electrodes and Biomedical Recorders.			
3. To int	troduce the Heart Sound and Ultrasound.			
4. To stu	udy the Imaging System.			
Course C	<b>Dutcomes:</b> On completion of the course, student would be able to:			
<b>CO1</b>	O1 To Familiarize with Bio Medical Instrumentation.			
<b>CO2</b>	CO2 To understand with Bio Potential Electrodes and Biomedical Recorders.			
<b>CO3</b>	CO3 To understand the Heart Sound and Ultrasound.			
<b>CO4</b>	To understand the Imaging System.			

Module	COURSE SYLLABUS	Hrs	COs
No	CONTENTS OF MODULE	1115	COS
	Introduction; Bio-electric potential and electrode: Instrumentation		
1	system, Living Instrumentation system, Bio-metric, the anatomy of	5	т
1	nervous system, origin of bio-potentials, resting and action potentials,	5	1
	propagation of action potentials, the Bio-electric potentials.		
	Bio-potential electrode and Biomedical recorders: Bio-potential		
2	electrode: Microelectrodes, skin surface electrode, Needle	7	Π
2	electrodes. EEG: Electrode for EEG, Block diagram of EEG Machine,	/	11
	EMG Recording, pre amplifier for EMG, EMG recording method.		
	Heart Sound Monitoring and Ultrasonic Imaging system: Basic		
	functioning of heart, Electrocardiograph Block diagram of ECG,		
3	ISOLATION AMPLIFIER, the ECG leads, Microprocessor based	6	III
	ECG Machine, PCG, Microphones for PCG, amplifier for PCG,		
	Physics of ultrasonic waves, Biological effect of ultrasound.		
	Imaging System: X-ray Machine and Computed Tomography: X-ray		
4	machine, X-ray image Intensifier T.V. system, X-ray computed		
	Tomography (CT Scanner). NMR imaging system: Imager system.	6	IV
	Application of NMR Imaging, Advantage & disadvantage of NMR		
	Imaging system		

#### **REFERENCE BOOKS:**

- 1. Introduction to Biomedical Equipment Technology By Carr & Brown.
- 2. Biomedical Instrumentation and Measurement by Cromwell, PHI.
- 3. Handbook of Biomedical Instrumentation by R.S.Khandpur, TMH.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

#### Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.



riogram Name: D. TechElectrical and instrumentation Engineering						
<b>Course Code:</b>	Course Name: Program Elective-	IV	L	Т	P	С
EI-PE-403	(ii) Reliability Engineering		2	1	-	3
Year and	4 th year	Contact hours per v	veek:	(3H	rs)	
Semester	7 th Semester	Exam: (3hrs.)				
Pre-requisite of	<b>Basic Engineering Mathematics</b>	Evalu	ation			
course		CIE: 40		SEI	E <b>: 60</b>	1
<b>Course Objectiv</b>	ves:					
1. To study the	basic concept of reliability, maintaina	bility and availability of	engine	erir	ıg.	
2. To study th	e evaluation techniques of engineer	ing models and relia	bility	imp	prove	ment
methods.						
3. To study the	concept of fault tree analysis and optim	mization techniques.				
4. To study eva	luation modesl for reliability, maintain	hability, availability te	sting.			
5. To study the	applications of fuzzy theory and neural	al networks to reliabili	ty eng	inee	ering,	,
<b>Course Outcom</b>	es: On completion of the course, stude	nt would be able to:				
CO1 To under	stand the basic concept of reliability, n	naintainability and ava	ilabili	ty		
engineeri	ng.					
CO2 To under	stand the evaluation techniques of engi	ineering models and re	liabili	ty		
improver	improvement methods.					
CO3 To learn	<b>CO3</b> To learn the fault tree analysis and optimization techniques.					
CO4 Ability to	<b>CO4</b> Ability to do testing and evaluate the reliability, maintainability, availability of					
engineeri	engineering models.					
CO5 To study	the applications of fuzzy theory and ne	eural networks to relial	bility e	engi	neeri	ing,

Drogram Mamar D	Tooh Flootwigol and	Instrumentation Engineering
Ргоугаш маше: Б	. теспглестисягана	Instrumentation Engineering
1 ogram i amor 2	i com Biccorrear and	moti anichitation Engineering

Modu le No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Review of basic concepts in reliability engineering, reliability function, different reliability models etc., and reliability evaluation techniques for complex system: Non path set and cutest approaches, path set and cut set approaches, different reliability measures and performance indices, modeling and reliability evaluation of system subjected to common cause failures.	7	CO1
2	Reliability improvement, Reliability allocation/apportionment and redundancy optimization techniques, Fault tree analysis.	7	CO2, CO3
3	Maintainability Analysis: measure of system performance, types of maintenance, reliability centered maintenance, reliability and availability evaluation of engineering systems using Markov models. Reliability testing, Design for reliability and maintainability.	7	CO1, CO4
4	Applications of fuzzy theory and neural networks to reliability engineering, Typical reliability case studies.	7	CO5

#### **Suggested Text / Reference Books:**

- 1. M.L Shooman, "Probabilistic reliability- an engineering approach" RE Krieger Pub, 1990.
- 2. K.K Aggarwal, "Reliability Engineering" Springer Pub, 1993.
- 3. E. Balaguruswamy, "Reliability Engineering" McGraw hill, 2002.
- 4. R. Ramakumar, "Engineering Reliability" Prentice, NJ, 1993.

Note for Examiner(s): Question paper will comprise three sections,



- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

#### Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course	Code:	Course Name: Program Elective – IV		L T P C	
EI-PE-40	03	(iii) Wind and Solar Energy Systems 2 1 -			
Year an	d	4th year	Contact hours per week: (3Hrs )		
Semeste	r	7th Semester	Exam: (3hrs.)		
Pre-requ	uisite of	Electrical Machines, Power	Evalu	ation	
course		Electronics, Basic Science	<b>CIE: 40</b>	SEE: 60	
		Engineering			
Course	Objective	es:			
1. To fai	miliarize	the energy scenario and the consequ	ent growth of the pov	ver generation from	
renew	able wind	l and solar energy sources.			
2. To stu	dy the ba	sic science of wind and solar energies			
3. To stu	dy the wi	ind and solar energy conversion system	ms for electrical power	r system.	
4. To stu	ıdyintegra	tion issues of the wind and solar gene	eration.		
Course	Outcome	s: On completion of the course, stude	nt would be able to:		
CO1	Understa	nd the energy scenario and the con	sequent growth of the	e power generation	
	from rene	ewable wind and solar energy sources			
CO2	Understand the basic science of wind and solar energies.				
<b>CO3</b>	Understand the wind and solar energy conversion systems for electrical power system.				
<b>CO4</b>	Understand the power electronic interfaces for wind and solar generation.				
CO5	Understa	nd the issues related to the grid-integr	ation of solar and wine	d energy systems.	

Modu le No.	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	<b>Wind Energy Systems:</b> Historical developments of Wind Energy, energy and power in wind, wind energy dynamics, power extracted, axial thrust on turbines, torque, maximum power and Beltz coefficient, wind turbine operational characteristic, site selection. Wind energy conversion system, basic integration issues related to wind power, status of Wind power in India.	7	CO1, CO2
2	<b>Wind Energy Conversion Systems:</b> HAWT and VAWT constructions, basic rotor differences, relative merits and operational difficulties, lift and drag turbines, upwind and down wind machines. Basic components, fixed and variable speeds systems, type of generators used-D.C.,	7	CO3, CO4, CO5



	induction and synchronous machines; grid, standalone, and hybrid schemes.		
3	<b>Solar Energy Systems:</b> Fundamentals of solar cell, semiconductors as basis for solar cells materials and properties, P-N junction, sources of losses and prevention, estimating power and energy demand, site selection, land requirements, choice of modules, economic comparison, balance of systems. Overview of different types of solar cells/panels. Photovoltaic industries in India and world.	7	CO1, CO2
4	<b>Solar PV Power Plants System:</b> Array design, inverter types and characteristics, power conditioning system: working algorithms, performance analysis; design of stand alone, hybrid and grid interactive plants, commissioning of solar PV plant.	7	CO3, CO4, CO5

#### **Suggested Text / Reference Books:**

- 1. T. Ackermann, "Wind Power in Power Systems", John Wiley and Sons Ltd., 2005.
- 2. G. M. Masters, "Renewable and Efficient Electric Power Systems", John Wiley and Sons, 2004.
- 3. S. P. Sukhatme, "Solar Energy: Principles of Thermal Collection and Storage", McGraw Hill, 1984.
- 4. H. Siegfried and R. Waddington, "Grid integration of wind energy conversion systems" John Wiley and Sons Ltd., 2006.
- 5. G. N. Tiwari and M. K. Ghosal, "Renewable Energy Applications", Narosa Publications, 2004.
- 6. J. A. Duffie and W. A. Beckman, "Solar Engineering of Thermal Processes", John Wiley & Sons, 1991.
- 7. V. Yaramasu and B.Wu, "Model Predictive Control of Wind Energy Conversion Systems", Wiley- IEEE Press, 2016.
- 8. L. L. Freris, "Wind Energy Conversion System", Prentice Hall, (U.K.) 1990.
- 9. Thomas Ackermann, "Wind Power in Power System", John Wiley & Sons Ltd., 2005.
- 10. SuneelDeambi, "Photovoltaic System Design: Procedures, Tools and Applications", CRC Press 2016.
- 11. A. Freundlich, P. Verlinden, WvanSark, "Photovoltaic Solar Energy: From Fundamentals to Applications", John Wiley & Sons Ltd. 2017.
- 12. Md. Rabiul Islam, FazRahman, Wei Xu, "Advances in Solar Photovoltaic Power Plants", Springer-Verlag Berlin Heidelberg, 2016.

#### Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

#### Note for Students:

**1.** Section – A is compulsory and attempt/answer all the four questions carrying 12 marks in total.



2. Attempt/answer two questions each out of the Section – B and Section – C. All questions will carry 12 marks.

	Progra	am Name: B. TechElectrical and I	nstrumentation Engin	eerir	ıg	
Course (	-	<b>Course Name: Program Elective –</b>			T P	C C
EI-PE-40	)3	(iv) POWER QUALITY AND FAC	CTS	2	1 0	3
Year and	1	IV th Year	Contact hours per we	ek:	(3Hr	s)
Semester	r	VIIth Semester	Ex	am:	(3 Hr	s)
		EI-PC-202 POWER	Evaluat	ion		,
D	· · · · · · · · · · · · · · · · · · ·	ELECTRONICS-I				
Pre-requ	lisite of	EI-PC-303 POWER	CIE: 40	6	TET.	()
course		ELECTRONICS-II	CIE: 40		SEE:	00
		EI-PC-307 POWER SYSTEM-II				
Course (	Objective	25:				
		ents about the power quality and its cla	assification.			
		nts about voltage profile under differe				
		of integration of distributed generation				
		tudents about FACTS and FACTS bas				
		owledge about series and shunt compe				
0		s: On completion of the course, studen				
C01		erstand the term power quality and i		oltas	ge un	balance.
		sag/swell, harmonics etc.		C		7
CO2		n about different voltage profiles u	under the events of v	olta	ge sa	g/swell.
		s, harmonic distortion, intra-harmonic			5	,
CO3		a brief idea of distributed generation a		aua	litv.	
CO4		out the FACTS and basics of FACTS	* *	1		
CO5		bout the need of compensation and a		tic c	ompe	nsation:
		ries and shunt compensation.			<b>r</b> -	,
Module		COURSE SYLLABU	JS			~
No		CONTENTS OF MOD	ULE		Hrs	Cos
	Introdu	iction: Power quality-voltage qualit		s,		
		quality evaluation procedures term				001
1	-	of power quality problems, transient			5	CO1,
		n, short duration voltage variatio				CO2
		rm distortion.				
	Voltage	e sags and interruptions: Sources o	of sags and interruption	s,		
		ng voltage sag performance, fun				
		on, motor starting sags.				
	Transie	ent over voltages: Fundamentals of	of harmonics, Harmon	ic	7	<b>CO1</b>
2		on, voltage harmonic indexes, h				CO2,
	commen	rcial loads, harmonic sources from Ir	ndustrial loads, effects	of		CO2
		ic distortion, intra harmonics.				
		uted generation and power qua	ality: DG technologie	s,		
		e to utility system, power quality issue	•			
	FACTS		stem Consideration	s:		
		concept and ceneral by				
3		ission Interconnections, Flow of Po			8	CO4, CO5



	<ul> <li>Basic Types of FACTS Controllers, Brief Description and Definitions of FACTS Controllers,</li> <li>Static Shunt Compensators: Objectives of Shunt Compensation - Midpoint Voltage Regulation for Line Segmentation, End of Line Voltage Support to Prevent Voltage Instability, Improvement of Transient Stability Thyristor Controlled Reactor.</li> </ul>		
4	Static Series Compensators: Objectives of Series Compensation, Concept of Series Capacitive Compensation, Voltage Stability, Improvement of Transient Stability. GTO Thyristor-Controlled Series Capacitor, Thyristor-Switched Series Capacitor, Thyristor-Controlled Series Capacitor, The Static synchronous Series Compensator.	6	CO5

#### **Text Books:**

- 1. Narain G. Hingorani& Laszlo Gyugyi Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems Wiley
- 2. Arinthom Ghosh & Gerard Ledwich, Power Quality Enhancement Using Custom Power **Devices Kluwer Academic Publishers**
- 3. C. Sankaran, Power Quality CRC Press
- 4. S. Sivanagaraju& S. Satyanarayana, Electric Power Transmission and Distribution, Pearson Education

#### **Reference Books:**

- 1. Roger C Dugan, McGrahan, Santoso&Beaty, Electrical Power System Quality McGraw Hill
- 2. Power quality in power systems and electrical machines Ewald F Fuchs, Mohammad, A.S., Masoum Academic Press, Elsevier 2009.

**Note for Examiner(s)**: Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

#### Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Program Name: B. TechElectrical and Instrumentation Engineering						
<b>Course Code:</b>	Course Code:     L     T       DL DG 405     Course Name: Electric Drives     1		P	С		
EI-PC-405	Course Name: Electric Drives		3	1	0	4
Year and	<b>4TH Year Contact hours per week:</b> (4Hrs)		Hrs )			
Semester	(VII th Semester) Exam: (3 Hrs)					
Pre-requisite of	Brief knowledge of in the	ne Evaluation				
course	following topics: Electrical Machines, Power Electronics.	CIE: 40		SE	E: 6(	)
	Machines, Power Electronics.					

#### . . . ----



Course Objectives:	
1. To introduce the concept of types of Electric Drives.	
2. To introduce the DC Motor Drives.	
3. To introduce the AC Motor Drives.	
4. To study the Motor power rating.	
5. To implement Traction Drives.	
Course Outcomes: On completion of the course, student would be able to:	
CO1 To Familiarize with Dynamics and Control of Electric Drives.	
CO2 To understand efficient speed control techniques in DC Motor Drives.	
<b>CO3</b> To understand efficient speed control techniques in AC Motor Drives.	
CO4 To understand the significance and selection of power rating.	
<b>CO5</b> To familiarization of Load and choice of traction for suitable load.	

Module	COURSE SYLLABUS	Unc	COc
No	CONTENTS OF MODULE	Hrs	COs
	<b>Electrical Drives:</b> Introduction, advantages, choice of electrical drives, status of ac and dc drives.		
1	<b>Dynamics of Electrical Drives:</b> Fundamental torque equations, multi- quadrant operation, equivalent values of drive parameters, load torque components, types of loads, steady state stability, load equalization.	7	CO1
	<b>Control of Electrical Drives:</b> Modes of operation, closed loop control of drives, sensing of current and speed.		
2	<b>DC Motor Drives:</b> Speed-torque characteristics of different types of dc motors, starting, types of braking, transient analysis, speed control methods, static control of dc motors. Converter fed dc drive & chopper fed dc drive.	7	CO2
3	<b>Induction motor Drives:</b> Characteristics, analysis and performance, starting methods, braking methods, transient analysis, methods of speed control, vector control. Static control techniques- stator frequency control, stator voltage control, rotor resistance control. Static Scherbius system & static Kramer system.	10	CO3
4	Selection of motor power rating: Heating and cooling, determination of motor rating, continuous, short time and intermittent duties, determination of moment of inertia of the flywheel. Traction Drives: Nature of traction load, important features of traction drives, static control of traction drives; comparison between ac and dc tractions.	12	CO4

#### **TEXT BOOKS:**

1. Fundamentals of Electrical Drives, G.K.Dubey, Narosa Publishing House **REFERENCE BOOKS:** 

- 1. Power Semiconductor controlled drives, G.K.Dubey, Prentice Hall.
- 2. Electric Drives: V.Subrahmaniyam TMH
- 3. Electric Drives: Leonard, Narosa Pub.
- 4. Electric Drives: Diwan

#### Note for Examiner(s): Question paper will comprise three sections,

1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.



- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

#### Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Cod	le: Course Name: Advance Process Dyn	0	L	T	Р	С
EI-PC-407			3	1	0	4
Year and	4 th year	Contact hours per w	eek:	(4H	rs)	
Semester	VIII th Semester	Exam: (3 Hrs)				
Pre-requisit	te EI-PC-309 Linear Automatic	Evalua	tion			
of course	Control System	CIE: 40		SE	E: 6	)
Course Obj	ectives:					
5. Acquire	knowledge Process dynamics and various for	orms of mathematical n	node	ls to	expr	ess
them						
6. To under	rstand the multiloop systems					
7. To devel	op knowledge about controller tuning					
8. To devel	op understanding about PI diagrams					
9. To analy	ze samples data control systems					
<b>Course Out</b>	comes: On completion of the course, stude	nt would be able to:				
CO1 Fo	CO1 Formulate mathematical model of various systems					
CO2 De	esign and develop multiloop control system	S				
<b>CO3</b> Co	ompute the tuning parameters of controllers					
CO4 Co						
CO5 De	evelop the sample data control systems					

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs.	COs
1	Need of mathematical modelling, lumped and distributed parameters, state variables and state equations of chemical processes, mathematical modelling of CSTR, interacting system and non- interacting system. Control of jacketed kettle systems, dynamic response of gas absorber, heat conduction into solids, heat exchanger.	10	CO1
2	Review and limitation of single loop control, need of multi loops, cascade, selective override, auctioneering, split range, feed forward, feed forward feedback, adaptive, inferential, ratio control, Self-adaptive control: MRAC, TR.	8	CO1, CO2
3	Tuning of PID controller, Zeigler – Nichols methods, Process reaction curve, Ultimate gain and period method, quarter decay ratio advance method of tuning, IAE, ISE, IATE tuning of controllers. Effect of measurement and transportation lag on process response, Effect of	8	CO1, CO3



	disturbances.		
4	Standard Instrumentation Symbols for Devices, Signal Types, Representation of a Process Control Loop using PI diagram. Sampling, open loop and closed loop response, Stability, sampled data control of first order process with transport lag, Design of sampled data controllers.	10	CO4, CO5

#### Text books:

- 1. Stephanopoulos, G., Chemical Process Control, Prentice–Hall of India Private Limited (1983).
- 2. Johnson, C.D., Process Control Instrumentation Technology, Prentice–Hall of India Private Limited (1992).
- 3. Process Systems Analysis and Control, D. R. Coughanour, McGrawHill

#### **Reference books:**

- 1. Liptak, B.G., Instrument Engineers Handbook, Butterworth, Heinemann (2002)
- 2. Seborg, D.E. and Edgar, T., Process Dynamics and Control, John Wiley and Sons (1989).

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

#### Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

	Progra	am Name: B. TechElectrical and Instru	mentation Engi	neerin	3	
Course C EI-PRPC		Course Name: Electric Drives Lab		L 7	Г Р ) 3	C 1.5
Year an	d	4 th Year	Contact hours	per we	ek: (	3Hrs)
Semester	r	VII th Semester	Exam: (3hrs.)			
		Brief knowledge of in the following	Eval	luatior	1	
Pre-requ	isite of	topics: Basic Electrical and Electronics				
course		engineering, Semiconductor devices,	CIE: 30	S	EE:	45
		Digital Electronics, rectifiers.				
Course C	Objective	es:				
1. Unde	erstand th	e Chopper Control Drives				
2. Unde	erstand th	ne concepts of Cyclocontroller based control	ol.			
3. Unde	erstand th	ne concept of Electric Breaking.				
4. Unde	erstand C	urrent Source Inverter.				
Course Outcomes: On completion of the course, student would be able to:						
<b>CO1</b>	To under	stand the concept of chopper control DC m	otors.			
<b>CO2</b>	To under	stand the cyclocontroller bases Induction M	lotor Control			
<b>CO3</b>	To under	stand how to implement electric Breaking u	using Induction M	lotor.		



CO4	To understand the current Source Inverter and Voltage Source Inverters for Induction
	motor Control.

Expt.	COURSE SYLLABUS	COs
No	CONTENTS OF MODULE	COS
	LIST OF EXPERIMENTS STUDY EXPERIMENTS :	
1.	Study of Chopper controller of DC Series motor	
2.	Study of Chopper controller of SE DC Series motor trainer	CO1
3.	Study of half wave cycloconverter with IM	CO1,
4.	Study of DC dynamic breaking 3-phase slippering IM	CO2,
5.	VSI Controlled IM chopper trainer	CO3, CO4
6.	Study of Self-controlled synchronous motor	04
7.	To Study Current Source Inverter controlled IM	
8.	To study Voltage Source Inverter Controlled IM	

#### **TEXT BOOKS:**

1. Fundamentals of Electrical Drives, G.K. Dubey, Narosa Publishing House **REFERENCE BOOKS:** 

- 1. Power Semiconductor controlled drives, G.K. Dubey, Prentice Hall.
- 2. Electric Drives: V. Subrahmaniyam TMH
- 3. Electric Drives: Leonard, Narosa Pub.
- 4. Electric Drives: Diwan

Program Name: B. TechElectrical and Instrumentation Engineering								
<b>Course Code:</b>	Course Name: Open Elective IV	Lab.	L	Τ	P	С		
EI-PROE-29	(i) Computer Graphics and CAD/C	CAM	0	0	3	1.5		
Year and	4 th Year	Contact hours per v	veek:	(3H	Irs)			
Semester	VII th Semester	Exam: (3hrs.)						
Pre-requisite	f Brograming in C. Conoral Math	Evalu	ation					
course	Programing in C, General Math	CIE: 30		SE	E: 4	5		
Course Object	ives:							
5. To learn an	d understand fundamentals of Graphics	programming						
6. How to des	gn and develop the algorithm for creati	ng different 2-D and 3-	-D gra	aphi	cal o	objects		
and proced	re to create animated scenes for virtual	objects.						
7. To further t	he acquired knowledge to utilize it in di	fferent research works	on Pa	atter	'n			
Recognition	and Image Processing.							
<b>Course Outco</b>	nes: On completion of the course, stude	ent would be able to						
CO1 Write	Write algorithms for generating different 2-D and 3-D graphical objects.							
CO2 Implei	Implement various 2D and 3D transformations							
CO3 Design	Design various types of graphical animation and complex designs							
CO4 Apply	Apply the concepts on real- project design and development							

Expt.	COURSE SYLLABUS	
No	CONTENTS OF MODULE	COs
1	Study of Fundamental Graphics Functions.	CO1,
2	Implementation of Line drawing algorithms: DDA Algorithm, Bresenham's	CO2,
2	Algorithm	CO3,
3	Implementation of Circle drawing algorithms: Bresenham's Algorithm, Mid-	CO4



	Point Algorithm.	
4	Ellipse Generation Algorithm	
5	Creating various types of texts and fonts	
6	Creating two dimensional objects	
7	Programs using 2-D transformations in C.	
8	Programs to study 3-D transformations in C.	
9	Implement Polygon filling algorithms [Flood-Fill Algorithm] in C.	
10	Programs to study window to viewport transformations in C.	
11	Program for Cohen Sutherland Line clipping algorithm in C.	
12	Write a program to implement Cohen Sutherland line clipping algorithm	
13	Write a program to draw Bezier curve.	
14	Key Frame Animation	

#### **Text Books:**

- 1. Procedural Elements for Computer Graphics, David F Rogers, Tata McGraw Hill, 2nd edition.
- 2. An Integrated Introduction to Computer Graphics and Geometric Modelling, R. Goldman, CRC Press, Taylor & Francis Group.

Course	Code:	Course Name:Open Elective- IV la	ab.	L T P C		
EI-PROI	E-29	(ii) IoTand Its Application Lab		0 0 3 1.5		
Year an	d	4 th Year	Contact hours per w	eek: (3 Hrs.)		
Semeste	r	VII th Semester	Exam: (3 hrs.)			
Pre-requ	uisite of	Microprocessor, Microcontrollers	Evalua	tion		
course		and Embedded Systems	CIE: 30	SEE: 45		
1. Cour	rse Objec	ctives:				
2. To u	nderstand	what Internet of Things is.				
3. In the	is course,	student will explore various compone	ents of Internet of thing	s such as Sensors,		
inter	networkin	ng and cyber space.				
4. In the	e end they	y will also be able to design and imple	ement IoT circuits and s	solutions.		
Course	Outcome	s: On completion of the course, stude	ent would be able to:			
CO1	CO1 Understand general concepts of Internet of Things (IoT)					
CO2	2 Recognize various devices, sensors and applications					
CO3	O3 Apply, Analyze and Evaluate various design concept to IoT solutions					
<b>CO4</b>	Create IoT solutions using sensors, actuators and Devices					

Expt.	COURSE SYLLABUS	COs
No	CONTENTS OF MODULE	COS
1	<ul> <li>Introduction to various sensors and various actuators &amp; its Application</li> <li>(Students have to prepare Report for the same). Perform Experiment using</li> <li>Arduino Uno to measure the distance of any object using Ultrasonic Sensor.</li> <li>a) PIR Motion Sensor.</li> <li>b) Rain Drop Sensor.</li> <li>c) Moisture Sensor.</li> <li>d) Temperature Sensor.</li> <li>e) Touch Sensor.</li> </ul>	CO1, CO2, CO3, CO4



f)Infrared Sensor.g)Servo Moto.h)RFID Sensor.i)Bluetooth Module.j)Wi-Fi Module.2Demonstrate NodeMCU and its working3Getting Started with (ESP8266 Wi-Fi SoC4Hands-on with on-board peripherals of ESP82665Demonstrate Arduino and its pins.6Perform Experiment using Arduino Uno to measure the distance of any object using Ultrasonic Sensor.7Create a circuit using Arduino and sensors. Perform experiment using Arduino Uno to Learn Working of Servo Motor8Creating a webpage and display the values available through Arduino.9Demonstration of Setup & Working of Raspberry Pi. (Students have to prepare the Report for the same.).10OPEN Ended problem: Students are required to submit an IOT based project using the Microcontroller or a Raspberry Pi and connecting various sensors and actuators.			
h)RFID Sensor.i)Bluetooth Module.j)Wi-Fi Module.2Demonstrate NodeMCU and its working3Getting Started with (ESP8266 Wi-Fi SoC4Hands-on with on-board peripherals of ESP82665Demonstrate Arduino and its pins.6Perform Experiment using Arduino Uno to measure the distance of any object using Ultrasonic Sensor.7Create a circuit using Arduino and sensors. Perform experiment using Arduino Uno to Learn Working of Servo Motor8Creating a webpage and display the values available through Arduino.9Demonstration of Setup & Working of Raspberry Pi. (Students have to prepare the Report for the same.).10OPEN Ended problem: Students are required to submit an IOT based project using the Microcontroller or a Raspberry Pi and connecting various sensors and		f) Infrared Sensor.	
i)Bluetooth Module. j)j)Wi-Fi Module.2Demonstrate NodeMCU and its working3Getting Started with (ESP8266 Wi-Fi SoC4Hands-on with on-board peripherals of ESP82665Demonstrate Arduino and its pins.6Perform Experiment using Arduino Uno to measure the distance of any object using Ultrasonic Sensor.7Create a circuit using Arduino and sensors. Perform experiment using Arduino Uno to Learn Working of Servo Motor8Creating a webpage and display the values available through Arduino.9Demonstration of Setup & Working of Raspberry Pi. (Students have to prepare the Report for the same.).10OPEN Ended problem: Students are required to submit an IOT based project using the Microcontroller or a Raspberry Pi and connecting various sensors and		g) Servo Moto.	
j)Wi-Fi Module.2Demonstrate NodeMCU and its working3Getting Started with (ESP8266 Wi-Fi SoC4Hands-on with on-board peripherals of ESP82665Demonstrate Arduino and its pins.6Perform Experiment using Arduino Uno to measure the distance of any object using Ultrasonic Sensor.7Create a circuit using Arduino and sensors. Perform experiment using Arduino Uno to Learn Working of Servo Motor8Creating a webpage and display the values available through Arduino.9Demonstration of Setup & Working of Raspberry Pi. (Students have to prepare the Report for the same.).10OPEN Ended problem: Students are required to submit an IOT based project using the Microcontroller or a Raspberry Pi and connecting various sensors and		h) RFID Sensor.	
2       Demonstrate NodeMCU and its working         3       Getting Started with (ESP8266 Wi-Fi SoC         4       Hands-on with on-board peripherals of ESP8266         5       Demonstrate Arduino and its pins.         6       Perform Experiment using Arduino Uno to measure the distance of any object using Ultrasonic Sensor.         7       Create a circuit using Arduino and sensors. Perform experiment using Arduino Uno to Learn Working of Servo Motor         8       Creating a webpage and display the values available through Arduino.         9       Demonstration of Setup & Working of Raspberry Pi. (Students have to prepare the Report for the same.).         10       OPEN Ended problem: Students are required to submit an IOT based project using the Microcontroller or a Raspberry Pi and connecting various sensors and		i) Bluetooth Module.	
<ul> <li>Getting Started with (ESP8266 Wi-Fi SoC</li> <li>Hands-on with on-board peripherals of ESP8266</li> <li>Demonstrate Arduino and its pins.</li> <li>Perform Experiment using Arduino Uno to measure the distance of any object using Ultrasonic Sensor.</li> <li>Create a circuit using Arduino and sensors. Perform experiment using Arduino Uno to Learn Working of Servo Motor</li> <li>Creating a webpage and display the values available through Arduino.</li> <li>Demonstration of Setup &amp; Working of Raspberry Pi. (Students have to prepare the Report for the same.).</li> <li>OPEN Ended problem: Students are required to submit an IOT based project using the Microcontroller or a Raspberry Pi and connecting various sensors and</li> </ul>		j) Wi-Fi Module.	
<ul> <li>Hands-on with on-board peripherals of ESP8266</li> <li>Demonstrate Arduino and its pins.</li> <li>Perform Experiment using Arduino Uno to measure the distance of any object using Ultrasonic Sensor.</li> <li>Create a circuit using Arduino and sensors. Perform experiment using Arduino Uno to Learn Working of Servo Motor</li> <li>Creating a webpage and display the values available through Arduino.</li> <li>Demonstration of Setup &amp; Working of Raspberry Pi. (Students have to prepare the Report for the same.).</li> <li>OPEN Ended problem: Students are required to submit an IOT based project using the Microcontroller or a Raspberry Pi and connecting various sensors and</li> </ul>	2	Demonstrate NodeMCU and its working	
<ul> <li>5 Demonstrate Arduino and its pins.</li> <li>6 Perform Experiment using Arduino Uno to measure the distance of any object using Ultrasonic Sensor.</li> <li>7 Create a circuit using Arduino and sensors. Perform experiment using Arduino Uno to Learn Working of Servo Motor</li> <li>8 Creating a webpage and display the values available through Arduino.</li> <li>9 Demonstration of Setup &amp; Working of Raspberry Pi. (Students have to prepare the Report for the same.).</li> <li>10 OPEN Ended problem: Students are required to submit an IOT based project using the Microcontroller or a Raspberry Pi and connecting various sensors and</li> </ul>	3	Getting Started with (ESP8266 Wi-Fi SoC	
6Perform Experiment using Arduino Uno to measure the distance of any object using Ultrasonic Sensor.7Create a circuit using Arduino and sensors. Perform experiment using Arduino Uno to Learn Working of Servo Motor8Creating a webpage and display the values available through Arduino.9Demonstration of Setup & Working of Raspberry Pi. (Students have to prepare the Report for the same.).10OPEN Ended problem: Students are required to submit an IOT based project using the Microcontroller or a Raspberry Pi and connecting various sensors and	4	Hands-on with on-board peripherals of ESP8266	
0using Ultrasonic Sensor.7Create a circuit using Arduino and sensors. Perform experiment using Arduino Uno to Learn Working of Servo Motor8Creating a webpage and display the values available through Arduino.9Demonstration of Setup & Working of Raspberry Pi. (Students have to prepare the Report for the same.).10OPEN Ended problem: Students are required to submit an IOT based project using the Microcontroller or a Raspberry Pi and connecting various sensors and	5	Demonstrate Arduino and its pins.	
0using Ultrasonic Sensor.7Create a circuit using Arduino and sensors. Perform experiment using Arduino Uno to Learn Working of Servo Motor8Creating a webpage and display the values available through Arduino.9Demonstration of Setup & Working of Raspberry Pi. (Students have to prepare the Report for the same.).10OPEN Ended problem: Students are required to submit an IOT based project using the Microcontroller or a Raspberry Pi and connecting various sensors and	6	Perform Experiment using Arduino Uno to measure the distance of any object	
7       Uno to Learn Working of Servo Motor         8       Creating a webpage and display the values available through Arduino.         9       Demonstration of Setup & Working of Raspberry Pi. (Students have to prepare the Report for the same.).         0       OPEN Ended problem: Students are required to submit an IOT based project using the Microcontroller or a Raspberry Pi and connecting various sensors and	0	using Ultrasonic Sensor.	
10       Uno to Learn Working of Servo Motor         8       Creating a webpage and display the values available through Arduino.         9       Demonstration of Setup & Working of Raspberry Pi. (Students have to prepare the Report for the same.).         10       OPEN Ended problem: Students are required to submit an IOT based project using the Microcontroller or a Raspberry Pi and connecting various sensors and	7	Create a circuit using Arduino and sensors. Perform experiment using Arduino	
9       Demonstration of Setup & Working of Raspberry Pi. (Students have to prepare the Report for the same.).         10       OPEN Ended problem: Students are required to submit an IOT based project using the Microcontroller or a Raspberry Pi and connecting various sensors and	/	Uno to Learn Working of Servo Motor	
9       the Report for the same.).         OPEN Ended problem: Students are required to submit an IOT based project         10       using the Microcontroller or a Raspberry Pi and connecting various sensors and	8	Creating a webpage and display the values available through Arduino.	
10       the Report for the same.).         OPEN Ended problem: Students are required to submit an IOT based project         using the Microcontroller or a Raspberry Pi and connecting various sensors and	0	Demonstration of Setup & Working of Raspberry Pi. (Students have to prepare	
using the Microcontroller or a Raspberry Pi and connecting various sensors and	9	the Report for the same.).	
		OPEN Ended problem: Students are required to submit an IOT based project	
10 actuators.	10	using the Microcontroller or a Raspberry Pi and connecting various sensors and	
		actuators.	
The data for the same should be displayed via a webpage or a web app.		The data for the same should be displayed via a webpage or a web app.	

**Supplementary Resources:** Students will use supplementary resources such as online videos, NPTEL videos, e-courses, Virtual Laboratory

#### **References: Web**

- a) https://www.udemy.com/course/internet-of-things-iot-for-beginners-getting-started/
- b) https://playground.arduino.cc/Projects/Ideas/
- c) https://runtimeprojects.com/
- d) https://www.megunolink.com/articles/arduino-garage-door-opener/
- e) https://www.willward1.com/arduino-wifi-tutorial/
- f) https://www.makeuseof.com/tag/pi-overdose-heres-5-raspberry-pi-alternatives/
- g) https://www.electronicshub.org/arduino-project-ideas/
- h) http://homeautomationserver.com/
- i) http://toptechboy.com/arduino-lessons/
- j) https://www.eprolabs.com/

#### YouTube

- $a) \ https://www.youtube.com/watch?v=dC2GdEWHRxQ&list=PLy6JR9IR8VKOZBpDcETs$
- b) https://www.youtube.com/watch?v=kLd_JyvKV4Y
- c) https://www.youtube.com/watch?v=TkA2LJctU1c

Course Code:	Course Name: Open Elective-V		L	Τ	P	С		
EI-OE-402	EI-OE-402 (i) Artificial Intelligence				0	3		
Year and	4 th Year	<b>Contact hours</b>	per	wee	ek: (	3Hrs)		
Semester	Semester VIII th Semester Exam: (3							
Pre-requisite of	The course assume prior knowledge	Evaluation						
course	of basic programming, management skills.	CIE: 40			SE	E: 60		
<b>Course Objective</b>	Course Objectives:							



- 1. To explore the basics of Artificial Intelligence.
- 2. To introduce the concepts of a Rational Intelligent Agent and that can be designed to solve problems.
- 3. To gain knowledge on blind and heuristic search in AI.
- 4. To create an understanding of the basic issues of knowledge representation and Logic.
- 5. To be able to design expert systems with intelligence.

**CO1** Recognize the role of AI to solve real world problems

**CO2** Explain and implement representation of knowledge, problem solving methods in AI.

- **CO3** Know how to build simple knowledge-based systems.
- **CO4** Solve complex engineering and real-world problems using AI.

Module			COs		
No	CONTENTS OF MODULE	Hrs	COS		
1	<b>Introduction:</b> History, the turning test, overview of AI applications, problem & problem spaces, problems characteristics.				
2	<ul> <li>Knowledge Representation Logic: Proportional &amp; first order prediction logic, inference rules, resolution limitation of logic.</li> <li>Production system: Definition &amp; history, examples of search in production system, advantages.</li> </ul>	9	CO1, CO2, CO3		
3	<ul> <li>Search: Informal and informal, algorithms of depth 1st, breadth 1st, hill climbing, best 1st search;</li> <li>Game playing: minimax search, alpha and beta pruning, forward and backward reasoning.</li> </ul>	9	CO2, CO3, CO4		
4	<b>Expert system:</b> Introduction & examples, architecture (rule based system), development, knowledge engineering process, limitations.	7	CO3, CO4		

#### **TEXT BOOKS**

- 1. A.I by Elaine Tich, Kevin Knoght, Shiv Sankar B Nair, 3rd Edition, McGraw Hill Education
- 2. Artificial Intelligence: A Modern approach by Stuart J Russel, Peter Norvig, 3rd edition, Pearson
- 3. Introduction to Artificial Intelligence & Expert systems by Dass W. Patterson, PHI Publications.
- 4. PROLOG Programming for Artificial Intelligence, Ivan Bratko, 4th Edition, Addison-Wesley Educational Publishers Inc

#### **REFERENCE BOOKS**

1 A.I: an engineering approach by Robert J. Schlkoff, McGraw Hill.

**Note for Examiner**(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

#### Note for Students:

**1.** Section – A is compulsory and attempt/answer all the four questions carrying 12 marks in total.



2. Attempt/answer two questions each out of the Section – B and Section – C. All questions will carry 12 marks.

Cours	e Code:	<b>Course Name: Open Elective-V</b>		L	Т	P	С
EI-OE	-402	(ii) Robotics					3
Year a	nd	4 th Year	Contact hours per w	eek:	(3Hrs	)	
Semes	Semester VIII th Semester Exam: (3 Hrs)						
Pre-re	Pre-requisite General Mathematics, Computer Evaluation						
of cou	rse	Graphics	CIE: 40		SEE:	60	
Course	e Objecti	ves:	· · · · · ·				
1. To	develop t	he student's knowledge in various 1	obot structures and the	eir wo	rkspac	e.	
	develop s tions.	tudent's skills in performing spatia	l transformations assoc	iated	with ri	gid bo	ody
3. To	develop s	tudent's skills in perform kinemation	es analysis of robot sys	tems.			
4. To	provide t	he student with knowledge of the si	ngularity issues associa	ated v	vith the	e oper	ation
of	robotic sy	stems.					
5. To	provide t	he student with some knowledge an	d analysis skills associ	ated v	with tra	njector	y
	nning.						
6. To	provide t	he student with some knowledge an	d skills associated with	n robo	ot contr	ol	
Cours		es: On completion of the course, st					
CO1		he structure of a typical robotic system form robot kinematics.	tem, understand its link	and .	joint pa	arame	ters,
CO2		the geometric parameters of a robot	by applying the know	ledge	of rob	ot	
		cs and generalized differential mod		0			
CO3		planar and spatial parallel robots in		and ir	verse		
	kinematics, and evaluate its singularity, condition number and maneuverability.						
CO4	Identify the dynamic parameters of a robot by applying the knowledge of general form of						m of
	•	equation of motion.	· · · · ·	-	-		
CO5	Identify	the independent joint control and to	rque				
<b>CO6</b>	Design a	robotic manipulator and evaluate it	ts primary and seconda	ry wo	rkspac	e.	
	Evaluate	the performance of a robot.					

Module	COURSE SYLLABUS	Hrs	COs
No	CONTENTS OF MODULE	1115	COS
1	<ul> <li>Introduction to Robotics, terminology and definitions, Classification: Cylindrical, Spherical, Revolute, Rectangular; Work volume, Robot drive systems, Precision of movement – Spatial resolution, Accuracy, Repeatability.</li> <li>End effectors – Tools and grippers Components of Robotic Systems: Actuators, Sensors, Controllers, and Manipulators.</li> </ul>	7	CO1, CO2, CO3
2	<b>Position and Orientation</b> : Description & frames, Rotation, Homogeneous transform, Translations, Transformation matrix. Robot Arm Kinematics: Introduction to Robot Arm Kinematics, Homogeneous Coordinate transformations, Direct & Inverse Kinematics, Composite Homogeneous transformation matrix.	7	CO2, CO3



3	Link, joint and parameters:DenavitHarten Berg Notation, D-H Matrix, Kinematic equations. Exercises on Direct & Inverse Kinematics up to six degree of freedom Robots.		CO2, CO3, CO5
4	<b>Manipulator Dynamics</b> : Euler-Lagrange Equation, KE and PE Expressions, Equations of motion, Newton-Euler transformation, some examples; Independent Joint control: Actuator Dynamics, set point tracking, Trajectory Interpolation	7	CO3, CO4

#### **Text Book:**

- 1. **Robotics control sensing Vision and Intelligence-** K.S.Fu, R.C.Gonzalez, C.S.G. Lee, McGraw Hill, 1987.
- 2. Robot Technology Fundamentals James G.Keramas, Cengage learning
- 3. Robot and Controls By Mittal and Nagarath, Tata McGraw-Hill, 2003
- 4. Introduction to Robotics: Mechanics and control By J. J. Craig, AddisionWeslay Pub. Co.
- 5. Robot Dynamics and Control, By W. Sponge & M. Vidyasagar, John Wiley and Sons, New York, 1989.

#### **Reference Books:**

- 1. Bruno Siciliano and OussamaKhatib, Handbook of Robotics, Springer, 2016.
- 2. S. K. Saha, Introduction to Robotics, McGraw Hill Education, 2008.
- 3. P. Marlett, Parallel Robots, Springer, 2006.
- 4. Harry Asada &Slottine "Robot Analysis& Control", Wiley Publications, 2014

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

#### Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code:	Course Name: Open Elective-V		L T P C			
EI-OE-402	(iii) High Voltage Engineering		2 1 - 3			
Year and	4 th year	Contact hours per w	eek: (3Hrs)			
Semester	8 th Semester	Exam: (3hrs.)				
Pre-requisite of	Power System Engineering, Basic	<b>Evaluation</b>				
course	Science Engineering	<b>CIE: 40 SEE:</b>				
<b>Course Objective</b>	es:					
1. To introduce t	1. To introduce the concepts of high voltage engineering and methods of generation.					
2. To study with different high voltage measurements and required necessary instruments.						
3. To study the b	asics theories of lightening phenomer	non, voltage surges and	their			



cha	racteristics.
4. To :	introduce the protection methods and measurement methods for lightening and voltage
surg	ges.
Course	e Outcomes: On completion of the course, student would be able to:
CO1	To understand the concepts of high voltage engineering and methods of generation.
CO2	To familiarize with different high voltage measurements and required necessary
	instruments.
CO3	To understand the basics theories of lightening phenomenon, voltage surges and their
	characteristics.
<b>CO4</b>	To learn the protection methods of against lightening and surges.
CO5	To learn about the measuring instruments of lightening surges and its measurement
	methods.

Modu le No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	<b>CONDUCTION AND BREAKDOWN:</b> Recent trends in high voltage transmission Conduction & breakdown in gases, liquids and solid dielectrics, insulator breakdown, insulation characteristics of long air gaps.	7	CO1
2	<b>METHODS OF HIGN VOLTAGE GENERATION:</b> Methods of generation of power frequency high voltage: cascaded transformers and resonance transformers Generation of high voltage DC, voltage multiplier circuits. Electrostatic Generation:Van de Graff machine and its voltage stabilization. Impulse voltage Generation: Basic impulse circuit, single stage impulse generator, multistage impulse generator (Marx circuit).	7	CO1, CO2
3	<b>PROTECTION OF SYSTEM AGAINST SURGES:</b> Ground wires, protective angle,tower footing resistance,surge diverters, Gap type and gapless lightning arresters, Insulation coordination, basic insulation levels, Voltage-time curve, impulse ratio.	7	CO3, CO4
4	<b>LIGHTENING:</b> Lightening phenomenon, lightning stroke mechanism, principle of lightning protection, tower foot resistance, insulator flash over and withstand voltage, lightning arresters and their characteristics, testing, generation of direct voltage, measurement of high voltage, general layout of H.V. Laboratory.	7	CO4, CO5

#### **Suggested Text / Reference Books:**

- 1. R.D. Begamudre, "E.H.V. AC Transmission", Wiley Eastern Ltd.
- 2. V. Kamaraju and M.S. Naidu, "H.V. Engg", T.M.H., N.Delhi.
- 3. M.S. Naidu and V. Kamaraju, "High Voltage Engineering", TMH Publication
- 4. C.L Wadhwa, "High Voltage Engineering", Pub.: New Age International Ltd.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.



**3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

#### Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course Code:	<b>Course Name: Program Elective-V</b>		L T P C		
EI-PE-404	(i) Utilization of Electrical Energy		3 1 0 4		
Year and	4 th Year	Contact hours p	er week: (4Hrs)		
Semester	(VIII th Semester)	Exam: (3 Hrs)			
	Brief knowledge of in the following	Eval	uation		
Pre-requisite of	topics: Electrical Machines, Electrical				
course	Power System and Generation, Energy	CIE: 40	SEE: 60		
	efficient System.				
Course Objectiv	/es:				
1. To introdu	ce the concept of Illumination.				
2. To introdu	ce the concept of Electric Heating and We	lding.			
3. To study t	ne concept of Electrolytic Process.				
4. To study t	ne concept of Electric Traction.				
<b>Course Outcom</b>	es: On completion of the course, student w	vould be able to:			
CO1 To Fam	To Familiarize with the concept of Illumination.				
CO2 To unde	To understand the concept of Electric Heating and Welding.				
CO3 To Fam	To Familiarize with the concept of Electrolytic process.				
CO4 To unde	rstand the concept of economics of Electri	c Traction.			

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	<b>ILLUMINATION:</b> Basic laws of illumination, light sources and their characteristics, sources of light, design of lighting schemes, incandescent lamp, sodium lamp, mercury lamp and fluorescent lamp, comparison of various lamps, LED,CFL Lamp.	7	I
2	<b>ELECTRIC HEATING &amp; WELDING:</b> Principle and application of resistance, induction and dielectric heating.,Resistance welding, arc welding, welding generator and welding transformer, properties of arcing electrode.	8	Π
3	<b>ELECTROLYTIC PROCESS:</b> Principles and applications of electrolysis. Faraday's law of electrolysis, electroplating, charging and discharging. Capacity and efficiency of battery, defects in battery, maintenance of battery.	11	III
4	<b>ELECTRIC TRACTION:</b> Systems of electric traction, traction motors, traction motor control, multiunit control, braking of electric motors, thyristor control of electric traction., Types of services, speed	10	IV

Seals Streftenne
502

time and speed distance curves, average and schedule speed, Estimation of power and energy requirements: specific energy	
consumption. Mechanics of train movement coefficient of adhesion, Adhesive weight, effective weight.	

#### **REFERENCE BOOKS:**

- 1. Utilization of Electrical Energy: Open Shaw Taylor; ELBS
- 2. Art and Science of Utilization of Electrical Energy: H. Pratab ;DhanpatRai& Sons, Delhi.
- 3. Generation, Distribution and Utilization of Electrical Power: C.L. Wadhwa; Khanna Pub.
- 4. H. Pratab,"Electric Traction", Dhanpat Rai & Sons.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

#### Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course	Code:	Code: Course Name: Program Elective- V			Т	P	С
EI-PE-4		(ii) Instrumentation and System Design			1	0	4
Year ar	nd	4 th Year	Contact hours per v	veek	: (4	Hrs)	)
Semeste	er	VIII th Semester	Exam: (3 hrs.)				
Pre-req	uisite of	EI-ES-108 Basic Electronics	Evalu	atio	1		
course		Engineering	<b>CIE: 40</b>		CI	E: (	60
Course	Objective	es:					
5. To p	provide a c	coherent knowledge about concepts o	f instrument system de	sign			
6. to d	evelop kno	owledge about system characteristics	and performance attril	outes			
7. To e	elaborate r	elevant issues of physical, architectur	e design at printed cire	cuits	boa	rd le	evel of
com	plex elect	ronic systems					
8. To ı	understand	the fundamentals circuit layout					
9. To c	levelop co	oncept of power distributions systems					
Course	Outcome	s: On completion of the course, stude	ent would be able to:				
CO1	Apply ba	sic principles and guidelines of physi	cal architecture design	for	com	plex	ζ.
	electronic	c systems					
CO2	Analyze	the various system attributes and their	r impact on system per	forn	nanc	e	
CO3	Analyze the influence of interconnects at different levels on electronic system						
	performance						
CO4	Develop	system model on the basis of learned	concepts				



Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	<ul> <li>Introduction - overview of system engineering, system perspective, documentation, concept development, requirements, design development, rapid prototyping and field testing, validation, verification and integration, maintenance and life-cycle costs, failure, iteration and judgment.</li> <li>Packaging and Enclosures: Packaging influence, packaging design, wiring, temperature, vibration and shock, component packaging, mechanical issues</li> </ul>	8	CO1
2	<b>Grounding and Shielding:</b> Safety, Noise, principle of energy coupling, Grounding, filtering, shielding, electrostatic discharge and it protection, general rules for design; Case study-EMC design of an oscilloscope.	8	CO1, CO2
3	Fundamentals of circuit design, high speed design, low power design, noise and error limitation, standard data buses and networks <b>Circuit Design:</b> , reset and power failure detection, input/output interfaces.	8	CO2, CO3
4	<b>Circuit layout and Power:</b> Circuit boards, component placement, routing of signals and traces, grounds, returns and shields, connectors and cables, design for manufacture, testing and maintenance; Power: Power requirements, sources of power, power conversion, definitions and specifications, power distribution and conditioning, electromagnetic interfaces.	8	CO1, CO4

#### **Recommended Books:**

- 1. Noise reduction techniques in electronic systems, 2nd ed. New York: Wiley By H.W.Ott
- 2. Electronic Instrument Design, Oxford Univ. Press, By Kim R. Fowler
- 3. Intuitive Operational Amplifiers, MeGraw-Hill, By T.M.Frederiksen
- 4. Printed Circuit Boards, CEDT Series TMH By Walter C. Bosshart
- Note for Examiner(s): Question paper will comprise three sections,
- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

#### Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Program Name: B. TechElectrical and Instrumentation Engineering							
<b>Course Code:</b>	Course Name: Program Elective- V			Т	P	С	
EI-PE-404	(iii) Fuzzy Logic Control		3	1	-	4	
Year and 4 th year Contact hours per we				(4H	Irs )		
Semester	8 th Semester	Exam: (3hrs.)					



Pre-req	uisite of	Basic Engineering Mathematics,	Evalu	ation				
course		Control system	CIE: 40 SEE: 60					
Course	Course Objectives:							
To stud	y and acqu	ire the basic knowledge of fuzzy logi	с.					
To stuc	ly the basi	c architecture of FKBC and its design	parameters					
To stud	y nonlinea	r & adaptive fuzzy controllers.						
To iden	tify, form	alate and solve the neuro fuzzy logic b	based problems.					
Course	Outcome	s: On completion of the course, stude	nt would be able to:					
CO1	To under	stand working of basic fuzzy system a	and its architecture.					
CO2	Able to	fuzzy techniques in different field,	which involve percep	tion, reasoning and				
	learning.							
CO3	CO3 Analyze and design a real world problem for implementation and understand the							
	dynamic behavior of a system.							
<b>CO4</b>	Assess th	e results obtained by FKBC and Neur	o fuzzy systems.					

Modu le No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	<b>FUZZY CONTROL &amp; ITS MATHEMATICS :</b> Fuzzy control from an industrial perspective, knowledge representation in KBC's,Vagueness, fuzzy logic versus probability theory, fuzzy sets; their properties & operations on fuzzy sets, fuzzy relations & operations on fuzzy relations, the Extension Principle, Fuzzy propositions, The Compositional Rule of Inference, Different implications, Representing a set of rules.	8	CO1
2	<b>FKBC DESIGN PARAMETERS:</b> The FKBC architecture, choice of variables & content of rules, Derivation of rules, choice of membership functions, choice of scaling factors, choice of fuzzification procedure, choice of defuzzification procedure, comparison and evaluation of defuzzification methods.	8	CO1, CO2
3	<b>NONLINEAR &amp; ADAPTIVE FUZZY CONTROL:</b> The Control Problem, The FKBC as a Non-Linear Transfer Element, Types of FKBC such as PID-like FKBC, Sliding Mode FKBC, Sugeno FKBC, Adaptation mechanism for FKBC Design & Performance Evaluation, Approaches to Design such as membership function tuning using gradient descent, membership function tuning using performance criteria, the self-organizing controller, model based controller.	8	CO2, CO3, CO4
4	<b>STABILITY OF FKBC &amp; INTRODUCTION TO NEURO FUZZY</b> <b>CONTROLLERS:</b> The State space approach, Stability and robustness indices , input-output stability, circle criterion, Application of the Circle Criterion to Design, Conicity criterion, Neural networks based Fuzzy controllers & their applications.	8	CO3, CO4

#### **Suggested Text / Reference Books:**

- 1. D. Driankov, H.Hellendoorn and M.Reinfrank, "An Introduction to Fuzzy Control", Narosa Publications.
- 2. G.J. Klir and B Yuan, "Fuzzy sets and Fuzzy logic, theory and applications", Prentice Hall India Private Limited.
- 3. Abraham Kandel and Gideon Imngholz, "Fuzzy Control Systems", Narosa Publications.
- 4. Bart Kosko, "Neural Network & Fuzzy System", PHI



Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

#### Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Program Name: B. TechElectrical and Instrumentation Engineering							
Course	Code:	Course Name: Program Elective-	V	L	Т	P	С
EI-PE-4	04	(iv) Optical Instrumentation		3	1	-	4
Year an	d	4 th year	Contact hours per	week	: (4E	Irs )	
Semeste	r	8 th Semester	Exam: (3hrs.)				
Pre-requ	uisite of						
course	communication, workshop CIE: 40 SEE: 60					)	
Course	Course Objectives:						
1. To e	1. To expose the basic concepts of optical fibers and their industrial applications.						
2. To j	2. To provide adequate knowledge about Industrial application of optical fibres.						
3. To j	provide ba	asic concepts of lasers.					
4. To j	provide k	nowledge about Industrial application	of lasers				
5. To j	provide k	nowledge about Industrial application	of Holography and M	Iedica	al ap	plica	tions
of L	lasers.					_	
Course	Outcome	s: On completion of the course, stude	nt would be able to:				
CO1	Student w	vill be able to Understand the working	g of optical fiber as a s	sensor	ſ		
CO2	Ability to	Study and identify applications of L	ASER in instrumentat	ion &	me	asure	ement
		different industrial applications through					
		precise and accurate measurement in					
CO5	Apply LA	ASER and Optical fiber for various ph	ysical parameter mea	suren	nents	5.	
		g the optical sensor technology on var	· · · · ·				
I	-	<u> </u>	*				

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	<b>Optical fiber and Transmission characteristics:</b> Principles of light propagation through a fibre - Different types of fibres and their properties, fibre characteristics – manufacturing of optical fiber. Attenuation, material absorption losses, scattering losses, nonlinear and linear scattering, fiber bend loss, dispersion, intermodal dispersion, dispersion modified single mode fiber, dispersion flattened fibers, polarization, nonlinear phenomena.Connectors and splicers –Fibre termination.		CO1 CO5



2	<b>Optical sources and detectors, Optical fiber sensors</b> (10 hrs) Optical sources – Optical detectors.Optical emission from semiconductor, semiconductor LASER, non-semiconductor LASER, LED as an optical source, optical detector principles, absorption, quantum efficiency, responsively, photo diodes, modulation. Introduction to fiber optics sensors, sensors based on intensity modulation, Fibre optic instrumentation system – Different types of modulators – Interferometric method of measurement of length – Moire fringes – Measurement of pressure, temperature, current, voltage, liquid level and strain application of optical fiber for displacement, strain, stress and pressure measurement. Active multimode FO sensors, micro- bend optical fiber sensors, current sensors, phase modulated, polarization modulated optical fiber sensors, fiber optic gyroscope.	10	CO1 CO2 CO5 CO6
3	<b>Industrial and Medical Applications of Lasers:</b> Introduction, application of laser in biomedical instrumentation, Medical applications of lasers, laser and tissue interactive – Laser instruments for surgery, removal of tumours of vocal cards, brain surgery, plastic surgery, gynaecology and oncology. Laser interferometry, performance parameters, laser telemeters, measurement of distance, LIDAR, Laser for measurement of distance, length, velocity, acceleration, current, voltage and Atmospheric effect – Material processing – Laser heating, welding, melting and trimming of material – Removal and vaporization. Holography – Basic principle - Methods – Holographic interferometry and application, Holography for non-destructive testing – Holographic components measurement of strain, stress, bending moments and vibrations using hologram.	12	CO3 CO4 CO5
4	<b>Optical amplification and integrated optics:</b> Optical amplifiers, integrated optics integrated optical devices: beam splitters, directional couplers, modulators, switches, optoelectronics integration and differentiation, analog arithmetic operations, digital optics.	6	CO1 CO2 CO5 CO6

#### **Text Books:**

- 1. R.P.Khare, Fiber Optics and Optoelectronics, Oxford university press, 2008.
- 2. J. Wilson and J.F.B. Hawkes, Introduction to Opto Electronics, Prentice Hall of India, 2001.
- 3. Jose Miguel Lopez, —Optical fiber sensing technology, John Wiley & Sons, 2002
- 4. AjoyGhatak, —Optics, Tata Mc- Graw Hill Publishing, 5thed., 2012

#### **Reference Book:**

- 1. Asu Ram Jha, Fiber Optic Technology Applications to commercial, Industrial, Military and Space
- 2. Optical systems, PHI learning Private limited, 2009.
- 3. M. Arumugam, Optical Fibre Communication and Sensors, Anuradha Agencies, 2002.
- 4. John F. Read, Industrial Applications of Lasers, Academic Press, 1978.
- 5. Joseph T Verdeyen, -LASER Electronics, Prentice Hall of India, 3rded., 2003
- John M. Senior, —Optical fiber Communications Principles and Practice, PHI publication, 2nded., 2008

#### Note for Examiner(s): Question paper will comprise three sections,

1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.



- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

#### Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section -B and Section -C. All questions will carry 12 marks.

Course Name: Program Elective-LTPCEI-PE-4\U(v) Remote Sensing31-4Year and Semestre4th yearContact hours per weits (3hrs.)-4Pre-requiste of courseOptics, EM theory, digital communication, image processing, DSP, MathematicsCIE: 40SEE: 0Course Ubjective:DSP, MathematicsSEE: 0-1. $\neg c provide adequate knowledge of remote sensing data applications3. \neg c provide basic concepts of sensors on board4. \neg c provide basic concepts of sensors on board4. \neg c provide basic concepts of sensors on board5. \neg c provide basic concepts of the course, stude the working of different sense to:5. \neg c provide basic concepts of the course, stude the working of different sense to:5. \neg c provide basic concepts of the course, stude the working of different sense to:6. \Box c c c c c c c c c c c c c c c c c c $	Program Name: B. TechElectrical and Instrumentation Engineering							
Year and Semester4th year 8th SemesterContact hours per week: (4Hrs ) Exam: (3hrs.)Pre-requisite of courseOptics, EM theory, digital communication, image processing, DSP, MathematicsContact hours per week: (4Hrs ) Exam: (3hrs.)CourseOptics, EM theory, digital communication, image processing, DSP, MathematicsEvaluationCourseObjectives:1.To expose the basic concepts of remote sensing and their application systems2.To provide adequate knowledge of remote sensing data applications.3.To provide basic concepts of sensors on board4.To provide knowledge about GIS5.To provide knowledge about Image processingCourseOutcomes: On completion of the course, student would be able to:CO1Student will be able to Understand the working of different sensors	<b>Course Code:</b>	Course Name: Program Elective-	V	L T P C				
Semester8th SemesterExam: (3hrs.)Pre-requisite of courseOptics, EM theory, digital communication, image processing, DSP, MathematicsCUE: 40CourseSEE: 60 $OSP, Mathematics$ SEE: 60 $OSP, See: 60$ See: 60	EI-PE-404			3 1 - 4				
Semester8th SemesterExam: (3hrs.)Pre-requisite of courseOptics, EM theory, digital communication, image processing, DSP, MathematicsCUE: 40CourseSEE: 60 $OSP, Mathematics$ SEE: 60 $OSP, See: 60$ See: 60	Year and	4 th year	Contact hours per v	week: (4Hrs)				
coursecommunication, image processing, DSP, MathematicsCIE: 40SEE: 60SEE: 60Course Objectives:1.To expose the basic concepts of remote sensing and their application systems2.To provide adequate knowledge of remote sensing data applications.3.To provide basic concepts of sensors on board4.To provide knowledge about GIS5.To provide knowledge about Image processingCourse Outcomes: On completion of the course, student would be able to:CO1Student will be able to Understand the working of different sensors	Semester	<b>8th Semester Exam:</b> (3hrs.)						
DSP, Mathematics       DSP, Mathematics         Ourse Objectives:         1. To expose the basic concepts of remote sensing and their application systems         2. To provide adequate knowledge of remote sensing data applications.         3. To provide basic concepts of sensors on board         4. To provide knowledge about GIS         5. To provide knowledge about Image processing         Course Outcomes: On completion of the course, student would be able to:         CO1	Pre-requisite of	isite of Optics, EM theory, digital Evaluation						
Course Objectives:         1. To expose the basic concepts of remote sensing and their application systems         2. To provide adequate knowledge of remote sensing data applications.         3. To provide basic concepts of sensors on board         4. To provide knowledge about GIS         5. To provide knowledge about Image processing         Course Outcomes: On completion of the course, student would be able to:         CO1         Student will be able to Understand the working of different sensors	course							
<ol> <li>To expose the basic concepts of remote sensing and their application systems</li> <li>To provide adequate knowledge of remote sensing data applications.</li> <li>To provide basic concepts of sensors on board</li> <li>To provide knowledge about GIS</li> <li>To provide knowledge about Image processing</li> <li>Course Outcomes: On completion of the course, student would be able to:</li> <li>CO1 Student will be able to Understand the working of different sensors</li> </ol>		DSP, Mathematics						
<ol> <li>To provide adequate knowledge of remote sensing data applications.</li> <li>To provide basic concepts of sensors on board</li> <li>To provide knowledge about GIS</li> <li>To provide knowledge about Image processing</li> <li>Course Outcomes: On completion of the course, student would be able to:</li> <li>CO1 Student will be able to Understand the working of different sensors</li> </ol>	<b>Course Objectiv</b>	/es:						
<ul> <li>3. To provide basic concepts of sensors on board</li> <li>4. To provide knowledge about GIS</li> <li>5. To provide knowledge about Image processing</li> <li>Course Outcomes: On completion of the course, student would be able to:</li> <li>CO1 Student will be able to Understand the working of different sensors</li> </ul>	1. To expose	the basic concepts of remote sensing	and their application sy	ystems				
<ul> <li>4. To provide knowledge about GIS</li> <li>5. To provide knowledge about Image processing</li> <li>Course Outcomes: On completion of the course, student would be able to:</li> <li>CO1 Student will be able to Understand the working of different sensors</li> </ul>	2. To provide	adequate knowledge of remote sensin	g data applications.					
5. To provide knowledge about Image processing         Course Outcomes: On completion of the course, student would be able to:         CO1       Student will be able to Understand the working of different sensors	3. To provide	basic concepts of sensors on board						
Course Outcomes: On completion of the course, student would be able to:CO1Student will be able to Understand the working of different sensors	4. To provide	e knowledge about GIS						
CO1 Student will be able to Understand the working of different sensors	5. To provide	knowledge about Image processing						
	<b>Course Outcom</b>	es: On completion of the course, stude	ent would be able to:					
	CO1 Student	will be able to Understand the workin	g of different sensors					
<b>CO2</b> Ability to Study and identify applications of satellite derived data	CO2 Ability	to Study and identify applications of s	atellite derived data					
CO3 Perceive different GIS applications through sustainable development.	CO3 Perceiv	e different GIS applications through su	istainable developmen	t.				
<b>CO4</b> To make precise and accurate measurement in optimum resolution.	CO4 To mak	e precise and accurate measurement in	optimum resolution.					
CO5 Apply remote sensing data for various physical parameter measurements.	CO5 Apply 1	emote sensing data for various physica	al parameter measurem	ients.				
<b>CO6</b> Analyzing the spectral sensor technology on various parameters of measurements.	CO6 Analyz	ing the spectral sensor technology on v	various parameters of n	neasurements.				

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Concepts and Foundations of Remote sensing - Introduction: Energy sources and radiation principles; radiation laws; energy interactions in the atmosphere; energy interactions with earth surface features; data acquisition and interpretation; global positioning system; ideal remote sensing system; characteristics of real remote sensing system; successful applications of remote sensing systems; geographic information systems - introduction.	9	CO2 CO3 CO6
2	Sensors and Instruments: Introduction, Photographic sensors, active and passive sensors, Visible and near infrared sensors; thermal infrared sensors; microwave sensors; sonic sensors; IR spectrometer Radiometers, Scanners, Sensors and Platforms, Resolution : spatial and	9	CO1 CO4 CO5

	temporal, geometric, angular. Satellite systems: Introduction, Land observation satellites, satellite remote sensing, satellite orbits, Landsat systems, land observation satellites, current satellite systems (Landsat class, spot, IRS, broad scale coverage, AVHRR, SeaWiFS, IKONOS, Cartosatetc)		
3	Multispectral thermal and hyper spectral sensing: Introduction, along track, across track scanning; operating principles, examples of Multispectral scanners and data, thermal scanners, along + across track thermal scanning, radiometric calibration of thermal scanners, FLIR systems, hyperspectral sensing, Microwave and lidar sensing : radar development, SAR, geometric characteristics of side looking radar, transmission of radar signals, radar image interpretation, radar remote sensing from space, Seasat, radarsat, ERS, JERS, ALOS, etc. shuttle radar topography mission, Lidar – introduction, sensors, resolution, sensors, development and applications.	9	CO1 CO4 CO6
4	Digital image processing fundamentals: Image rectification enhancement, contrast manipulation, spatial and multi-image manipulation, image interpolation, edge detection, image restoration, image classification, , color imaging, data merging and GIS integration Applications of Remote sensing data: Applications to atmosphere, geosphere, hydrosphere, cryosphere, environmental applications. applications of data collection systems.	9	CO1 CO2 CO5 CO6

#### **Suggested Text / Reference Books:**

- 1. Remote sensing by FA Sabins, 1992
- Introduction to Remote sensing by AP Cracknell and LWB Hayes Taylor & Francis Publ. 1991
- 3. Remote sensing and image interpretation by Thomas M Lillisand, RW Kiffer, JW Chipaman, John Weily 2004
- 4. Digital Singal Image Processing by Tamal Bose, JohnWeily, 2004
- 5. Introduction to JB Campbell, Taylor & Francis Publ.2002

#### Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

#### Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

	<b>Course Code:</b>	Course Name: Industrial Process Control	L	Т	Р	С
--	---------------------	-----------------------------------------	---	---	---	---





EI-PC-4	406			3 1 0 4			
Year a	nd	4 th Year	Contact hours per w	veek: (4Hrs)			
Semest	er	(VIII th Semester)	Exam: (3 Hrs)				
Pre-req	quisite of	Control engineering	Evalua	ation			
course		Control engineering	CIE: 40	SEE: 60			
Course	Objective	es:					
1. Bas	ic concept	and Study of FC and FO type control	l valve and their applica	ations with			
exai	mples, Gai	n of valve and concept of control val	ve sizing for liquid, Ga	s, vapor and steam.			
(Spe	ecial refere	ence to Masoneillian & Fisher Equa	tion) and study control	valve cavitation			
	and flashing phenomenon						
2. Study control Valve noise, its calculation & reduction techniques and Design &							
	Construction of Globe Valve.						
		acteristic function of PLC, its Archit					
		Demonstrate various PLC programm					
	•	nd applications of Distributed proces	•	Ū.			
		otive standards and Protocols used in					
	•	pervisory control techniques & consi	derations(Algorithms),	Concept of field			
		r applications					
		s: On completion of the course, stude					
CO1		nderstand FC and FO type control va					
			n valve sizing for liquid, Gas, vapor and steam				
		ol valve cavitation and flashing phen					
CO2		nderstand control Valve noise, its ca		-			
		he knowledge and demonstrating the					
CO3	-	the knowledge of performance of	characteristic function	of PLC and its			
~ ~ ~ ~	Architect						
CO4		earn the various PLC programming la	inguages and Demonstr	atevarious PLC			
		ning skill for industrial applications.	0	1 1			
CO5		earn and analyze the various principle					
	-	ystem and Understanding of various	automotive standards a	and Protocols used			
		etwork and DCS	. 1. 11				
CO6	-	he knowledge of DCS supervisory co	ontrol techniques, the co	oncept of field			
007		their Industrial applications.	· · · · · · · · · · · · · · · · · · ·				
<b>CO7</b>		ement new and emerging technolog		, maintain reliable,			
	sare, and	cost effective solution for industry p	rodiems.				

Module	COURSE SYLLABUS	Hrs	COs
No	CONTENTS OF MODULE	1115	COS
1	CONTROL VALVE DESIGN: Control valve flow characteristics, valve & process characteristics, effect of distortion coefficient on linear and percentage valve, range-ability of control valve, control valve sizing for liquid, Gas, vapor and steam. (Special reference to Masoneillian & Fisher Equation) control valve cavitation and flashing: flow control cavitation index, vibration curve cavitation index, calculation of flash fraction. Control valve gain, sequencing of control valve and viscosity correction of control valve.	9	CO1, CO7
2	Valve noise calculation & reduction: Sources of valve noise, noise control: path treatment source treatment valve noise calculation.	9	CO2, CO7



	Design & construction of Globe Valve: Valve trends, trim design, trim flow characteristics, flow rangeability, standard trim configuration, valve plug stems, Body form of single & double seated Globe valve, construction		
3	Discrete State Process Control System:Programmable controller, characteristic function of PLC, Architecture and block diagram of PLC, ladder diagram, ladder diagram elements, Development & analysis of ladder diagram, logic diagram from ladder diagram, Functional description of PLC difference between PLC & computer. Communication networking: Universal communications networking, Peer to Peer communications, PLC installations. Programming the Programmable controller: Programming languages, ladder diagram instructions, special functions, data transfer and data manipulation operations, arithmetic operations, flow control operations, Boolean mnemonics. Functional blocks data transfer operations arithmetic and logic operations, Programmable controller's industrial applications.	9	CO3 CO4 CO5 CO7
4	Distributed process control system: Functional requirement of DPCS, DCS configurations, control console equipment: Software configuration: Operating system configuration, controller function configuration, algorithm, libraries, relay rec. mounted equipment, communication between the components. DCS data high ways, field buses, multiplexers & party line system, DCS Supervisory computer and configurations: Supervisory computer functions, supervisory control techniques & considerations(Algorithms), DCS & Supervisory computer display, DCS. DCS system integration with PLC & computer.	9	CO4 CO5 CO6 CO7

#### **Reference Books:**

- 1. Microprocessor in process control: C.D.Johnson
- 2. Instrumentation for process measurement and control by N.A. Anderson.
- 3. Principles and practice of automatic process control: Carlos by A Smith.
- 4. Instrument Engineers' handbook Process control by Bela G. Liptak.
- 5. Computer based Industrial Control by Krishan Kant

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

#### Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.



Togram Name: D. TeenElectrical and instrumentation Engineering								
Course		Course Name: Process Control I	ab	L	T	P		<u>C</u>
EI-PRP	PC-24			0	0	3	1	5
Year a	nd	4th Year	Contact hours per v	veek	: (3]	Hrs )		
Semest	er	VIII th Semester	Exam: (3hrs.)					
Pre-rec	Pre-requisite of Control Engineering Lab Evaluation							
- Control Engineering Lan					SE	<b>E: 4</b>	5	
Course Objectives:								
1. To	1. To Familiarization of PLC Ladder Programming Instructions Set							
2. To compile and execute programs in Ladder Programming								
3. To study the PC and PLC based control systems								
4. To study and write PLC program for the multiple process control systems								
5. To study and write PLC program for different strategies of control system such as feedback,								
fee	feed forward, cascade, ratio control etc.							
6. To	write PLC	programs to solve the different co	ontrol problems					
Course	<b>Outcomes:</b>	On completion of the course, stud	ent would be able to:					
CO1	Ability to	understand PC and PLC based con	trol system and their in	npler	nent	ation	1	
CO2	Ability to	develop PLC Ladder Programmir	g skill					
CO3	Analyse a	and implement PLC Ladder Program	nming for different type	e of p	proc	ess c	ont	rol
	system.							
CO4	Ability to	design and develop PLC program	for different strategies	of co	ontro	ol sys	ten	1
	such as fe	edback, feed forward, cascade, rat	o control for control of	proc	ess	varia	bles	S

D N D		<b>T</b> ( ) <b>T 1 1</b>
Program Name: B	. TechElectrical and	Instrumentation Engineering

Expt.	COURSE SYLLABUS	COs
No	CONTENTS OF MODULE	COS
1	Familiarization of PLC Ladder Programming Instructions Set	
2	To Study PC Based Traffic Light Control: Basic Traffic Light Sequence	
	PLC Based Traffic Light Control:	
	PLC Connection Details	
	Dual Traffic Light Sequence	
3	Traffic Counting	
	Green Time Alteration According to Traffic Flow	
	The Pedestrian Crossing	
	Complete System Control	
4	To Study Process Control – Ratio, feedback control flow & level	CO1,
	To Study Rotary Transfer Unit :-	CO2,
	Movement of Rotary Table	CO3,
	Initialization	CO4
5	Station Counting	
	• Dispensing	
	A Production Line System	
	Follow a Set Routine	
6	To Study Industrial Control Trainer	
7	To Study Multiprocess Control Trainer : Feedback, feedforward cascade and	
,	ration Control system for flow, temperature and level control	
8	To study of Pressure Control Unit: Proportional Control : Run a loop	
Ŭ	experiments using 'proportional only control' with the following sets of SP and	



	DC values Depart the eventual 'steady state' rate values in the table below	1
	PG values. Record the eventual 'steady state' rate values in the table below, once the initial oscillations have decayed.	
	Proportional and Integral Control	
	To design, Level Control PC :-	
	Proportional Control	
9	Proportional and Integral Control	
	- Toportional and Integral Control	
	To Study .Flow control PC & PLC :-	
	Proportional Control	
	Proportional and Integral Control	
10	Saturation and Integral Windup	
	Three Term or PID Control	
	Zeigler / Nichols Tuning	
	To Study The System Rig :-	
	Proportional Control	
	Proportional and Integral Control	
	Saturation and Integral Windup	
	Three Term or PID Control	
	Ziegler / Nichols Tuning	
	Temperature Control	
11	Batch Volume Control	
11	Fluid Level Control	
	Open Loop Control	
	Bode Plots	
	Flow Loop Model using Caldwell's Method	
	Flo Loop Model using Sundaresan's Method	
	Design of Controller for PCU Flow Loop	
	PRT Signal Conditioning	
	Flowmeter Signal Conditioning	
	Process Control Experiment :-	
	Proportional Control	
	Proportional and Integral Control	
	Saturation and Integral Windup	
	Three Term or PID Control	
12	Ziegler / Nichols Tuning	
	Temperature Control	
	Batch Volume Control	
	Fluid Level Control	
	Open Loop Control	
	Bode Plots	

Course Code:	Course Name: Open Elective-V I	Lab.	L	Τ	P	С
EI-PROE-26	(i) Artificial Intelligence Lab		0	0	3	1.5
Year and	4 th Year	Contact hours per week: (3Hrs )		)		



Semester		VIII th Semester	Exam: (3hrs.)				
Pre-requisit	te of	NIL	Eval	uation			
course		INIL	CIE: 30	SEE: 45			
Course Obj	ectives	:					
1. course i	introdu	ces the basic concepts and technique	es of Artificial Intellig	gence			
2. writing							
3. Identify problems, errors in Prolog Programming codes							
4. Introduce knowledge representation in Prolog and write code for drawing inferences							
5. To Identify problems that are amenable to solution by specific AI methods							
Course Outcomes: On completion of the course, student would be able to:							
CO1 To	To compile and execute AI programs in Prolog.						
CO2 To	To identify the syntax errors and semantic errors in Prolog Programming.						
CO3 To	o Repre	esent knowledge in Prolog and write	code for drawing inf	ferences			
CO4 Se	ensitive	e towards development of responsible	e Artificial Intelligen	ice			

Expt.	COURSE SYLLABUS	COs
No	CONTENTS OF MODULE	COS
1	Write a Prolog Program to test existence of data in the knowledge	
2	Design and develop a Prolog Program enquire relationships in a family tree	
	using Horn clauses.	-
3	Design and develop a Prolog Program to check efficacy of Prolog for	
5	computations such as roots of quadratic equation	
4	Design and develop a Prolog Program to test fail and cut predicate to identify	
4	who likes whom from the data(knowledge).	
5	Write a Prolog Program to test fail and cut predicate to identify who likes	CO1,
5	whom from the data(knowledge) based on similar interests using Lists.	CO2,
6	Develop, implement, and execute a Prolog Program to search a Number in a	CO3,
0	list using <i>linear searching</i> Technique.	CO4
7	Develop an algorithm, implement, and execute a Prolog Program to find all	
/	7 bevelop an algorithm, implement, and execute a Prolog Program to find an the paths between two nodes.	
8	Design and develop a Prolog Program to rotate a list N places to the left.	
9	Develop implement and execute a Prolog Program to search a record by	
9	name and phone number in Artificial Intelligence	
10	Write a Design and develop a Prolog Program to solve Towers of Hanoi	
10	puzzle	
	-	

#### **Text Books:**

- 1. Prolog Programming for Artificial Intelligence, by Ivan Bratko, 4Th Edition, Pearson.
- 2. Prolog Programming in Depth, by Michael A. Covington, Donald Nute, Andre Vellino, Prentice-Hall.
- 3. Programming in PROLOG, by William F. Clocksin, Christopher S. Mellish, Springer

#### Web resources:

- 1. https://www.cpp.edu/~jrfisher/www/prolog_tutorial/contents.html#2
- 2. https://www.javatpoint.com/prolog-programs
- 3. https://www.cs.ccu.edu.tw/~dan/prologProgs.html

-----

#### **Program Name: B. Tech.-Electrical and Instrumentation Engineering**

	<b>Course Code:</b>	Course Name: Open Elective-V Lab.	L	Τ	Р	С
--	---------------------	-----------------------------------	---	---	---	---

Program Name: B. Tech.-Electrical and Instrumentation Engineering (from 2020 - 21 for UTD Only) 9479



EI-PRC	DE-26	(ii) Robotics		0	0	3	1.5	
Year a	nd	4 th Year	Contact hours per week: (3Hrs)					
Semest	er	VIII th Semester	Exam: (3hrs.)					
Pre-rec	uisite of		Evalua	tion				
course			CIE: 30		SEF	E <b>: 4</b> 5	;	
Course Objectives:								
1. To i	1. To introduce different types of robotics and demonstrate them to identify different parts and							
com	components.							
2. To v								
3. Sim	Simulate the work space for different industrial process							
Course	Course Outcomes: On completion of the course, student would be able to							
CO1	1 Recognize different type of industrial robots and peripheral for simple industrial setup							
CO2	CO2 To programs different parts and peripheral for controlling industrial robots using							
	different ways.							
CO3	Use of an	y robotic simulation software to mod	el the different types of	robo	ots a	nd		
	calculate	work volume for different robots						
<b>CO4</b>								

Expt.	COURSE SYLLABUS	COs
No	CONTENTS OF MODULE	COS
1	Determination of maximum and minimum position of links.	
2	Verification of transformation (Position and orientation) with respect to gripper	
2	and world coordinate system	
3	Estimation of accuracy, repeatability and resolution.	
4	Robot programming and simulation for pick and place	CO1,
5	Robot programming and simulation for Colour identification	CO2,
6	Robot programming and simulation for Shape identification	CO3,
7	Robot programming and simulation for machining (cutting, welding)	CO4
8	Robot programming and simulation for writing practice	
9	Robot programming and simulation for any industrial process (Packaging	
9	Assembly)	
10	Robot programming and simulation for multi process.	

# Kurukshetra University, Kurukshetra

(Established by the State Legislature Act XII of 1956) ('A+' Grade, NAAC Accredited)

> ।। योगस्थः कुरु कर्माणि।। समबुद्धि व योग युक्त होकर कर्म करो

(Perform Actions while Steadfasting in the State of Yoga)



# **DEPARTMENT OF INSTRUMENTATION (DOI)**

LOCF/OBE/NBA CURRICULUM (2020 -2021)

Program Name: M. Tech. - Electrical and Instrumentation Engineering (For the Batches from 2020-2021in phased manner)



# (UTD Only)

# LOCF/OBE/NBA CURRICULUM (2020 -2021)

# **Program Name: M. Tech. - Electrical and Instrumentation Engineering**

# (For the Batches admittedfrom 2020-2021in phased manner)

# VISION

Be globally acknowledged as a distinguished centre of academic excellence.

# MISSION

To prepare a class of proficient scholars and professionals with ingrained human values and commitment to expand the frontiers of knowledge for the advancement of society.

# **DEPARTMENT VISION AND MISSION**

### VISION

• To become a model department as a Centre of quality education, research with innovation and recognition at National and International level for serving society.

### MISSION

- M1: To provide quality education to aspiring young minds for improving their skills, inculcating values, creating leadership qualities and enhance research with innovative methods.
- M2: To produce young engineers capable to be utilized in the areas of New Technological Design, Environment, ethics and sustainable technologies.
- M3: To develop Teaching-Learning methods which can produce socially committed good professional human being who can contribute effectively in Nation building and represent Country Internationally.

## Mapping of University Vision and Mission to Department Vision and Mission

Acclaimed as modal Centre of Learning and Research by

University Vision and Mission	Department Vision and Mission
High quality knowledge delivery through state of art	Yes
infrastructure and ethical values to the students	105
Students excellence will make them professionals and	Yes
innovators emerging as global leaders	1 es
Research and development will help in furtherance of	Vac
Faculty knowledge	Yes



# **Programme Educational Objectives (PEOs):**

The Department of Instrumentation in consultation with various stakeholders have formulated the Programme Educational Objectives (PEO's) that are broad statements that describe the career and professional accomplishments that the program is preparing its Post Graduate to achieve in few years, subsequent to receiving the degree. The PEO's of the M. Tech. programme in Electrical and Instrumentation Engineering are as follows:

- **PEO1:**The Post Graduate will become competent by applying their technical and managerial skills.
- **PEO2:**The Post Graduate will be able to adapt to any environment and succeed in higher positions in contemporary rapidly evolving technologies in Electrical and Instrumentation engineering field.
- **PEO3:**The Post Graduate will engage themselves in the life-long learning by pursuing higher education and participation in research and development activities to meet all challenges to transform them as responsible citizens of the nation

# **Program Specific Outcomes (PSO's):**

- **PSO1:**Clearly understand the fundamental concepts of Electrical and Instrumentation Engineering
- **PSO2:** Post Graduate will be able to formulate and solve real life problems in the area of Electrical and Instrumentation Engineering
- **PSO3:** Post Graduate will possess the skills to communicate effectively in both oral and written forms, demonstrating the practice of professional ethics, and responsive to societal and environmental needs.

PEO's	MISSION OF THE DEPARTMENT							
TEU S	M1	M2	M3					
PEO1	3	3	1					
PEO2	2	3	2					
PEO3	2	2	3					

# PEOs to Mission statement mapping

# **Program Outcomes (PO) with Post Graduate Attributes**

Programme Outcomes are attributes of the Post Graduate from the programme that are indicative of the Post Graduate' ability and competence to work as an engineering professional upon graduation. Program Outcomes are statements that describe what students are expected to know or do by the time of graduation, they must relate to knowledge and skills that the students acquire from the programme. The achievement of all outcomes indicates that the student is well prepared to achieve the program



educational objectives down the road. The Department of Instrumentation engineering has following twelve PO's. The course syllabi and the overall curriculum are designed to achieve these outcomes:

S. No.	Post Graduate Attributes	Program Outcomes (POs)					
PO1	Knowledge	Capable of demonstrating comprehensive disciplinary knowledge gained during course of study					
PO2	Research Aptitude	Capability to ask relevant/appropriate questions for identifying, formulating and analyzing the research problems and to draw conclusion from the analysis					
PO3	Communication Ability to communicate effectively on general and Technical topics with the engineering community and with society at large						
PO4	Problem Solving Capability of applying knowledge to solve Engineering and other problems						
PO5	Individual and Team Work	1					
PO6	Ability of critical thinking, analytical reasoning and research						
PO7	Modern Tool usage	Ability to use and learn techniques, skills and modern tools for scientific and engineering practices					
PO8	Engineering and Society	Ability to apply reasoning to assess the different issues related to society and the consequent responsibilities relevant to the professional Engineering practices					
PO9	Life-Long Learning	Aptitude to apply knowledge and skills that are necessary for participating in learning activities throughout life					
PO10	Ethics	Capability to identify and apply ethical issues related to one's work, avoid unethical behaviour such as fabrication of data, committing plagiarism and unbiased truthful actions in all aspects of work					
PO11	Project Management	Ability to demonstrate knowledge and understanding of the engineering principles and apply these to manage projects					



# Mapping of PEO's with PO's

S. No.	Program Educational Objectives	POI	P02	P03	P04	P05	P06	P07	P08	P09	P010	POII	PSOI	PSO2	PSO3
1	The Post Graduate will become competent by applying their technical and managerial skills.								$\checkmark$	$\checkmark$				$\checkmark$	
2	The Post Graduate will be able to adapt to any environment and succeed in higher positions in contemporary rapidly evolving technologies in Electrical and Instrumentation engineering field.	$\checkmark$	V	$\checkmark$	V	V	V	$\checkmark$							
3	The Post Graduate will engage themselves in the life-long learning by pursuing higher education and participation in research and development activities to meet all challenges to transform them as responsible citizens of the nation			V	V		V	V	V	V		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$

 $_{\text{Page}}9485$ 



# LOCF/OBE/NBA CURRICULUM (2020 -2021)

# **Program Name: M. Tech. - Electrical and Instrumentation Engineering**

# **Post Graduate Degree Program**

# General, Course structure & Theme & Semester-wise credit distribution

# A. Definition of Credit:

1 Hour Lecture (L) per week	1 credit
1 Hour Tutorial (T) per week	1 credit
1 Hour Practical (P) per week	0.5 credits
and/or	
2 Hours Practical(Lab)/week	1 credit

### **B. Total credits:**

Total credits for a student to be eligible to get Post Graduate degree in Engineering are 66.0 credits.

# C. Structure of Undergraduate Engineering program:

S. No.	Category		<b>Breakup of Credits</b>
			(Total)
1.	Professional Core Courses		52
2.	Program Elective Coursesrelevant to the branch		09
3.	Seminars		04
4.	Research Methodology & IPR		01
	r	Total	66

# D. Course code and definition:

Category of Course/	Definitions
Code	
L	Lecture
Р	Practical
С	Credit
CIE	Continuous Internal Evaluation
SEE	Semester End Examination
EI	Electrical and Instrumentation Engineering
RM	Research Methodology
PC	Professional Core Courses
PE	Professional Elective courses
PRPC/ PRPE/ PRS	Practical Professional Core/ Program Elective/Seminar
ADC	Mandatory Audit Courses



#### **Teaching Schedule** S. Category Course No. **Course Title** С Cont No Т Р L Hrs. **Professional Core Courses** PC EI-PC-103 **Biomedical Instrumentation** 3 3 0 0 3 1 2 PC **EI-PC-105** Advanced Electric Drive 3 3 0 3 0 Advance Process Control 3 3 3 PC **EI-PC-107** 3 0 0 Power Quality Monitoring and PC **EI-PC-104** 3 3 0 0 3 4 Conditioning PLC & DCS 5 3 3 0 3 PC **EI-PC-106** 0 3 3 3 0 6 PC **EI-PC-108** Embedded System Design 0 7 PC **EI-PC-110** Advanced Power System 3 3 0 0 3 3 PC EI-PC-201 3 3 0 8 Smart & Micro Sensor Design 0 3 9 Process Control Lab 0 0 3 PRPC **EI-PRPC-101** 1.5 Advanced Electric Drive Lab 3 3 PRPC **EI-PRPC-103** 1.5 0 0 10 PRPC Advanced Power System Lab. 3 3 11 EI-PRPC-102 1.5 0 0 PRPC **EI-PRPC-104** Embedded Systems Lab 3 3 12 1.5 0 0 Dissertation Phase-1 13 0 0 12 12 PRPC EI-PRPC-203 06 14 PRPC EI-PRPC-204 Dissertation 16 0 0 32 ---Total 52 24 56 48 **Program Elective Courses** 1 PE **EI-PE-101 Program Elective-I** 3 3 0 0 3 Control system Design (i) (ii) Process Equipment Design (iii) Industrial Environmental Engineering (iv) Power Plant Engineering (v) Energy Auditing and methodology (vi) Energy Efficient Machines PE **EI-PE-102 Program Elective-II** 3 3 2 0 0 3 Renewable & Non-Conventional (i) Energy (ii) Theory and Design of Neuro fuzzy controllers (iii) Digital Control System (iv) HVDC Transmission System

# E. Details of Structure and distribution of credits to various courses:



			(v) Energy Management					
			(vi) Process Modeling and Control					
	(vii) Advance Power Electronics							
3	PE	EI-PE-203	Program Elective-III	3	3	0	0	3
			(i) Digital Signal Processing					
			(ii) Sensors and Transducers					
			(iii) Reliability Engineering					
			(iv) Electrical Vehicle Engineering					
			(v) System Theory					
			(vi) Intelligent Instrumentations					
			(vii) Industrial Power Electronics					
			Total	09	09	0	0	09
1	RM	EI-RM-109	Research Methodology & IPR	1	2	0	0	2
			Seminars					
1	PRS	EI-PRS-105	Seminar-I	1	0	0	2	2
	PRS	EI-PRS-106	Seminar-II	1	0	0	2	2
	PRS	EI-PRS-201	Current Literature Report & Seminar	2	0	0	4	4
			Total	04	0	0	08	08



# **Department of Instrumentation**

# M. Tech Electrical and Instrumentation Engineering

Course No.	Course Title	С	Teaching Schedule			Alloti	nent of	Exam Duration	
Course no.			L	Р	Cont. Hrs.	CIE	SEE	Total	in Hrs.
EI-PE-101	Program Elective-I	3	3	0	3	40	60	100	3 Hrs
EI-PC-103	Biomedical Instrumentation		3	0	3	40	60	100	3 Hrs
EI-PC-105	Advanced Electric Drive		3	0	3	40	60	100	3 Hrs
EI-PC-107	Advance Process Control	3	3	0	3	40	60	100	3 Hrs
EI-RM-109	Research Methodology & IPR	2	2	0	2	20	30	50	3 Hrs
EI-PRPC-101	Process Control Lab	1.5	0	3	3	20	30	50	3 Hrs
EI-PRPC-103 Advanced Electric Drive Lab.		1.5	0	3	3	20	30	50	3 Hrs
EI-PRS-105	Seminar-I	1	0	2	2	50		50	
	Total	18	14	8	22	270	330	600	

# SCHEME OF EXAMINATIONS M. Tech. 1st YEAR (SEMESTER–I)(from 2020 – 2021in phased manner)

# M. Tech. 1stYEAR (SEMESTER-II)

Course No.	Course Title	С		Teacl Schee	0	Allot	ment of	marks	Exam Duration
Course no.	Course The	C	L	Р	Cont. Hrs.	CIE	SEE	Total	in Hrs.
EI-PE-102	Program Elective-II	3	3	0	3	40	60	100	3 Hrs
EI-PC-104	2-104 Power Quality Monitoring and Conditioning		3	0	3	40	60	100	3 Hrs
EI-PC-106	06 PLC & DCS		3	0	3	40	60	100	3 Hrs
EI-PC-108	8 Embedded System Design		3	0	3	40	60	100	3 Hrs
EI-PC-110	Advanced Power System	3	3	0	3	40	60	100	3 Hrs
EI-PRPC-102 Advanced Power System Lab.		1.5	0	3	3	20	30	50	3 Hrs
EI-PRPC-104 Embedded Systems Lab		1.5	0	3	3	20	30	50	3 Hrs
EI-PRS-106	Seminar-II	1	0	2	2	50		50	
	Total	19	15	8	23	290	360	650	

	<b>Program Elective-1</b>
(i)	Control system Design
(ii)	Process Equipment Design
(iii)	Industrial Environmental En

ve-1		Program Elective-II
	(i)	Renewable & Non-Conventional Energy
ign	(ii)	Theory and Design of Neuro fuzzy controllers
al Engineering	(iii)	Digital Control System



(iv)	Power Plant Engineering	(iv)	HVDC Transmission System
(v)	Energy Auditing and methodology	(v)	Energy Management
(vi)	Energy Efficient Machines	(vi)	Process Modeling and Control

### NOTE:

- i) A program may have one or two laboratory courses spread over 3 periods.
- ii) Sufficient number of electives to be offered subject to the condition that each elective should have at least five students.

Course No.	Course Title	С	Teaching Schedule			Allot	ment of	Exam Duration	
Course No.	Course Thie	C	L	Р	Cont. Hrs.	CIE	SEE	Total	in Hrs.
EI-PC-201	Smart & Micro Sensor Design	3	3	0	3	40	60	100	3 Hrs
EI-PE-203	Program Elective-III	3	3	0	3	40	60	100	3 Hrs
EI-PRS-201	Current Literature Report & Seminar	2	0	4	4	50	-	50	
EI-PRPC-203	Dissertation Phase-1	6	0	12	12	50		50	
	Total	14	6	16	22	180	120	300	

M. Tech. 2nd YEAR (SEMESTER-III)

Progra	Program Elective-III					
(i)	Digital Signal Processing					
(ii)	Sensors and Transducers					
(iii)	Reliability Engineering					
(iv)	Electrical Vehicle Engineering					
(v)	System Theory					
(vi)	Intelligent Instrumentations					
(vii)	Industrial Power Electronics					

**NOTE:** The Preparatory Work for Dissertation Phase-I shall be evaluated by a committee comprising the following {on the basis of one mid semester seminar and one end semester seminar presented and one end semester report submitted by the candidate.

- 1. Chairperson or faculty nominee proposed by Chairperson
- 2. Dissertation Supervisor (and co-supervisor).
- 3. Two senior most faculty members of the department



# M. Tech. 2nd YEAR (SEMESTER-IV)

Course No.	Course Title	С	Teaching Schedule	Allotment of marks			Exam
			Р	CIE	SEE	Total	Duration in Hrs.
EI-PRPC-204	Dissertation	16	32	100	200	300	Final Viva Voce Exam

**NOTE:** The Dissertation shall be evaluated by a committee comprising the following through presentation cum viva-voce examination.

- 1. Chairperson or faculty nominee proposed by Chairperson.
- 2. Dissertation Supervisor (and co-supervisor).
- 3. One external expert appointed by the department.

-----



# Program Name: M. Tech.-Electrical and Instrumentation Engineering

Course	Code:	Course Name: Program Elective-I	L T P C						
EI-PE-1	.01	CONTROL SYSTEM DE	ESIGN (i)	3 3					
Year an	d	1 st Yr.	Contact hours per we	eek: (3Hrs)					
Semeste	r	1 st Semester	Exam: (3 Hrs)						
Pre-req		Control System	Evalu	ation					
of cours	e	Control System	<b>CIE: 40</b>	SEE: 60					
Course	Objectiv	/es:							
1. Stud	y Design	Specifications of control system.							
		ncept of multi-criteria optimization, norms		lls, norms of SISO					
LTI	& MIMO	D LTI systems, state space methods for con	nputing norms.						
	•	loop convex design specifications, convex	· · ·						
	•	oncept of Reliability & closed loop sta	ability, regulation spec	cifications, differential					
		ecifications, robustness specifications.							
	• •	is and design of Compensators & control	ller using various techni	ques					
		ot locus & Bode plots							
		e variable analysis, controllability and observe	ervability, state feedbac	k for SISO					
		IIMO systems and their design							
		to design of non-linear system.							
		es: On completion of the course, student w							
CO1	•	to understand the concept of multi-criteria	-						
	signals,	norms of SISO LTI & MIMO LTI system	ns, state space methods	for computing					
	norms.								
CO2	-	to understand the concept of closed loop co	onvex design specificati	ons, convexity &					
	duality.								
CO3				& closed loop stability, regulation					
		ations, differential sensitivity specification							
CO4		to analysis and designof Compensators& c	•						
CO5	•	to understand concept of state feedback f	for SISO system and	I MIMO systems and					
	their de	sign.							

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	INTRODUCTION: Control System Architecture, Design Specifications Functional in-equally specifications, multi-criteria optimization, norms of scalar & vector signals, norms of SISO LTI & MIMO LTI systems, state space methods for computing norms, design specifications as sets, affine & convex sets and functions, closed loop convex design specifications, convexity & duality	8	CO1, CO2
2	DESIGN SPECIFICATIONS: Reliability & closed loop stability, I/O specifications, regulation specifications, actuator effort, combined effect of disturbances & commands, differential sensitivity specifications, robustness specifications via gain bounds.	9	CO1, CO3
3	Compensators & CONTROLLERS DESIGN: Selection criteria and design of lead, lag, lead-lag and cascade type of compensators using Root locus & Bode plots, Rate feedback. Controllers – configuration and fundamentals of design,	10	CO3 CO4 CO5

 $_{\text{Page}}9492$ 



	cascade and feedback compensation using various controllers.		
4	STATE VARIABLE FEED BACK DESIGN: Introduction to state variable analysis, controllability and observability, state feedback for SISO system, state feedback design of SISO system using control canonical form. State variable feedback _ steady state error analysis, Use of steady state error coefficients, design of state observers, Introduction to design of MIMO systems. Introduction to design of non-linear system and software.	10	CO4 CO5

# **TEXT BOOKS/REFERENCE BOOKS:**

- 1. Modern Control Systems A manual of design methods by John A. Borrie (Prentice Hall International)
- 2. Control Systems Principle & Design by M. Gopal (TMH publication)
- 3. Introduction to feed back control system by Pericles E. Manuel & Edward Leff (International Student Edition)
- 4. Linear controller designs limits of performance by Stephen P. Boyd & Craig H. Barratt (Prentice Hall International).
- 5. Linear control analysis & design By John J. D'azzo& C. H. Houpis (McGraw Hill)

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

# Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

<b>Program Name: M. TechElectrical and Instrumentation</b>	Enginopring
I I Ugi and Manie. M. I eth. Eletti tai and misti unentation	Lugmeering
0	

_		T	P		С
EI-PE-101 Process Equipment Design(ii)	3	-	-		3
Year and 1 st Yr. Co	<b>Contact hours per week:</b> (3 Hrs)				
Semester 1 st Semester Exa	kam: (3 Hrs)	aluation SEE: 60			
Pre-requisite Process Control Systems	Evaluation				
of course Process Control Systems CIE:	: 40		0		
Course Objectives:					
1. It aims to equip the students with Equipment design					
2. To provide adequate knowledge about various types of equip	pment				
Course Outcomes: On completion of the course, student would be	be able to:				
CO1 Distinguish between various process devices and equipm	nents				



CO3Characterize storage equipmentsCO4Design heat exchange equipment

Modu le No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Valve Noise calculation and reduction: Sources of valve noise, noise control, path treatment, valve treatment, valve noise calculation. Design & construction of Globe valve: valve trends, trim design, trim flow characteristics, flow range ability, standard trim configuration, valve plug stems, Body form of single and double seated globe valve, Bonnet design of global valve. Construction and flow characteristics of butterfly valve.	8	CO1
2	Boiler control and optimization, compressor control and optimization, cooling tower control and optimization, distillation controls, evaporator controls Basics of Process Equipment Design: General design procedure, Computer design, Fabrication techniques, Equipment classification, Power of rotational motion, Drives for process equipment.	8	CO1, CO2
3	Pressure Vessels: Pressure vessel code, Operating conditions – at low temperatures, at elevated temperatures, Design considerations and stresses, fabrication, inspection and tests, unfired vessel codes, High pressure vessels: Constructional features, materials, solid walled, multi shell, vessel closures, Jacket for vessels, Examples. Storage Vessels: Storage of fluids, Non-volatile liquids, volatile liquids and gases, Design of tanks, rectangular tanks, nozzles and mounting, Large capacity storage tanks, Examples. Reaction Vessels: Materials for construction, agitation, classification of reaction vessels, heating systems.	8	CO1, CO3
4	Heat Exchangers: Types of heat exchangers, design of shell and tube heat exchangers. Evaporators and Crystallisers: Types of evaporators, entrainment separators, materials and design considerations, crystallisers, Examples.Process Hazards and Safety Measures in Equipment design. Process flow diagrams.	8	CO1 CO4

### **Text Books:**

- 1. Instrument Computer Aided Process control by S.K. Singh PHI
- 2. Computer Based Industrial Control by Krishna Kant PHI
- 3. Instrument Engineers Handbook- Process Control by Bela G. Liiptak

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

# Note for Students:

**1.** Section – A is compulsory and attempt/answer all the four questions carrying 12 marks in total.

 $_{\text{Page}}9494$ 



2. Attempt/answer two questions each out of the Section – B and Section – C. All questions will carry 12 marks.

# Program Name: M. Tech.-Electrical and Instrumentation Engineering

_____

-----

Course	ourse Code: Course Name: Program Elective-I				Т	P	С
EI-PE-1	01	INDUSTRIAL ENVIRONMENTAL	ENGINEERING(iii)	3	3		
Year an	d	1 st Yr.	Contact hours per v	week: (3Hrs)			
Semeste	r	1 st Semester	Exam: (3 Hrs)				
Pre-requ	uisite of	Nii	Evalua	ation			
course		Nil	<b>CIE: 40</b>		SEI	E: 6(	)
Course (	Course Objectives:						
1. To in	ntroduce the	concept of air, water and noise pollution	monitoring				
2. To st	udy the con	cepts of emission type pollution controls					
3. To st	udy the vari	ious air pollution monitoring instruments	and methods for proce	ess in	dust	ries.	
4. To in	troduce the	pollution control and monitoring method	s for pulp and paper ir	ndust	ries.		
Course	Outcomes:	On completion of the course, student wou	ld be able to:				
CO1	Identify sou	urces of air ,noise and water pollution and	l their effects				
CO2	Sample and	l analyze air pollutants					
CO3	Understand	the air quality monitoring instruments					
CO4	Sample and	ple and analyze water borne pollutants					
CO5	Understand	the water quality monitoring instruments	S				

Modul e No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	INTRODUCTION: Source and classification of Air Pollution, Effect of Air Pollution in Human Health, Effect of Air Pollution on Animals, Effect of Air Pollution on Plants, Economics Effects of Air Pollution, Control of Air Pollution by Equipment, Control of Air Pollution by Process Changes, Air Pollution from Major Industrial Operations, Air Pollution legislation and regulation, Environment Protection Act, Air Pollution in Indian cities, Water & Noise Pollution. & its control, Green House effects & its control.	8	CO1
2	POLLUTION CONTROL FOR SPECIFIC POLLUTANTS: Industrial Pollution Emission and Indian Standards, Analysis of Pollutants, Control of BOD, Removal of Chromium, Removal of Mercury, Removal of Ammonia / urea, Treatment of Phenolic Effects, Removal of particular matter, Removal of Sulphur Dioxide, Removal of Oxides of Nitrogen, Removal of Vapour from Efficient case, Control of CO2 and CO.	8	CO1, CO2
3	POLLUTION CONTROL IN SELECTED PROCESS INDUSTRIES: General considerations of Pollution Control in Chemical Industries, Pollution Control aspects of fertilizer industries, Pollution Control in Petroleum & Petrochemical Units.	8	CO2, CO3
4	Pollution Control in Pulp & Paper Industries, Tanning Industries, Sugar Industries, Alcohol Industries, Electroplating & Metal Finishing Industries, Radioactive Wastes, Pollution Control methods used in Power Plants.	8	CO1, CO4, CO5



# **REFERENCE BOOKS:**

- 1. Air Pollution by H V Rao, McGraw Hill
- 2. Pollution Control in Process Industries by S P Mahayar, McGraw Hill
- 3. Encyclopedia of Environmental Pollution & Control, Vol. 1 & 2, Enviro Media, Karad, India.
- 4. Environmental Water Pollution & its control by G R Chhatwal, M.C. Mehra& Others, Anmol Publication, Delhi.
- 5. Environmental Air Pollution & its control by G.R. Chhatwal& Others, Anmol Publication, Delhi.

**Note for Examiner**(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

 $P_{Page}9496$ 

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

# Program Name: M. Tech.-Electrical and Instrumentation Engineering

<b>Course Code:</b>	urse Code: Course Name: Program Elective-I L T F					С
EI-PE-101	POWER PLANT ENGINE	CERING(iv)	3	-	-	3
Year and	1 st Yr.	Contact hours per w	eek	: (31	Hrs)	
Semester	1 st Semester	Exam: (3 Hrs)				
Pre-requisite	Dagia Saianaa	Evalua	tion			
of course	Basic Science	CIE: 40		SE	E: 60	D
Course Objectives:						
1. To study t	ne concept of steam power plant.					
2. To study t	ne concept of Hydro-electric power plants a	and Nuclear power plant	S			
3. To study t	ne concept of gas turbine and diesel power	plants.				
4. To study t	ne combined operation of different power p	plants.				
<b>Course Outco</b>	mes: On completion of the course, student	would be able to:				
CO1 7	o understand the operation of steam power	plant.				
СО2 7	o understand the operation of Hydro-electr	ric power plants and Nuc	clear	po'	wer j	plants
СОЗ 7	o understand the operation of gas turbine and diesel power plants.					
<b>CO4</b>	o understand the combined operation of di	fferent power plants.				
<b>.</b>	-					

Modul	COURSE SYLLABUS	Urc	COa
e No	CONTENTS OF MODULE	nrs	COS



1	Steam generators, condensers and turbines: Classification of steam generators, selection, operation of locomotive, Babcock Wilcox, Cochran boilers, Types of condensers, effect of air in condensers, Dalton's law of partial pressure, cooling water calculations, steam nozzles, types of steam turbine efficiencies, compounding, governing and control. Steam power plant: Classification, Operation, Description of Rankin cycle, Regenerative cycle, Reheat-Regenerative Cycle, Binary Vapour Cycle, Selection of plant site and its layout, coal handling system, combustion system, Fluidised bed combustion, Ash handling, Feed pumps, Heat exchangers, Economizers, Super heaters, Reheaters, Air preheaters, Feed water heaters, Evaporators.	8	CO1
2	Hydro-electric power plants: Hydrological Cycle, Hydrograph, Flow duration curve, Selection of site, Essential features, Classification of hydro plants, Selection of water turbines for hydro power plant, Automatic and remote control of hydro-station, layout of hydro power plant. Nuclear power plants: Nuclear physics, Binding energy, Radioactive decay. Fertile material, Mass defect, Nuclear reactions type and application, Generation of nuclear energy by fission, Nuclear reactors. Site selections, safety measures, plant layout, Fusion reaction, Future of nuclear power.	8	CO2
3	Gas turbine: Elements of gas turbines, Open and closed cycles for gas turbines, Performance terms, Thermal refinement to gas turbines cycle, Plant layout, applications, gas turbines Cycle calculations. Diesel power plants: Classifications of IC Engines and their performance, Four stroke and two stroke diesel engines, combustion phenomenon; Essential components, Celane number, knocking, super charging, operation and layout of diesel power plant.	8	CO3
4	Combined operation of different power plants: Advantages of combined operation of plants, load division between power stations, coordination of different types of Power Plants. Pollution control: Pollution from thermal & nuclear plants, Particulate emission and control, electrostatic precipitator, solid waste disposal.	8	CO4

# **TEXT BOOKS/REFERENCE BOOKS:**

- 1. Chakrabarti A., Soni, M.L. Gupta P.V. and Bhatanagar U.S., A Textbook on Power System Engineering, Dhanpat Rai & Co.
- 2. EI-Wakit M.M., Power Plant Engineering, McGraw Hill, USA
- 3. Rajput R.K., Power Plant Engineering, Luxmi Publications
- 4. Sharma P.C., Power Plant Engineering, Kataria& Sons
- 5. Skrotzki B.G.A. and Vapot W.A., Power Station Engineering and Economy, Tata McGraw-Hill

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.



### Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

_____

# **Program Name: M. Tech.-Electrical and Instrumentation Engineering**

<b>Course Code:</b>	Course Name: Program Elective-I		L T P C		
EI-PE-101	I-PE-101ENERGY AUDITING AND METHODOLOGY(v)3-				
Year and	1 st Yr.	Contact hours per w	veek: (3Hrs)		
Semester	1 st Semester	Exam: (3 Hrs)			
Pre-requisite	<b>Electrical Measurements and</b>	Evalua	tion		
of course	Instruments	<b>CIE: 40</b>	SEE: 60		
<b>Course Object</b>	ives:				
1. To introduc	e the concept of Energy Management and .	Audit.			
2. To study the	e concepts of financial management.				
3. To study an	d analysis various type of appliance in elec	trical system.			
4. To study the	e conceptual theory and working of refrige	ration system.			
<b>Course Outcon</b>	<b>nes:</b> On completion of the course, student	would be able to:			
CO1 To une	CO1 To understand the concept of Energy Management and Audit.				
CO2 To un	2 To understand the concepts of financial management.				
CO3 To far	To familiarize with various type of appliance in electrical system.				
CO4 To une	To understand conceptual theory and working of refrigeration system.				

Modul e No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Energy Scenario: Energy needs of growing economy, Long term energy scenario, Energy pricing, Energy sector reforms, Energy and environment: Air pollution, Climate change, Energy security, Energy conservation and its importance, Energy strategy for the future, Energy conservation Act- 2001 and its features. Energy Management and Audit: Definition, Energy audit- need, Types of energy audit, Energy management (audit) approach- understanding energy costs, Bench marking, Energy performance, Matching energy use to requirement, Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution, Energy audit instruments.	8	C01
2	Material and Energy balance: Facility as an energy system, Methods for preparing process flow, Material and energy balance diagrams. Financial Management: Investment-need, Appraisal and criteria, Financial analysis techniques- Simple payback period, Return on investment, Net present value, Internal rate of return, Cash flows, Risk and sensitivity analysis, Financing options, Energy performance contracts and role of energy savings companies (ESCOs).	8	CO2

 $_{\text{Page}}9498$ 

(Contraction)
1 2 2 7
Contraction of the second
Prove an and

3	Electrical system: Electricity tariff, Load management and maximum demand control, Power factor improvement, Distribution and transformer losses. Losses in induction motors, Motor efficiency, Factors affecting motor performance, Rewinding and motor replacement issues, energy efficient motors. Light source, Choice of lighting, Luminance requirements, and Energy conservation avenues Compressed air system: Types of air compressors, Compressor efficiency, efficient compressor operation, Compressed air system components, Capacity assessment, Leakage test Factors affecting the performance and efficiency.	8	CO3
4	High Voltage Alternating Current and Refrigeration System: Vapor compression refrigeration cycle, Refrigerants, Coefficient of performance, Capacity, Factors affecting refrigeration and air conditioning system performance and savings opportunities, Vapor absorption refrigeration system: Working principle, Types and comparison with vapor compression system, Saving potential, Fans, Blowers and pumps- Types, Performance evaluation, Efficient system operation, Flow control strategies and energy conservation opportunities.	8	CO4

### **TEXT BOOKS/REFERENCE BOOKS:**

- 1. Abbi, Y.P. and Jain, S., Handbook on Energy Audit and Environment Management, Teri Bookstore
- 2. Diwan, P., Energy Conservation, Pentagon Press (2008).
- 3. Younger, W., Handbook of Energy Audits, CRC Press (2008)
- 4. Sawhney and Maheshwari, Solar Energy and Energy Conservation, Prentice Hall (India)
- 5. Rao S. and B. B. Parulkar, Energy Technology, Khanna Publishers
- 6. Sukhatme S. P., Solar Energy, Tata McGraw Hill
- 7. David S., Hand Book of Industrial Energy Conservation, Van Nostrand Reinhold Publishing Company.

**Note for Examiner(s)**: Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

# Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.



Course	Code:	Course Name: Program Elective-I		L	Т	P	С
EI-PE-1	<b>01</b>	ENERGY EFFICIENT MAC	HENES(vi)	3	•	-	3
Year an	d	1 st Yr.	Contact hours per w	veek	: ( <b>3</b> I	Hrs)	
Semeste	er	1 st Semester	Exam: (3 Hrs)				
Pre-req	Pre-requisite of Electrical Machines			tion			
course		Electrical Wrachines	CIE: 40		SE	E: 60	)
Course	Objective	s:					
1. To	introduce	the concept of energy management and e	nergy audit system.				
2. To	introduce	the concept and Economics of Power fac	tor improvements.				
3. To	study the	concept of Energy efficient machines En	ergy efficient and Ecor	omi	cs o	f Ene	ergy
pov	wer genera	ation.					
4. To	study the	concept of economics of electrical energy	v distribution and electr	rical	driv	ves.	
Course	Outcomes	s: On completion of the course, student w	ould be able to:				
CO1	To Famil	iarize withthe concept of the concept of e	nergy management and	d ene	ergy	audi	it
	system						
CO2	To under	stand the concept of Energy efficient mac	chines and Economics of	of Po	wer	fact	or
	improvements.						
CO3	To Famil	iarize with the concept of Energy efficient	t machines and Econo	mics	ofI	Energ	gy
	power ge	neration.					
CO4	To under	stand the concept of economics of electric	cal energy distribution	and	elec	trica	1
	drives.						

# **Program Name: M. Tech.-Electrical and Instrumentation Engineering**

Modu le No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	INTRODUCTION: Need for energy efficient machines, energy cost and two part tariff, energy conservation in industries and farms -a necessity, introduction to energy management and energy audit system. Review of induction motor characteristics.	7	C01
2	POWER FACTOR: The power factor in sinusoidal systems, power factor improvement, power factor with nonlinear loads, Harmonics and the power factor.	7	CO2
3	ENERGY EFFICIENT MOTORS: Standard motor efficiency, why more efficient motors? An energy efficient motor, efficiency determination methods, Direct Measurement method, Loss segregation method, Comparison, motor efficiency labelling, energy efficient motor standards. Motor life cycle.	8	CO3
4	INDUCTION MOTORS AND ADJUSTABLE DRIVE SYSTEMS: Energy Conservation, adjustable speed systems, Application of adjustable speed systems to fans, pumps and constant torque loads.	8	CO4

# **TEXT /REFERENCE BOOKS:**

- 1. Andreas John C., Energy efficient electric motors, Marcel Dekker Inc. 1992.
- 2. Thuman Albert, Introduction to Efficient Electric System Design, The Fairmount Press Prentice Hall.
- 3. Tripathi S.C., Electric Energy Utilization and Conservation, Tata McGraw-Hill 1991.



4. Belove Charles, Handbook of Modem Electronics and Electrical Engineering, John Wiley & Sons.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

# Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

# Program Name: M. Tech.-Electrical and Instrumentation Engineering

Course EI-PC-		Course Name: BIO-MEDICAL INST	RUMENTATION	L 7 3 -	Г <u>Р</u> -	C 3
Year a	nd	1 st Yr.	Contact hours per w	eek: (	3Hrs	)
Semest	er	1 st Semester	Exam: (3 Hrs)			
Pre-req	-	Physics, Basic Electrical Engineering.	Evaluat	tion		
	of course CIE: 40		S	E <b>E: (</b>	<i>i</i> 0	
	Course Objectives:					
		the concept of Bio Instrumentation like M	edical Bio Potential Ele	ectrod	es an	d
_	medical R					
		ac and Respiratory measurementssystem				
		umentation for Measuring Nervous Functi	ion.			
		ent Trends in Biomedical Engineering.				
		es: On completion of the course, student v				
CO1		Familiarize with Bio Medical Instrumenta				
CO2		understand cardiac and Respiratory measu	· · · · · · · · · · · · · · · · · · ·			
CO3		understand Instrumentation for Measuring				
<b>CO4</b>	Точ	understand the Recent Biomedical devices	s instrumentation.			
Modu		COURSE SYLLABUS	5			<u> </u>
le No		CONTENTS OF MODU	LE		Hrs	COs
	Characte	eristics of Transducers and Electrodes for	Biological Measureme	ent:		
1	Introduction to human body: block diagram classification characteristics				5	CO1
1	1 various physiological events and suitable transducer for their recording,				5	COI
	bioelectric potentials					
		ardiac & System: Cardiac musculature, Electro cardiography, ECG				
2		g, Phonocardiography, holter recoding EC			7	CO1,
2		ector cardiography, Pacemakers, Defibril			'	CO2
	Blood F	low Measurement: Invasive and non-in	vasive methods of Blo	boc		l

 $_{\text{Page}}950^{\circ}$ 



	pressure, Characteristics of blood flow and heart sound, Cardiac output measurement, Plethysmography. Respiratatory System: Mechanics of breathing, Parameters of respiration, Respiratory system measurements, Respiratory therapy instruments		
3	Instrumentation for Measuring Nervous Function: EEG signal, frequency band classification, Lead systems, EEG recording, Clinical applications of EEG signal, X-ray CT scan, MRI, PET. Muscoskeletal systems: EMG, Clinical applications, and Muscles stimulator. Clinical Laboratory Instrumentation: Test on blood cell, Blood cell counter, Blood glucose monitors, auto analyzer, Pulse-oximeter.	7	CO3
4	Recent Trends in Biomedical Engg.: Patient care and monitoring, Non- invasive diagnostic instrumentation, Biotelemetry, Telemedicine, Prosthetic devices, Lie detector test, Application of lasers and ultrasonic in biomedical field. Troubleshooting & Electrical Safety of Biomedical Instruments: Physiological effect of current and safety measurement.	7	CO4

### **TEXT/REFERENCE BOOKS:**

- 1. Medical instrumentation application & design, John G Webster, John wiley, 1998.
- 2. Review of medical physiology, W.F. Ganong, Medical publisher, 1977
- 3. Biomedical instrument and measurement, Cromwell, PHI, 2000
- 4. Handbook of biomedical instrument, R S Khandpur, TMH

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

# Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

# Program Name: M. Tech.-Electrical and Instrumentation Engineering

Course Code: EI-PC-105	Course Name: ADVACED ELECTRIC DRIVE		L 3	T -	P -	C 3	
Year and	1 st Yr.Contact hours per wee			Hrs)	)		
Semester	1 st Semester	Exam: (3 Hrs)					
Pre-requisite	<b>Electrical Machines, Power</b>	Evaluation					
of course	Electronics	CIE: 40 SEE: 60					
Course Objectives:							
1. To introduce the concept of types of Electric Drives.							



2. To in	troduce the DC Motor Drives.				
	troduce the AC Motor Drives.				
	udy the Motor power rating.				
	nplement Traction Drives.				
	<b>Dutcomes:</b> On completion of the course, student would be able to:				
CO1	To Familiarize with Dynamics and Control of Electric Drives.				
CO2	To understand efficient speed control techniques in DC Motor Drives.				
<b>CO3</b>	To understand efficient speed control techniques in AC Motor Drives.				
<b>CO4</b>	To understand the significance and selection of power rating.				
<b>CO5</b>	To familiarization of Load and choice of traction for suitable load.				
Module	COURSE SYLLABUS				
No	CONTENTS OF MODULE	Hrs	COs		
1	Electric Drive: Concept, classification, parts and advantages of electrical dives. Types of Loads, Components of load toques, Fundamental torque equations, Equivalent value of drive parameters for loads with rotational and translational motion. Determination of moment of inertia, Steady state stability, Transient stability. Multiquadrant operation of drives. Load equalization.	8	CO1		
2	Motor power rating: Thermal model of motor for heating and cooling, classes of motor duty, determination ofmotor rating for continuous, short time and intermittent duty, equivalent current, torque and power methods of determination of rating for fluctuating and intermittent loads. Effect of load inertia & environmental factors. Starting of Electric Drives: Effect of starting on Power supply, motor and load. Methods of stating of electric motors. Acceleration time Energy relation during stating, methods to reduce the Energy loss during starting. Braking of Electric Drives: Types of braking, braking of DC motor, Induction motor and Synchronous motor, Energy loss during braking.	8	CO1, CO2,		
3	DC motor drives: Modeling of DC motors, State space modeling, block diagram & Transfer function, Single phase, three phases fully controlled and half controlled DC drives. Dual converter control of DC drives. Power factor, supply harmonics and ripple in motor current chopper controlled DC motor drives. Induction motor drives: Stator voltage variation by three phase controllers, Speed control using chopper resistance in the rotor circuit, slip power recovery scheme. Pulse width modulated inverter fed and current source inverter fed induction motor drive. Volts/Hertz Control, Vector or Field oriented control.	8	CO2, CO3		
4	Synchronous motor drives: Variable frequency control, Self-Control, Voltage source inverter fed synchronous motor drive, Vector control. Introduction to Solar and Battery Powered Drive, Stepper motor, Switched Reluctance motor drive. Industrial application: Drive consideration for Textile mills, Steel rolling mills, Cement mills, Paper mills, Machine tools. Cranes & hoist drives.	8	CO4, CO5		

# **TEXT/REFERENCE BOOKS:**

1. Fundamental of Electrical Drives, G.K. Dubey, New Age International Publication.



- 2. Electric Drives, VedamSubrahmanyam, TMH
- 3. A first course on Electrical Drives, S.K. Pillai, , New Age International Publication.
- 4. Electric motor drives, R. Krishnan, PHI
- 5. Modern Power Electronics & Ac drives, B.K. Bose, Pearson Education.
- 6. Electric Motor & Drives. Austin Hughes, Newnes.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

### Note for Students:

 $_{\text{Page}}9504$ 

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

#### -----

Course Code: EI-PC-107		Course Name: ADVANCE PROCES	ourse Name: ADVANCE PROCESS CONTROL		Т -	P -	C 3		
Year and		1 st Yr.	Contact hours per week: (3Hrs)						
Semester		1 st Semester	Exam: (3 Hrs)						
Pre-requisi	te of	Control System	Evalua	tion					
course		Control System	<b>CIE: 40</b>		SE	E: 60	00		
Course Ob	jectives	:							
1. Study th	e techn	iques used for PID controller tuning							
2. Develop	ment a	and synthesis the feedback controllers for	specified close loop resp	ponse	e				
3. Concept	and St	udy of FC and FO type control valve and	l their applications with e	xamj	ples,	Gai	n of		
		ept of control valve sizing for liquid, Gas					to		
Masone	illian&l	Fisher Equation) and study control valve	e cavitation and flashing p	pheno	omei	non			
4. Study a	nd deve	elopment of advance control techniques	for process control and a	uton	natio	n			
5. Develop	ment o	f control techniques for safe design of	process control and auto	matio	on				
6. Study a	nd deve	elopment of Predictive control, Statistica	al control, Adaptive and	Infer	entia	al			
control	system								
Course Ou	tcomes	: On completion of the course, student w	ould be able to:						
CO1 At	ole to A	nalyze the effect of P, PI, PD and PID co	ontrollers on a control sys	stem	and	desi	gn		
su	itable co	ontroller for a typical process							
CO2 At	ole to ur	nderstand FC and FO type control valve	and Able to learn and ana	lyze	the	varic	ous		
pr	inciples	& concepts involved in valve sizing for	liquid, Gas, vapor and	stean	n and	d cor	ntrol		
va	lve cavi	tation and flashing phenomenon							
CO3 At	oility to	understand analysis and development of	of advance control techni	ques	for	proc	cess		
со	ntrol an	d automation							

# Program Name: M. Tech.-Electrical and Instrumentation Engineering



CO4 Ability to understand analysis and development of Predictive control, Statistical control, Adaptive and Inferential control system techniques for process control and automation

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	PID controller tuning procedures: Close loop oscillation based tuning, Ziegler-Nichol close-loop method. Tuning rules for first order + dead time processes: step testing quarter decay ratio response, Ziegler-Nichol open loop method, Cohen-Coon parameters. Synthesis of feedback controllers: Development of the controller synthesis formula, specifications of close loop response, direct synthesis for minimum and non-minimum phase processes, controller modes and tuning parameters derivative mode for dead time process. Dead Time Compensation (Algorithms for Smith Predictor), & effect of process modeling error.	10	CO1
2	Control Valve Design: Control valve flow characteristics, Valve & process characteristics, range availability of control valve, control valve sizing for gas, liquid, vapors and steam, Control valve cavitation and flashing, flow control cavitation index, vibration curve cavitation index, calculation of flash fraction, Control valve gain, sequencing of control valve . Valve application, selection, valve capacity testing.	8	CO2
3	Additional control techniques: Cascade control, Selective control & Split range control, Cascade control for various processes, dynamic characteristics of Cascade control system and its tuning. Override and Auctioneering control system for various processes, Feedforward control system, Feedforward control of various processes. Design of Feedforward controllers, Feedforward –Feedback control & their relative advantages & disadvantages.	10	CO3
4	Ratio control system, Predictive control, Statistical control Adaptive and Inferential control system: Programmed Adaptive control, gain scheduling Adaptive control, Self tuning regulator (STR), MRAC, Multivariable Process Control.	9	CO4

# **TEXT BOOKS/REFERENCE BOOKS:**

- 1. Principles and Practice of Automatic Process Control by Carlos A Smith, John wiley& sons
- 2. Computer Aided Process control by S.K. Singh PHI
- 3. Process Control Modeling, Design, and Simulation by B.WayaneBequette PHI
- 4. Chemical Process control by Stephanopolous PHI

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

### Note for Students:



- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

# **Program Name: M. Tech.-Electrical and Instrumentation Engineering**

Course Code: EI-RM-109		Course Name: Research Methodology	and IPR	L T F	• C 2		
Year and		1 st Yr.	Contact hours per w	-			
Semester		1 st Semester	Exam: (3 Hrs)	CCK. (2111	3)		
Pre-requ			Evaluat	tion			
of course		Nil	CIE: 20	SEE:	30		
Course C	bjectiv	es	L L				
1. To stu	idy the i	deas of research methods.					
		it statistical analysis and sampling.					
3. To stu	ıdy abot	it regression and correlation analysis.					
	2	it edition, tabulation and testing of hypoth	neses.				
Course C							
CO1		nulate a route map for a particular problem					
CO2		low to test and validate the data through statistical techniques					
CO3		o implement the suitable methods of sampling for individual problems					
CO4		pare and evaluate the results with others					
CO5	To pres	sent the results with more informative deta			1		
Module	COURSE SYLLABUS			Hrs	COs		
No		CONTENTS OF MODU		1115	005		
	Nature and objective of the research: Methods of Research: Historical,				G 0 1		
1		tive and experimental. Alternative approa		8	CO1,		
		h problem and problem formulation. Form			CO5		
		lity, preparation and presentation of property		1.4			
		ction to statistical analysis: Probations, binomial, Poisson, exponential and	<b>J</b> 1	2			
2		pplications. Sampling: Primary and secon			CO2		
2	-	lidation, methods of sampling, stratifie	•		CO3		
		atic sampling.	a random sampning, a				
	2	sion and correlation analysis: Tests of	of significance based	on			
		, t and chi square distributions, ana		sic	CO2		
3		les of design of experiments, com			CO3		
	-	nized block designs.			CO4		
		, tabulation, & testing of hypotheses,	Interpolation of resu	lts,			
4		ation, styles for figures, tables, text, o			CO4		
4	0	raphy. Use of software for statistical ana	5	tab o	CO5		
	or MA	Γ lab, Report writing, preparation of thesi	S.				

# **TEXT BOOKS/REFERENCE BOOKS:**



CO1.

- 1. Research Methodology by C.R Kothari, VishwaPrakashan
- 2. Research Methodology by P.G .Tripathi
- 3. Research Methodology in Social Science by Sadhu Singh, Himalya Publishers
- 4. Business Research Methods, Donald cooper, Tata McGraw Hill
- 5. Statistical analysis for Engineers & Scientists, J. W. Barnes, McGraw Hill

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

Note for Students:

Page9507

1

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

_____

Course			L	Т	Р	С
Code:EI-	Code:EI- Course Name: Process Control Lab		0	0	2	15
PRPC-101				U	3	1.5
Year and	1 st Year	Contact hours per w	eek:	(3H1	:s)	
Semester	1 st Semester	Exam: (3hrs.)				
Pre-requi	site Control Engineering Lab.	Evalu	atio	1		
of course	Control Engineering Lab.	CIE: 20		SE	<b>E:</b> 3	<b>30</b>
Course O	ojectives:					
1. To Fan	iliarization of PLC Ladder Programming Instruc	tions Set				
2. To com	pile and execute programs in Ladder Programmi	ng				
3. To stud	y the PC and PLC based control systems					
4. To stud	y and write PLC program for the multiple proce	ss control systems				
5. To stud	y and write PLC program for different strategies	of control system such a	is fee	dbac	k, fe	ed
forward	, cascade, ratio control etc.	-				
6. To writ	PLC programs to solve the different control p	oroblems				
Course Ou	tcomes: On completion of the course, student w	ould be able to:				
CO1	Ability to understand PC and PLC based contra	rol system and their imp	lemei	ntatio	on	
CO2	Ability to develop PLC Ladder Programming	skill				
CO3	Analyse and implement PLC Ladder Program		of pro	cess	con	trol
	system.	- /1	•			
CO4	Ability to design and develop PLC program for	or different strategies of	contr	ol sy	sten	n such
	as feedback, feed forward, cascade, ratio contra	rol for control of process	s vari	ables	5	
	•	*				
Expt.	COURSE SYLL	ABUS				CO
No	CONTENTS OF M	ODULE				COs

# Program Name: M. Tech.-Electrical and Instrumentation Engineering

Familiarization of PLC Ladder Programming Instructions Set



2	To Study PC Based Traffic Light Control :-	CO2
2	Basic Traffic Light Sequence	CO3
	PLC Based Traffic Light Control:	CO4
	PLC Connection Details	
	Dual Traffic Light Sequence	
3	Traffic Counting	
	Green Time Alteration According to Traffic Flow	
	The Pedestrian Crossing	
	Complete System Control	
4	To Study Process Control – Ratio, feedback control flow & level	
	To Study Rotary Transfer Unit :-	
	Movement of Rotary Table	
	Initialization	
5	Station Counting	
2	Dispensing	
	A Production Line System	
	Follow a Set Routine	
6	To Study Industrial Control Trainer	_
	To Study Multi-process Control Trainer : Feedback, feedforward cascade and ration	-
7	Control system for flow, temperature and level control	
	To study of Pressure Control Unit :-Proportional Control : Run a loop experiments	_
	using 'proportional only control' with the following sets of SP and PG values. Record	
8	the eventual 'steady state' rate values in the table below, once the initial oscillations	
	have decayed.	
	Proportional and Integral Control	
	To design, Level Control PC :-	
9	Proportional Control	
9	Proportional and Integral Control	
		_
	To Study .Flow control PC & PLC :-	
	Proportional Control	
	Proportional and Integral Control	
10	Saturation and Integral Windup	
	Three Term or PID Control	
	Zeigler / Nichols Tuning	
	To Study The System Rig :-	-
	Proportional Control	
	Proportional and Integral Control     Saturation and Integral Windup	
11	Saturation and Integral Windup     Three Terms on PID Control	
11	Three Term or PID Control	
	Ziegler / Nichols Tuning	
	Temperature Control	
	Batch Volume Control	
	Fluid Level Control	



	Open Loop Control	
	Bode Plots	
	<ul> <li>Flow Loop Model using Caldwell's Method</li> </ul>	
	Flo Loop Model using Sundaresan's Method	
	Design of Controller for PCU Flow Loop	
	PRT Signal Conditioning	
	Flowmeter Signal Conditioning	
	Process Control Experiment :-	
	Proportional Control	
	Proportional and Integral Control	
	Saturation and Integral Windup	
	Three Term or PID Control	
12	Ziegler / Nichols Tuning	
	Temperature Control	
	Batch Volume Control	
	Fluid Level Control	
	Open Loop Control	
	Bode Plots	

# Program Name: M. Tech.-Electrical and Instrumentation Engineering

<b>Course Code:</b>		Course Name: Program Elective-II		L	Τ	Р	С
EI-PE-102		<b>Renewable &amp; Non-Convention</b>	nal Energy(i)	3	0	-	3
Year and		1 st year	Contact hours per	week	: (3H	Irs )	<u> </u>
Semester		2 nd Semester	Exam: (3hrs.)				
Pre-requ	isite of	<b>Basic Electrical Engineering and</b>	Eva	luati	on		
course		Engineering Science	<b>CIE: 40</b>		S	EE: 60	1
Course O	bjective	s:					
1. To fan	niliarize	the energy scenario and the conseque	ent growth of the p	power	gei	neratio	n from
renewa	ble energ	y and non-conventional energy sources.					
		ic engineering science of renewable and		rgies	sour	ces.	
3. To stud	ly the wir	nd and solar energy conversion systems for	or electrical system.				
4. To stud	ly the ene	ergy conversion techniques for nonconver	ntional sources and ap	oplica	tions	5.	
Course O	outcomes	: On completion of the course, student w	ould be able to:				
CO1		and the energy scenario and the consecutive energy and non-conventional energy set	1 0	powe	r ge	neratio	n from
CO2	Understa sources.	and the basic engineering science of	renewable and nor	i-conv	venti	onal e	nergies
CO3	Understa	and the wind and solar energy conversion	systems for electrica	l pow	ver sy	ystem.	
CO4	To und application	lerstand the energy conversion technology.	niques for nonconv	ventio	nal	source	es and
Modul		COURSE SYLLABU	IS				
e No		CONTENTS OF MOD				Hrs	COs



1	<b>Introduction to Energy sources:</b> Renewable and non-renewable energy sources, energy consumption as a measure of Nation's development; strategy for meeting the future energy requirements Global and National scenarios, Prospects of renewable energy sources. Impact of renewable energy generation on environment, Kyoto Protocol.	7	CO1
2	<b>Solar Energy:</b> Solar radiation - beam and diffuse radiation, solar constant, earth sun angles, attenuation and measurement of solar radiation, local solar time, derived solar angles, sunrise, sunset and day length. flat plate collectors, concentrating collectors, Solar air heaters-types, solar driers, storage of solar energy-thermal storage, solar pond , solar water heaters, solar distillation, solar still, solar cooker, solar heating & cooling of buildings, photo voltaic - solar cells, different types of PV Cells, Mono-poly Crystalline and amorphous Silicon solar cells. Design of PV array. Efficiency and cost of PV systems & its applications. PV hybrid systems.	8	CO2, CO3
3	<b>Wind Energy:</b> Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations.	7	CO2, CO3
4	<ul> <li>Energy from Biomass: Biomass conversion technologies, Biogas generation plants, classification, advantages and disadvantages, constructional details, site selection, digester design consideration, filling a digester for starting, maintaining biogas production, Fuel properties of bio gas, utilization of biogas.</li> <li>Hydrogen Energy and Fuel cell: Introduction, Hydrogen Production methods, Hydrogen storage, hydrogen transportation, utilization of hydrogen gas, hydrogen as alternative fuel for vehicles.</li> <li>Introduction, Design principle and operation of fuel cell, Types of fuel cells, conversion efficiency of fuel cell, and application of fuel cells.</li> </ul>	9	CO2, CO4

# **Reference Books:**

- 1. G.D. Rai, "Non-conventional Energy sources", Khanna Publishers.
- 2. Bansal Keemann and Meliss, "Renewable energy sources and conversion technology", Tata Mc-Graw Hill.
- 3. Ashok V. Desai, "Non conventional Energy", New Age International Publishers Ltd.
- **4.** D.P. Kothari, "Renewable energy resources and emerging technologies", Prentice Hall of India Pvt. Ltd.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

# Note for Students:



- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

_____

# **Program Name: M. Tech.-Electrical and Instrumentation Engineering**

Course	Course Code: Course Name: Program Elective-II		L	Τ	Р	С	
EI-PE-1	02	THEORY AND DESIGN OF N	EURO – FUZZY	3	0	-	3
		CONTROLLERS	( <b>ii</b> )				
Year an	d	1 st Year	Contact hours per w	eek:	(3H	rs)	
Semeste	r	2 nd Semester	Exam: (3hrs.)				
Pre-req	uisite of	<b>Basic Engineering Mathematics</b>	Evalua	ntion			
course			CIE: 40		SE	E: 6	0
Course	Objectives	5:					
1. To st	udy and ac	equire the basic knowledge of neural netwo	ork and fuzzy logic.				
2. To st	udy the ba	sic architecture and modeling of neural net	twork control and Fuzzy	' logi	c co	ntro	1.
3. To st	udy variou	s types of fuzzy logic and neural network	controllers.				
4. To id	lentify, for	mulate and solve the neuro fuzzy logic bas	ed problems.				
Course	Outcomes	: On completion of the course, student wo	uld be able to:				
CO1	To unders	stand basic concept and working of neural	network and fuzzy logic	e syst	em.		
CO2	To under	stand the basic architecture and modeling	of neural network cont	rol a	nd F	uzzy	y logic
	control.	-				-	-
CO3	Able to n	eural network and fuzzy logic techniques	in different field, which	invo	lve j	perce	eption,
	reasoning	and learning.					
CO4	Analyze	and design a real world problem for im	plementation and under	rstan	d th	e dy	/namic
	behavior	of a system.				-	

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	<b>NEURAL NETWORK THEORY:</b> Introduction, Biological neurons and their artificial models, Learning, adaptation and neural networks learning rules types of neural networks, Single layer, multiplayer, Feed forward, feedback networks; back propagation, Learning and training, Hop field network.	8	CO1, CO2
2	<b>NEURAL NETWORKS BASED CONTROL:</b> Neural network for non- linear systems, Schemes of neuro control, System identification forward model and inverse model, Indirect learning neural network control applications, Case studies.	8	CO2, CO3, CO4
3	<b>FUZZY LOGIC THEORY :</b> Fuzzy sets ,Fuzzy operation , Fuzzy arithmetic, Fuzzy relations ,Fuzzy relational equations, Fuzzy measure, Fuzzy functions , Approximate reasoning ,Fuzzy propositions ,Fuzzy quantifiers , If-then rules.	8	CO1
4	<b>FUZZY LOGICBASED CONTROL:</b> Structure of fuzzy logic controller,Fuzzification models, Database,Rule base Inference engine,defuzzification, Module ,Non-linear fuzzy control, PID like FLC,	8	CO2, CO3, CO4

 $_{Page}9511$ 



Sliding mode FLC, Sugeno FLC, Adaptive fuzzy control, Fuzzy control applications case studies.

#### **REFERENCE BOOKS**

- 1. Jacek. M. Zurada, "Introduction to Artificial Neural Systems", Jaico Publishing House, 1999.
- 2. Kosko, B. "Neural Networks and Fuzzy Systems", Prentice Hall of India Pvt. Ltd., 1994.
- 3. Klir G.J. & Folger T.A. "Fuzzy sets, uncertainty and information", Prentice Hall of India Pvt. Ltd., 1993.
- 4. Zimmerman H.J., "Fuzzy set theory and its application" Kluwer Academic Publishers, 1994. 5. Driankov, Hellendroon, "Introduction to Fuzzy Control", Narosa Publishers.
- 5. FarinWah S.S., Filev, D. Langari, R. "Fuzzy control synthesis and analysis", John Wiley and Sons, 2000.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

#### Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Program Name M	Tech -Flectrical and	Instrumentation Engineering
I I UZI am I James IVI	I COM-DICCUICAI ANU	

Course Code:	Course Name: Program Elective-II		L	Τ	P	C	
EI-PE-102	DIGITAL CONTROL SY		3	-	-	3	
Year and	1 st Yr.	Contact hours per v	veek	: (3l	Hrs)		
Semester	2 nd Semester	Exam: (3 Hrs)					
Pre-requisite	Control System	Evaluation					
of course	Control System	CIE: 40		SE	SEE: 60		
<b>Course Objectiv</b>	ves:						
1. Study the dig	gital control system details: Signal flow gr	raph, Time domain anal	lysis,	cor	relat	tion	
between time	e response & root location in S & Z transf	orm and stability in Z-	olane	;			
2. Study the dig	gital control system design by various met	hods in Z-plane					
3. Study of tech	nniques for analysis of nonlinear system, o	concept of local, global	, asy	mpt	otic	and	
total stability	of nonlinear system, Liapunov's stability	criterion.	•	•			
-	ing procedure for PID controllers and De		Rob	ust (	cont	rol.	
5. Study the co	ncept, analysis and design of Adaptive an	d Learning system.					
Course Outcom	es: On completion of the course, student	would be able to:					



CO1	Ability to understand the concept, analyze the Digital control system and their
	stability
CO2	Ability to understand the digital control system design by various methods in Z-plane
CO3	Ability to understand the techniques for analysis of nonlinear system and their
	stability criterion
<b>CO4</b>	Ability to understand and skill of the Tuning procedure for PID controllers and
	Designing of Robust control.
CO5	Ability to understand the concept, analysis and design of Adaptive and Learning
	system

Modu le No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	DIGITAL CONTROL: Introduction to digital control, sampling, Data reconstruction principles, Pulse transfer functions, Block diagram & signal flow graph, Digital Control Techniques-PID, Deadbeat. Time domain analysis, correlation between time response & root location in S & Z transform, effect of pole-zero configuration in Z-plane on maximum overshoot & peak time transient response, Stability in Z-plane using modified Rouths criteria, Jury's criteria.	10	CO1
2	Digital control system design : Design by Emulation, Direct design by root locus in z-plane, Frequency response method, Direct design method by Ragazzini. NON LINEAR CONTROL SYSTEM: Introduction to nonlinear feedback control system, special features of linear system; limit cycle, jump response, sub harmonics etc., describing function and phase plane techniques for analysis of nonlinear system, concept of local, global, asymptotic and total stability of nonlinear system, Liapunov's stability criterion.	11	CO2 CO3
3	PID CONTROL AND ROBUST CONTROL: Tuning procedure for PID controllers, modification of PID control schemes, two degrees of freedom control. Design considerations for Robust control.	8	CO4
4	ADAPTIVE AND LEARNING CONTROL SYSTEMS: Basic Principles of Adaptive and Learning Control Systems, Model Reference Adaptive Control, Types of Learning-Supervised and Unsupervised Learning Control Systems, On-line and Off-line Learning Control Systems.	8	CO5

# **TEXT BOOKS/ REFERENCE BOOKS:**

- 1. Digital control system By B. C. Kuo (PHI)
- 2. Modern control engineering By Ogata (PHI)
- 3. Control System Engineering By Nagrath& Gopal (Wiley Eastern)
- 4. Control System Engineering By Phillips and Nagle (PHI Publications)
- 5. Control System Engineering by Norman S Nise, Wile
- 6. Modern Control System by R C Dorf, R H Bishop, Addision Wesley
- 7. Systems, Modeling & Analysis by I J Nagrath, M Gopal, TMH
- 8. Digital Control & State Variable Methods by M Gopal, TMH

Note for Examiner(s): Question paper will comprise three sections,



- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

### Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

_____

-----

# **Program Name: M. Tech.-Electrical and Instrumentation Engineering**

Course	Code:	Course Name: Program Elective-II		L	Τ	Р	C		
EI-PE-1	102	HVDC TRANSMISSION SYS	STEM(iv)	3	0	-	3		
Year an	ıd	1 st year	Contact hours per w	s per week: (3Hrs)					
Semeste	Semester2 nd SemesterExam: (3hrs.)								
Pre-req	uisite	<b>Power Electronics and Power System</b>	Evalua	tion					
of cours	se	Engineering	CIE: 40		SEI	E: 60			
Course	Objectiv	es:							
1. To s	study the	basic concept, working theory and constr	ructional detail of Dir	ect	Curi	ent (	DC)		
1		ission line.							
2. To s	tudy the p	power converter interface and analysis in HV	DC transmission line.						
3. To s	tudy the p	oower converter controller in HVDC transmi	ssion line						
4. To s	tudy the e	effect of reactor and protection of DC line.							
Course	Outcome	es: On completion of the course, student wou	ald be able to:						
CO1	To unde	rstand the basic concept, working theory an	d constructional detail	of I	Direc	ct Cu	rrent		
	(DC) po	wer transmission line.							
CO2	To imp	art technical knowledge of power conve	rter interface and an	alys	is i	n HV	/DC		
	transmis	sion line.		-					
CO3	To appri	ise with power converter control system in	HVDC transmission lin	ne					
CO4	To unde	rstand the effect of reactor and protection of	DC line.						

Modu le No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	<b>Direct Current (DC) power transmission technology:</b> Introduction, comparison of Alternating Current (AC) and Direct Current (DC) transmission, application of DC transmission, application of DC transmission, description of DC transmission system, Configurations, planning for High Voltage Direct Current (HVDC) transmission, modern trends in DC transmission. Introduction to Device: Thyristor valve, valve tests, recent trends.	6	C01
2	Analysis of High Voltage Direct Current (HVDC) converters: Pulse number, choice of converter configuration, simplified analysis of	8	CO1, CO2

 $_{Page}9514$ 

Graetzcircuit, converter bridge characteristics, and characteristics of a		
twelve-pulse converter, detailed analysis of converters with and without		
overlap.		
<b>Converter and HVDC system control:</b> General, principles of DC link control, converter control characteristics, system control hierarchy, firing angle control, current and extinction angle control, starting and stopping of DC link, power control, higher level controllers, telecommunication requirements. <b>Converter faults and protection:</b> Introduction, converter faults, protection against over-currents, over-voltages in a converter station, surge arresters, protection against over-voltages.	8	CO2, CO3
<b>Smoothing reactor and DC line:</b> Introduction, smoothing reactors, DC line, transient over voltages in DC line, protection of DC line, DC breakers, Mono-polar operation, effects of proximity of AC and DC transmission lines.	6	CO4

### **RECOMMENDED BOOKS:**

3

4

- 1. E.W. Kimbark, "High Voltage DC Transmission", Wiley-Interscience.
- 2. V. Kamaraju and M.S. Naidu, "High Voltage Engineering", Tata McGraw-Hill Education.
- 3. R.S.Jha,"High Voltage Engineering", Dhanpat Rai sons.
- 4. E. Kuffel and M. Abdullah, "High Voltage Engineering", Pergamon Press.
- 5. C. L. Wadhwa, "High Voltage Engineering", New Age Publications.
- 6. K.R. Padiyar, "HVDC Power Transmission Systems: Technology and System Interactions", New Age International Publications.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

### Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

# ------

# **Program Name: M. Tech.-Electrical and Instrumentation Engineering**

Course Code:	Course Name: Program Elective-II		L	Τ	P	С
EI-PE-102	ENERGY MANAGEN	MENT(v)	3	-	-	3
Year and Semester	1 st Yr.	Contact hours per week: (3Hrs)			s)	
rear and Semester	2 nd Semester	Exam: (3 Hrs)	<b>▲</b>			
Pre-requisite of	Electrical Machine, Electrical	Evalua	Evaluation			
course	Measurements and Instruments	CIE: 40	SEE: 60			)
<b>Course Objectives:</b>						
1. To introduce the v	various energy systems.					
2. To study the basic	2. To study the basics theory, and operation of renewable system.					
3. To study the concept of energy conservation and management.						





1 To stu	dy various techniques for energy conservationand its management.			
	<b>utcomes:</b> On completion of the course, student would be able to:			
Course of	To familiarize with the various energy systems.			
CO2	To understand the basics theory, operation renewable system.			
CO3		impart basic technical knowledge the energy conservation system and management.		
CO4	To learn the role of various techniques used for energy conservations			
	management.	<i>.</i>		
Module	COURSE SYLLABUS	Hrs	COs	
No	CONTENTS OF MODULE		000	
1	INTRODUCTION: Various Sources of Energy, Conventional and non- Conventional energy, Concept and Classification of Renewable energy, Concept of Energy Conservation and Energy Management, Present Energy Scenario in India (Conventional and non- Conventional energy).	7	CO1	
2	RENEWABLE ENERGY SOURCES: Potential and Utilization status of Renewable Energy in India, Solar Energy: Solar Water Heater Systems, Solar Air dryer Systems, Solar Photo-voltaic Systems, Solar Cookers and Solar ponds, Wind Energy: Selection Criteria for Wind farms, Wind Mills, Bio Gas Plants-Construction and Operation, Bio Mass Gasification, Bio Mass Briquetting; Mini and Micro Hydel Power Plants, Geo-Thermal Energy, Ocean Energy.	8	CO2	
3	ENERGY CONSERVATION AND MANAGEMENT: Actual energy requirement assessment techniques of any industry and energy consumption status, possibility of reduction of energy consumption by using various energy conservation techniques or equipments e.g. variable speed drives, constant voltage transformers, electronic chokes, CFLs etc.	7	CO3	
4	ENERGY CONSERVATION INSTRUMENTATION:Importance of instrumentation and control techniques in the energy conservation and management, SCADA systems, Instruments required to carry out energy audit exercise, optimal mixing of renewable energy sources and load rationalization for reducing load on conventional energy sources.	7	CO4	

# **TEXT/REFERENCE BOOKS:**

- 1. Hand Book of Industrial Energy Conservation by S David; Van Nostrand Reinhold Publishing Company.
- 2. Energy Technology by S Rao & B. B. Parulkar; Khanna Publishers
- 3. Solar Energy by S. P. Sukhatme; TMH publications
- 4. Solar Energy & Energy Conservation by Sawhney&Maheshwari; PHI publication.

**Note for Examiner**(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

# Note for Students:



- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

-----

# **Program Name: M. Tech.-Electrical and Instrumentation Engineering**

Course	Code:	Course Name: Program Elective-II		L	Τ	P	С	
EI-PE-1	02	PROCESS MODELLING ANI	D CONTROL(vi)	3	-	-	3	
Year an	d	1 st Yr.	Contact hours per we	act hours per week: (3Hrs)				
Semeste	er	2 nd Semester	Exam: (3 Hrs)	• • • •				
Pre-req	uisite of	Mathematics Control System	Evalu	ation				
course		Mathematics,Control System	CIE: 40		SE	E: 60		
Course	Objectives	:						
1. Stud	y the Math	ematical Modelling, Process dynamic of	various type of process	es.				
2. Simu	ulation and	Modelling of different process control s	ystem					
3. Stud	y of variou	s control system Models and Design of	cross controllers and set	lection	n of l	loop ı	using	
RGA	Ă.					-	-	
4. Stud	y the conce	pt, analysis and design of Adaptive and	Learning system.					
5. Stud	y the conce	pt, analysis and design of Real time con	trol system					
6. Stud	y of Distrib	outed computing systems, Software Proc	ess models					
Course	Outcomes:	On completion of the course, student w	ould be able to:					
CO1	Ability to	understand and to derive Modelling, Pro	cess dynamic of variou	s type	of p	roces	ses.	
CO2		understand the various control system M			-			
	selection of	of loop using RGA.	č					
CO3		understand concept, analysis and design	of Adaptive and Learning	ing sys	stem			
CO4		understand concept, analysis and design						
CO5	•	implement new and emerging technolog			in re	liable	2,	
		cost effective solution for industry proble	•					

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Simulation and Modelling: Importance of Simulation, Mathematical Modelling, Process dynamic of fluid flow and heat transfer system, Mass transfer dynamics and distillation column, Reaction kinetics of chemical processes. Process control aim and objectives classification of process control system, techniques for process control. Modelling and simulation for plant Automation-case studies.	8	CO1
2	Predictive control system: Model based control system (Internal mode control, Model Predictive control and Process Model based control), Plant wide Control, Inferential control, Multiple-loop (Multivariable) control system. Interaction and Decoupling of control loops. Design of cross controllers and selection of loop using RGA. Prosperities and application of RGA.	10	CO2
3	ADAPTIVE AND LEARNING CONTROL SYSTEM: Basic principles of Adaptive and learning systems, MRAC & STAC, Adaptive control	10	CO3 CO5



	techniques, Types of Learning- Supervised and Unsupervised Learning control system, On-line and Off-line Learning control system.		
4	Real time control system: Characteristics and classes of real time systems, program classification: Sequential, multitasking real time, concurrency and synchronization. Design strategies, Reability, fault detection, fault tolerance real time operating system, Distributed computing systems, Software Process models (Build and mix model, waterfall, rapid prototyping, Incremental and Spiral model) Design techniques and tools	10	CO4 CO5

### TEXT BOOKS: REFERENCE BOOKS:

- 1. Techniques of Process Modelling, Simulation and Control for Engineer by Astrom, Luyben, McGraw Hill.
- 2. Computer Controlled System by Astrom, K.J and B. Wittenmark PHI
- 3. Chemical Process Control by Stephanopolous PHI
- 4. Process Control Modeling ,Design and Simulation by B.WayaneBequette, PHI

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

# Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

·

<b>Course Code:</b>	Course Code: Course Name: Power Quality Monitoring and			Τ	P	С
EI-PC-104	Conditioning	-	3	-	-	3
Year and	1 st Year.	Contact hours	per v	veel	<b>x:</b> ( 3	BHrs)
Semester	2 nd Semester	Exam: (3 Hrs)				
Pre-requisite	Bower System Floatrical Machines	E	alua	tion	l	
of course	Power System, Electrical Machines	<b>CIE: 40</b>		S	EE:	60
<b>Course Objectiv</b>	ves:					
1. To familiariz	te the students about different power qualit	y issues to be reso	lved.			
2. To understan	d the convention codes /guidelines issues	by bodies like IEE	E, IE	C et	c rel	ated to
voltage, freq	uency and harmonics.					
3. To mentor th	e students about methods of power quality	assessment.				
4. To monitor t	he power quality in the power system.					
5. To model a s	system for power quality enhancement.					
<b>Course Outcom</b>	es: On completion of the course, student v	would be able to:				

# Program Name: M.Tech.-Electrical and Instrumentation Engineering



CO1 CO2 CO3 CO4 CO5	<ul> <li>Have the knowledge of various power quality issues in power system.</li> <li>Work with international standards/guidelines related to power quality issue</li> <li>Quantitative analysis of power quality in system.</li> </ul>	ies.					
CO4	Quantitative analysis of power quality in system.						
CO5	Monitor the power quality through measurement of various system param	eters.					
	Decide the compensators and filters to keep the power quality indice	es witl	hin the				
	standards.	-	-				
Module	COURSE SYLLABUS	Hrs	Cos				
No	CONTENTS OF MODULE	1115	COS				
	UNIT I - POWER QUALITY - AN OVERVIEW: Power Quality						
	definition, PQ characterization: Transients, short duration and long						
	duration voltage variations, Voltage imbalance, waveform distortion,						
1	Voltage fluctuations, Power frequency variation-Power acceptability	6	CO1				
1	curves: CBEMA, ITIC - Sources for Electric Power Quality problem in	U	COI				
	power system: poor load power factor, Nonlinear and unbalanced loads,						
	DC offset in loads, Notching in load voltage, Disturbance in supply						
	voltage – Power quality standards and Guidelines.						
	VOLTAGE VARIATIONS: Voltage Sags - Magnitude & duration-Types-	_					
	Sources of sags - Estimation of Voltage sag performance: Transmission	7					
2	system and Utility distribution system, Effect of sag on AC Motor Drives,		CO2				
	Single-Phase Domestic and Office Loads, Monitoring and mitigation of						
	voltage sag. Origin of Long & Short interruption -influence on various						
	equipment.						
	POWER QUALITY ANALYSIS: Measurements of Voltage, Current,						
	Power, Energy, power factor- Time domain methods and Frequency						
3	domain methods: Laplace's, Fourier and Hartley transform – The Walsh	7	cor				
3	Transform – Wavelet Transform. Harmonic Distortion, Voltage versus Current Distortion, Harmonics versus Transients, Harmonic Indexes,	7	CO3				
	Harmonic Sources from Commercial Loads, Harmonic Sources from						
	Industrial Loads.						
	POWER QUALITY MONITORING: Monitoring considerations: Power						
	line disturbance analyser, power quality measurement equipment,						
	harmonic / spectrum analyser, flicker meters, disturbance analyser.						
4	Analysis of power outages, Analysis of unbalance: Symmetrical	8	CO4				
7	components of phasor quantities, Instantaneous symmetrical components,	0	004				
	Instantaneous real and reactive powers, Analysis of distortion: On–line						
	extraction of fundamental sequence components from measured samples						
	POWER QUALITY ENHANCEMENT: Harmonic filters: passive, Active						
	and hybrid filters – Custom power devices: Load compensation using						
5	DSTATCOM, Voltage regulation using DSTATCOM, protecting sensitive	8	CO5				
č	loads using DVR, UPQC –control strategies: P-Q theory, Synchronous						
	detection method – Custom power park.						

- 1. Understanding Power Quality Problems-Voltage sag & Interruptions, Math Bollen H.J., IEEE Press, 2000.
- 2. Power Quality Enhancement Using Custom Power Devices, Arindam Ghosh, G. Ledwick, Kluwer Academic Publishers, 2002.



- 3. Electrical Power Systems Roger.C.Dugan, Mark.F.McGranagham, Surya Santoso, H.WayneBeaty, Quality", McGraw Hill, 2003.
- 4. HVDC and FACTS Controllers: Applications of Static Converters in Power Systems, Vijay K Sood, Springer
- 5. Facts Controllers in Power Transmission and Distribution, K R Padiyar, TunbridgeWells : Anshan, ©2009.

## **Reference Books:**

- 1. Electric Power Quality, Heydt G.T., Stars in a Circle Publications, 1994(2nd edition).
- 2. Handbook of Power Quality, Angelo Baggini '- Wiley

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

## Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

_____

<b>Program Name: M</b>	TechElectrical a	and Instrumentation	Engineering
------------------------	------------------	---------------------	-------------

Course Code: EI-PC-106	Course Name: PLC & DCS	Course Name: PLC & DCS		
Year and	1 st Yr.	Contact hours per	r week: (3Hrs)	
Semester	2 nd Semester	Exam: (3 Hrs)		
Pre-requisite	Control System	Eval	luation	
of course	Control System	<b>CIE: 40</b>	SEE: 60	
<b>Course Object</b>	ives:			
1. Study the co	oncept of Direct Digital Control			
2. Study and d	evelopment of position and velocity con	trol algorithm and their	applications in	
3. different co	ntrol schemes	-		
4. Study the cl	naracteristic function of PLC, its Archite	ecture and various PLC	programming	
languages a	nd Demonstratevarious PLC programmi	ng skill for industrial ap	pplications.	
5. Detail study	and applications of Distributed process	s control system and Ur	derstanding of	
various auto	pmotive standards and Protocols used in	PLC network and DCS		
6. Study DCS	supervisory control techniques & consid	lerations(Algorithms), (	Concept of field	
buses and th	neir applications			
7. Detail study	and applications of Supervisory control	ol and Data Acquisition	system(SCADA)	
<b>Course Outcon</b>	nes: On completion of the course, stude	nt would be able to:		
CO1 Abili	ty to understand the concept of Direct di	igital control and able to	o development	
positi	on and velocity control algorithm and th	neir applications in diffe	erent control	
schemes				



CO2	Able to learn the various PLC programming languages and Demonstratevarious PLC
	programming skill for industrial applications.
CO3	Able to learn and analyze the various principles & concepts of Distributed process
	control system and Understanding of various automotive standards and Protocols used
	in PLC network and DCS
CO4	Acquire the knowledge of DCS supervisory control techniques, the concept of field buses
	and their Industrial applications.
CO5	To implement new and emerging technologies to analyze, design, maintain reliable, safe,
	and cost effective solution for industry problems.

Modul e No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Direct Digital Control – Structure and Software: The position algorithm (simplifying PID control equation, deriving position algorithm); the velocity algorithm (velocity algorithm, deriving the velocity algorithm); Multi variable control (Cascade control using velocity algorithm, radio control using velocity algorithm).	8	CO1
2	Discrete State Process Control System: Development and analysis of ladder diagram, logic diagram from ladder diagram, Function description of PLC, Programming fundamentals, hardware and system sizing and selection, PLC peripherals, programming, PLC networking, PLC programmable languages, ladder diagrams language, Boolean mnemonics language, functional block language, PLCs.	10	CO2 CO3
3	Distributed Process Control System: Functional requirement of DPCS, DCS configurations/ architecture, data highway cables, field buses, protocols used in DCS, Software configuration: controller function configuration, multiplexer and party line system.	10	CO3 CO4 CO5
4	Supervisory control and Data Acquisition system (Functions of SCADA, channel scanning, conversion to engineering units, data processing, distributed SCADA system, Remote terminal unit). DCS supervisory computer and configurations: supervisory computer function, supervisory control techniques and consideration, Supervisory control algorithm, DCS system integration with PLC and computer. Fiber optic local area networks – map and top.Popular Distributed Control Systems: CP 80 system.	9	CO3 CO4 CO5

## **TEXT BOOKS/REFERENCE BOOKS:**

- 1. Computer Aided Process control by S.K. Singh PHI
- 2. Computer Based Industrial Control by Krishna Kant PHI
- 3. Instrument Engineers Handbook- Process Control by Bela G. Liiptak
- 4. Microprocessor in Process control by C.D. Johnson
- 5. Principles and Practice of Automatic Process Control by Carlos& A Smith

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.



**3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

#### Note for Students:

_____

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Program Name: M. TechElectrical and Instrumentation Engineering	g
	•

-----

Course EI-PC-1		Course Name: Embedded System Design			Τ	P	C 3
Year an		1 st Yr.	Contact hours per we	3 ek: (3	- 3 Hrs	- 5)	
Semeste	r	2 nd Semester	Exam: (3 Hrs)			<i>,</i>	
Pre-requ	uisite		Evalua	ation			
of cours	e	Microprocessor and Microcontrollers	CIE: 40		SE	E: 60	)
Course	Objectiv	ves:					
1. To p	rovide ai	n overview of Design Principles of Embedo	ded System.				
2. To p	rovide cl	ear understanding about the role of firmwa	are, operating systems in	corre	latio	n wi	th
hardy	ware sys	tems.					
Course	Outcom	es: On completion of the course, student w	ould be able to:				
CO1	Expected to understand the selection procedure of Processors in the Embedded domain.						
CO2	Design Procedure for Embedded Firmware.						
CO3	Expected to visualize the role of Real time Operating Systems in Embedded Systems						
CO4	Expecte	ed to evaluate the Correlation between task	synchronization and late	ency i	ssue	s	

Modul e No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs		
1	<b>Introduction to Embedded Systems</b> : Definition of Embedded System, Embedded Systems Vs General Computing Systems, History of Embedded Systems, Classification, Major Application Areas, Purpose of Embedded Systems, Characteristics and Quality Attributes of Embedded Systems.	7	CO1		
2	Typical Embedded System: Core of the Embedded System: General Purpose and Domain Specific Processors, ASICs, PLDs, Commercial Off-The-Shelf Components (COTS), Memory: ROM, RAM, Memory according to the type of Interface, Memory Shadowing, Memory selection for Embedded Systems, Sensors and Actuators, Communication Interface: Onboard and External Communication Interfaces.				
3	<b>Embedded Firmware</b> : Reset Circuit, Brown-out Protection Circuit, Oscillator Unit, Real Time Clock, Watchdog Timer, Embedded Firmware Design Approaches and Development Languages.	7	CO2 CO3		
4	<b>RTOS Based Embedded System Design:</b> Operating System Basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task Scheduling.	6	CO3		
5	<b>Task Communication:</b> Shared Memory, Message Passing, Remote Procedure Call and Sockets, Task Synchronization: Task Communication/Synchronization	8	CO3 CO4		

 $_{\text{Page}}9522$ 

#### **TEXT BOOKS:**

- 1. Introduction to Embedded Systems Shibu K.V, Mc Graw Hill. **REFERENCE BOOKS:**
- 1. Embedded Systems Raj Kamal, TMH.
- 2. Embedded System Design Frank Vahid, Tony Givargis, John Wiley.
- 3. Embedded Systems Lyla, Pearson, 2013
- 4. An Embedded Software Primer David E. Simon, Pearson Education.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 3. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

#### Note for Students:

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Course		Course Name: ADVACED POWER	SYSTEM	L	Т	Р	С
EI-PC-1	10			3	0	-	3
Year an	d	1 st year	t st year Contact hours per week: (3Hrs)				
Semeste	er	2 nd Semester	Exam: (3hrs.)				
Pre-req	uisite of	<b>Basics of Power System</b>	Eval	uation	l		
course			CIE: 40		SE	<b>EE: 60</b>	
Course	Objective	s:	· · · · ·				
1. To s	tudy basics	s PU theory and modelling of electrical	networks.				
2. To s	tudy worki	ing of theory of load flow parameters ar	nd its methods.				
3. To s	tudy the tr	ansient phenomena and type of faults in	power system.				
4. To in	ntroduce th	ne concept of transient stability theory a	nd its method.				
Course	Outcomes	: On completion of the course, student	would be able to:				
CO1	To unders	stand the basic concept of PU system fo	r electrical circuits and	its mo	delli	ings.	
CO2	To impar	t basic technical knowledge of load flow	v studies and its iteratio	n solu	tion	metho	ds.
CO3	To unders	stand and analyze various types of fault	s for different electrical	equip	men	ts.	
CO4	To impar	t a technical knowledge of transient st	ability in electrical sys	stem a	nd s	olutior	ı of its
	stability equations.						
Module	Module COURSE SVLLABUS					00	
No		CONTENTS OF MO	DULE			Hrs	COs
1	SYSTE	MODELLING: System modellir	ng of synchronous ma	achines	S,	8	COL
1	transfor	mers, loads etc, per unit system, sin	gle line diagram of el	lectrica	ıl	ð	CO1



	networks, single phase impedance diagrams. Formulation of impedance and admittance matrices for the electrical networks.		
2	<b>LOAD FLOW STUDIES:</b> Data for the load flow studies, Swing Bus, Formulation of simultaneous equations, Iterative solutions by the Gauss- Seidal method and Newton Raphson Method.	8	CO2
3	<b>FAULT ANALYSIS:</b> Transients on transmission line, short circuit of synchronous machine, selection of circuit breakers, Algorithm for short circuit studies, Symmetrical Component transformation, and construction of sequence networks of power systems. Symmetrical Analysis of Unsymmetrical Line-to-ground (LG), Line-to line (LL), double line to ground (LLG) faults using symmetrical components.	8	CO3
4	<b>POWER SYSTEM STABILITY:</b> Steady state stability, Dynamics of a synchronous machine, Power angle equations, Transient stability, equal area criterion, Numerical solution of swing equation, factors effecting transient stability.	8	CO4

### **REFRENCE BOOKS RECOMMENDED:**

- 1. O.I.Elgerd, "Electric Energy Systems Theory", Tata McGraw Hill
- 2. I.J Nagrath, D.P. Kolthari, "Modern Power System Analysis", Tata McGraw Hill
- 3. W.D.Stevenson, "Elements of Power System Analysis", McGraw Hill
- 4. I.J. Nagrath and D.P, Kothari, "Power System Engineering", Tata McGraw Hill
- 5. J. Arrillaga and C.P. Arnold, "Computer Analysis of Power Systems", John Wiley & Sons
- 6. W. Stagg Glenn and H. Ei-Abiad Ahmed "Computer Methods in Power System Analysis", Tata McGraw Hill
- 7. G.L. Kusic, "Computer Aided Power System analysis", Prentice Hall, India

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

### Note for Students:

Page 9524

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.
  - ·

Course Code:	Course Name: Advanced Power System Lab		L	T	Р	С
<b>EI-PRPC -102</b>					3	1.5
Year and	1 st Year Contact hours per wee			3Hr	s )	
Semester	2 nd Semester Exam: (3hrs.)					



Pre-requisite of		Pagia of Dower System	Evaluation					
course		Basic of Power System	CIE: 20	<b>SEE:30</b>				
Course Objectives:								
1. To stu	dy the var	ious parameters of power system like A	BCD, Y-Bus, Z-Bus.					
2. To lea	urn differei	nt methods for load flow analysis.						
3. To lea	ırn fault ar	alysis methods						
4. To lea	ırn transiei	nt stability methods						
Course O	utcomes: (	On completion of the course, student we	ould be able to:					
CO1	To appri	se with the various parameters of power	system like ABCD, Y	-Bus, Z-Bus.				
CO2	CO2 To develop a technical skill to analyze the load flow in power system							
CO3	O3 To develop a technical skill to analyze the transient stability of electrical system.							
CO4								

Expt.	COURSE SYLLABUS	COa
No	CONTENTS OF MODULE	- COs
1	To compute ABCD parameters and Regulation of a $3-\Phi$ transmission line model.	
2	To study Formation of Admittance Matrices (Y-BUS).	
3	To study Formation of Impedance Matrices (Z-BUS).	
4	To study Load Flow Analysis using GAUSS SEIDAL Method.	
5	To study Load Flow Analysis using NEWTON-RAPHSON Method.	
6	To perform Short circuit analysis of $3-\Phi$ synchronous machine.	CO1
7	To study Power circle diagrams of a $3-\Phi$ transmission line model.	CO2
8	To perform Transient Stability Analysis for Single Machine connected to Infinite	CO3
8	Bus by Point by Point method.	CO4
9	To study Load – Frequency Dynamics of Single Area Power Systems.	
10	To study Load – Frequency Dynamics of Two Area Power Systems.	

	-104	Course Name: Embedded Systems Lab		L         T         P         C           -         -         3         1.5	
Year and	l	1 st Yr.	Contact hours per wee	ek: (3Hrs)	
Semester		2 nd Semester	Exam: (3 Hrs)		
Pre-requi	isite of	Microprocessor and Microcontrollers	Evalua	tion	
course		microprocessor and microcontrollers	CIE: 20	<b>SEE: 30</b>	
Course O	)bjectives	:			
1. To pro	ovide an o	verview of Design Principles of Embedo	ded System.		
2. To pro	ovide clea	r understanding about the role of firmwa	re, operating systems in	correlation with	
hardw	are system	ns.			
Course O	)utcomes:	On completion of the course, student w	ould be able to:		
CO1 1	Expected to understand the selection procedure of Processors in the Embedded domain.				
CO2 1					
CO3 1	Expected to visualize the role of Real time Operating Systems in Embedded Systems				
CO4 1	Expected to evaluate the Correlation between task synchronization and latency issues				



Expt.	COURSE SYLLABUS	COs
No	CONTENTS OF MODULE	COS
1	Functional Testing Of Devices: Flashing the OS on to the device into a stable	
1	functional state by porting desktop environment with necessary packages.	
2	Exporting Display On To Other Systems: Making use of available laptop/desktop	
Z	displays as a display for the device using SSH client & X11 display server.	
	GPIO Programming: Programming of available GPIO pins of the corresponding	CO1
3	device using native programming language. Interfacing of I/O devices like	CO2
	LED/Switch etc., and testing the functionality.	CO3
	Interfacing Chronos eZ430: Chronos device is a programmable texas instruments	CO4
4	watch which can be used for multiple purposes like PPT control, Mouse operations	
	etc., Exploit the features of the device by interfacing with devices.	
	ON/OFF Control Based On Light Intensity: Using the light sensors, monitor the	
5	surrounding light intensity & automatically turn ON/OFF the high intensity LED's by	
	taking some pre-defined threshold light intensity value.	
	Battery Voltage Range Indicator: Monitor the voltage level of the battery and	
6	indicating the same using multiple LED's (for ex: for 3V battery and 3 LED's, turn on	
	3 LED's for 2-3V, 2 LED's for 1-2V, 1 led for 0.1-1V & turn off all for 0V)	
	Dice Game Simulation: Instead of using the conventional dice, generate a random	
7	value similar to dice value and display the same using a 16X2 LCD. A possible	
,	extension could be to provide the user with option of selecting single or double dice	
	game.	
	Displaying RSS News Feed On Display Interface: Displaying the RSS news feed	
8	headlines on a LCD display connected to device. This can be adapted to other	
-	websites like twitter or other information websites. Python can be used to acquire	
	data from the internet.	
0	Porting Openwrt To the Device: Attempt to use the device while connecting to a	
9	wifi network using a USB dongle and at the same time providing a wireless access	
	point to the dongle.	
10	Hosting a website on Board: Building and hosting a simple website (static/dynamic)	
10	on the device and make it accessible online. There is a need to install server (eg:	
	Apache) and thereby host the website.	
11	<b>Webcam Server:</b> Interfacing the regular usb webcam with the device and turn it into fully functional ID webcam & test the functionality	
	fully functional IP webcam & test the functionality.	
12	<b>FM Transmission:</b> Transforming the device into a regular fm transmitter capable of transmitting audio at desired frequency (generally 88-108 Mhz)	
	<b>Note:</b> Devices mentioned in the above lists include Arduino, Raspbery Pi,	
	Beaglebone	
	Cycle 1: Programming in 8051	
1	Study of 8051 Evaluation Board Trainer kit and Keil IDE Software Tool.	
2	Serial Data Transmission	
3	Interface switches and LEDs	
4	Interface LCD	
5	Interface 4*4 matrix keyboard	
6	Interface stepper motor	
7	Interface 7 Segment Display using I2C	
8	ADC, DAC Interface	
0	השל, שהל ווונוומני	



	Cycle 2: Programming in PIC Processor			
9	Configure and Control General Purpose I/O Pins			
10	Interfacing LED & Switch Interface			
11	2*16 LCD Display			
12	Serial Communication			
13	I2C Interface & EEPROM Interface			
14	Buzzer Interface			
15	SD-MMC Card Interface			
Note: all the experiments are to be carried out independently by each student with different				
specifications. At least 12 experiments are to be carried out.				

- 1. Use the IDE tool effectively for developing and executing the programs using 8051.
- 2. Comprehend the usage of on-chip timers and serial communication of 8051 and their interrupts using programs
- 3. Interface devices like ADC, DAC, LCD, and Stepper Motor to 8051 and develop real time projects.
- 4. Use the keil software for the development of logic, proteus software for hardware simulation and flash magic for downloading the code on to the target system.
- 5. Develop the logic to interface devices like temp sensor, stepper motor, Buzzer to ARM microcontroller and analyse the working of GPIO, on-chip peripherals of ARM

## Program Name: M. Tech.-Electrical and Instrumentation Engineering

_____

	Course Code: CI-PC-201 Course Name: Smart & Micro Sensor Design		L 3	T -	P -	C 3		
Year an	d	2 nd Yr.	Contact hours per wee	<b>k:</b> (?	3 Hrs	5)		
Semeste	r	3 rd Semester	Exam: (3 Hrs)					
Pre-req	uisite of	VI SI Degian	Evalua	tion				
course		VLSI Design	CIE: 40	SEE: 60				
Course	Objectives	:						
3. It ai	ms to equip	the students with MEMS fabrication						
4. To p	provide ade	quate knowledge about tools at an interr	nediate to advanced level	l.				
5. Top	provide exp	osure to students towards advanced leve	el of sensors					
Course	<b>Outcomes:</b>	On completion of the course, student w	ould be able to:					
CO1	Understand of MEMS fabrication							
CO2	Apply various fabrication procedures							
CO3	Analyze the design of sensors							
CO4	Design and develop smart and intelligent systems							

Modul e No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	MEMS: Introduction, principle of MEMS, Example of Mems, small and large scaling, fabrication technology, micromachining: photolithography, thin film deposition and doping, wet chemical etching, waferbonding, plasma etching, surface micromachining.	8	CO1, CO2

Page 9527



2	Mechanics of Membrane and beams: dynamics, string, beams, diaphragms and membrane Transduction of Deformation: Metal strain gauges, Semiconductor Strain Gauges, Capacitive Transducers, Force and Pressure sensors: Force Sensors, Pressure sensors, Thermocouples Semi conducting Thermo resistors, Fiber Optical sensors, concept of smart and intelligent sensor, bio sensors.	8	CO3, CO4
3	Acceleration Sensors: introduction, Bulk Michromachined Accelerometers, surface Michromachined accelerometers, force feedback, angular rate sensors, Flow Sensors: The laminar boundary layer, Heat Transport in the limit of very small Reynolds Numbers, Thermal Flow Sensors, Skin Friction Sensors, Dry fluid Flow Sensors, wet fluid flow sensors, Resonant Sensors: Basic principle and physics.	8	CO3
4	Definition of intelligence and of intelligent instrumentation system: Features characterizing intelligence and Features intelligent instrumentation, component of intelligent instrumentation. Design of intelligent instrumentation systems. Smart and Intelligent transmitters, smart features standard for smart sensing, setting standards for smart sensors and system, IEEE 1451.1, IEEE 1451.2, STIM, IEEE P1451.3, IEEEP 1451.4, Field buses systems.	8	CO4

- 1. E.O. Doeblin Measurement System Application and Design, McGraw Hill
- 2. Beeweth and Buck- Mechanical Measurement, Nares Puti
- 3. Nortan- Hand Book of transducers, PHI
- 4. Conside-Process and industrial instrumentation, McGraw Hill
- 5. Mechanical Microsensors, M.Elwenspoek, R. Wiegerink, Springer

Note for Examiner(s): Question paper will comprise three sections,

- **4.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 5. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- 6. Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

### Note for Students:

- **3.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **4.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.


<b>Course Code:</b>	Course Name: Program Elective-III	L	Т	Р	С
EI-PE-203	DIGITAL SIGNAL PROCESSING(i)	3	0	-	3



Year an	d	2 nd year	Contact hours per w	eek: (3Hrs)	
Semeste	er	3 rd Semester	Exam: (3hrs.)		
Pre-req	uisite of	<b>Basic Engineering Mathematics</b>	Evalu	ation	
course			CIE: 40	SEE: 60	
Course	Objectives	:			
1. To st	tudy the dis	crete linear Time Invariant systems in Z	domain and in frequen	cy domain.	
2. To s	tudy the ba	sic of Discrete-Fourier Transform (DF	Γ), Fast Fourier Transf	orm (FFT) algorithms	
and i	its applicati	on.			
3. To s	study differ	ent structure realization of Finite Imp	oulse Response system	s and Finite Impulse	
Resp	onse syster	ns.			
4. To st	tudy the dig	gital filters for filtering applications.			
5. To st	tudy the Mu	ulti-rate digital Signal Processing technic	ques and its application	S	
Course	Outcomes	: On completion of the course, student w	ould be able to:		
CO1	To analyz	e the Discrete linear Time Invariant systemeters	ems in Z domain and in	frequency domain.	
CO2	To unders	tand the different structure realization of	f Finite Impulse Respo	nse systems and Finite	
	Impulse R	lesponse systems.			
CO3	To learn	the basic of Discrete-Fourier Transfe	sform (DFT), Fast Fourier Transform (FFT		
	algorithm	s and its applications.			
<b>CO4</b>	To Design	n digital filters for filtering applications.			
CO5	To apprise	e with Multi-rate Signal Processing techn	niques.		

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	<ul> <li>Introduction of Discrete Time Signals and Systems: Discrete time systems, Analysis of discrete time linear time-invariant systems, Discrete time systems described by difference equations, Implementation of discrete system, Correlation of discrete time signals, Z-transform and properties of Z-transform, Rational Z-transformation, Inverse Z-transform, Analysis of linear time invariant systems in Z-domain.</li> <li>Frequency Analysis of Signals and Systems: Frequency analysis of continuous time signals, Frequency analysis of discrete time signals, Properties of Fourier Transform for discrete time signals, Frequency domain characteristics of linear time invariant systems, linear invariant systems as frequency selective filters.</li> </ul>	8	CO1
2	<b>The Discrete Fourier Transform:</b> Frequency domain sampling, Properties of Discrete Fourier Transform (DFT), discrete Frequency analysis of signals using the DFT.FFTalgorithm : Decimation-in-time (DIT) algorithm andDecimation-in-frequency(DIF) algorithm, Linear filtering methods based on DFT. <b>Realization of digital systems</b> : Structure realizationsmethods of FIR and IIR system.	8	CO2,CO3
3	<b>Design of Digital Filters:</b> Generalized characteristics of discrete filters, Design of Finite Impulse Response (FIR) filters, FIR digital filter design using Fourier series method, window design techniques. Optimal equi- ripple design techniques, frequency sampling design techniques. Design of Infinite Impulse Response (IIR) filters from analog filters, Comparison of IIR and FIR filters.	8	CO4

 $_{\text{Page}}9529$ 

Program Name: M. Tech.-Electrical and Instrumentation Engineering (from 2020 -21 for UTD Only)

Starter, an antis

4	<b>Multirate Digital Signal Processing:</b> Introduction, decimation by a factor D, Interpolation by a factor I, sampling rate conversion by a rational factor I/D, implementation of sampling rate conversion, multistage implementation of sampling rate conversion, sampling rate conversion of Band pass signals, sampling rate conversion by an arbitrary factor, applications of multi rate signal processing.	8	CO5
---	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---	-----

### **Suggested Text / Reference Books:**

- 1. John G. Proakisand Dimitris G. Manolakis, "Digital Signal Processing", PHI Pub.
- 2. Allan Y. Oppenhein& Ronald W. Schater, "Digital Signal Processing", PHI, 2004.
- 3. J. R. Jhohnson, "Intorduction to Digital Signal Processing", PHI, 2000.
- 4. B. Somanthan Nair, "Digital Signal Processing: Theory, Analysis & Digital Filter Design", PHI, 2004
- 5. Sanjit K. Mitra, "DSP a Computer based approach", TMH, 2nd Ed., 2001.
- 6. S. Salivahanan, C. Gnanapriya, "Digital Signal Processing", McGraw Hill.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

### Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.
  - _____

<b>Course Code:</b>	Course Name:Program Elective-I	ourse Name:Program Elective-III L T P C						
EI-PE-203	Reliability Engineer	ring(iii)	3	0	-	3		
Year and								
Semester3rdExam: (3hrs.)								
Pre-requisite of	<b>Basic Engineering Mathematics</b>	Ev	alua	tion				
course		CIE: 40			SEI	E: 60		
<b>Course Objective</b>	es:							
1. To study the	basic concept of reliability, maintaina	bility and availability e	engir	neeri	ng.			
2. To study the	evaluation techniques of engineering	models and reliability i	mpr	over	nent	methods.		
3. To study the	concept of fault tree analysis and opti	mization techniques.						
4. To study eval	uation model for reliability, maintain	ability, availability test	ing.					
5. To study the	applications of fuzzy theory and neur	al networks to reliabilit	y en	gine	ering	<b>z</b> ,		
<b>Course Outcome</b>	s: On completion of the course, stude	ent would be able to:		-				
CO1 To under	rstand the basic concept of reliability,	maintainability and av	ailal	bility	v eng	vineering		



CO2	To understand the evaluation techniques of engineering models and reliability im	proven	nent			
	methods.					
CO3	To learn the fault tree analysis and optimization techniques.					
<b>CO4</b>	Ability to do testing and evaluate the reliability, maintainability, availability of engineering					
	models.					
CO5	To study the applications of fuzzy theory and neural networks to reliability engine	eering,	-			
Modul	COURSE SYLLABUS	Hrs	COs			
e No	CONTENTS OF MODULE	1115	COS			
1	Review of basic concepts in reliability engineering, reliability function, different reliability models etc., and reliability evaluation techniques for complex system: Non path set and cutest approaches, path set and cut set approaches, different reliability measures and performance indices, modeling and reliability evaluation of system subjected to common cause failures.	7	CO1			
2	Reliability improvement, Reliability allocation/apportionment and redundancy optimization techniques, Fault tree analysis.	7	CO2, CO3			
3	Maintainability Analysis: measure of system performance, types of maintenance, reliability centered maintenance, reliability and availability evaluation of engineering systems using Markov models. Reliability testing, Design for reliability and maintainability.	7	CO1, CO4			
4	Applications of fuzzy theory and neural networks to reliability engineering, Typical reliability case studies.	7	CO5			

### **Suggested Text / Reference Books:**

- 1. M.L Shooman, "Probabilistic reliability- an engineering approach" RE Krieger Pub, 1990.
- 2. K.K Aggarwal, "Reliability Engineering" Springer Pub, 1993.
- 3. E. Balaguruswamy, "Reliability Engineering" McGraw hill, 2002.
- 4. R. Ramakumar, "Engineering Reliability" Prentice, NJ, 1993.

Note for Examiner(s): Question paper will comprise three sections,

- **1.** Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- **2.** Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

### Note for Students:

Page 953

- 1. Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.
  - · ------

<b>Course Code:</b>	Course Name: Program Elective-III,		L	Τ	Р	С
EI-PE-203	Electrical Vehicle Engineering (iv)		3	0	-	3
Year and	2 nd Year	Contact hours per week: (3Hrs )				
Semester	3 rd Semester	Exam: (3hrs.)				



Pre-requ	isite Electrical Machines, Power	Ev	aluation		
of course	,	CIE: 40	S	SEE: 6	0
	Engineering				
Course C	Objectives:				
	introduce the upcoming technology of electronic				
	study the basics theory, operation and mode		ystem.		
3. To	study different topologies of electric Hybrid	l system			
	study electric propulsion system in electric l				
Course C	Outcomes: On completion of the course, stude	ent would be able to:			
CO1	To familiarize with upcoming technology of	f electric and hybrid syst	em		
CO2	To understand the basics theory, operation a	and modeling of electric	Hybrid sys	stem.	
CO3	To understand and analyze different drive t	rain topologies electric o	of Hybrid s	ystem	
CO4	To learn the role of electric propulsion system in electric hybrid system andits application.				cation.
CO5	To impart basic technical knowledge of electric hybrid vehicle system and apply it				apply it to
	technological fields.				
Module	COURSE SYLL	ABUS		Hrs	COs
No	CONTENTS OF M			1115	COS
	Introduction: Introduction to hybrid electri				
	electric vehicles, social and environmental i				
1	vehicles, impact of modern drive-trains or	<b>UI</b> II		7	CO1,CO2
1	vehicles: basics of vehicle performa	· 1		,	001,002
	characterization, transmission characteristic	cs, and mathematical n	nodels to		
	describe vehicle performance.				
	Hybrid Electric Drive:Hybrid electric driv	1	•	7	001
2	traction, introduction to various hybrid dr	1 0 1	wer flow	7	CO3
	control in hybrid drive-train topologies, fuel	<u> </u>	1 '		
	Electric Propulsion Unit:Introduction to	-			
3	hybrid and electric vehicles, configuration			7	CO4
3	configuration and control of induction m			/	C04
	control of permanent magnet motor drives	-			
	switch reluctance motor drives, drive system	•	a hottom		
4	<b>Case Studies:</b> Design of a hybrid electric ve electric vehicle (BEV).	enicle (HEV), design of	a Dattery	5	CO5

## Suggested Text / Reference Books:

- 1. Iqbal Hussein, "Electric and Hybrid Vehicles, Design Fundamentals", CRC Press, 2003.
- 2. MehrdadEhsani, YimiGao, E Sebastian Gay, Ali Emadi, "Modern Electric, Hybrid Electric and Fuel Cell VehiclesFundamentals", Theory and Design, CRC Press, 2004.
- 3. James Larminie, John Lowry, "Electric Vehicle Technology Explained", Wiley, 2003.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.



#### Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

## Program Name: M. Tech.-Electrical and Instrumentation Engineering

Course Co	ode:	Course Name: Program Elective III		L T P C	
EI-PE-203		System Theory(	v)	3 3	
Year and 2 nd Yr. Contact hours per week: (3 Hrs					
Semester		3 rd Semester	Exam: (3 Hrs)		
Pre-requis	site of	<b>Control Systems</b>	Evalua	ation	
course		Control Systems	<b>CIE: 40</b>	SEE: 60	
Course Ob	ojectives				
1. It aims	to equip	the students with advanced concepts of	control		
2. To prov	vide adeq	uate knowledge about tools at an interm	nediate to advanced leve	1.	
3. To prov	vide stud	ents to serve them well towards tackling	more advanced level of	f control systems	
problem	ns.				
4. To prov	vide knov	wledge about different aspects like stabil	lity, controllability and o	observability.	
Course Ou	itcomes:	On completion of the course, student w	ould be able to:		
<b>CO1</b> D	evelop v	arious models of control systems			
CO2 E	valuate c	controllability of the systems			
CO3 E	valuate c	bservabilty of the systems			
<b>CO4</b> E	valuate s	tability of the systems			
<b>CO5</b> D	evelop st	tate models of the systems			

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Controllability & Observability: Introduction, general concept of controllability, general concept of observability, controllability tests for continuous time systems, observability tests for continuous time systems, observability for discrete time systems, controllability & observability for discrete time systems, controllability & observability of state model in Jordan canonical form, loss of controllability & observability due to sampling, controllability & observability canonical forms of state model.	8	CO1, CO2, CO3
2	State variables and input output descriptions: introduction, input output maps from state models, LTI continuous time systems, LTI discrete time systems, linear time varying systems, output controllability, reducibility, state model from input output maps realization of scalar transfer functions, phase variable canonical forms, realization of transfer function matrices, realization of pulse transfer functions.	8	CO1,CO5
3	Stability: Introduction, equilibrium points, stability concepts and definitions, stability of linear time invariant systems, equilibrium stability of non-linear continuous time autonomous systems, direct method of Lyapunov and the linear continuous time autonomous systems, aids to find	8	CO1, CO4

 $\mathsf{Page}9533$ 



	Lyapunov functions for non-linear continuous time autonomous systems, use of Lyapunovfunctions to estimate transients, the direct method of Lyapunov and discrete time autonomous systems.		
4	Model control: Introduction, controllable and observable companion forms for single input/single output systems & multi-input/multi-output systems, the effect of state feedback on controllability & observability, pole placement by state feedback, full order observers, the separation principle, reduced order observers, deadbeat control by state feedback, deadbeat observers.	8	CO1,CO5

- 1. Modern control system theory by M. Gopal (New age international)
- 2. Modern control systems a manual of design methods by John A Borrie (Prentice hall international)
- **3.** Digital control and state variable methods by M. Gopal (Tata McGraw Hill)

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

## Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.
  - -----

<b>Course Code:</b>	Course Name: Program Elective-III		L	Τ	P	С
EI-PC-203	Intelligent Instrumentation (vi)			-	-	3
Year and	2 nd Year.	Contact hours per we	eek: (3	3Hrs	5)	
Semester	3 rd Semester	Exam: (3 Hrs)				
Pre-requisite of	Measurements and	Evaluation				
course	Instrumentations	CIE: 40	<b>SEE: 60</b>			
<b>Course Objectives</b>	:					
1. Study the concep	ot of intelligent instrumentation system					
2. Study of intellige	ent instrumentation components					
3. Study the character	teristic function of Smart Sensors					
4. Detail study of Standards for smart sensors						
5. Study and deve	5. Study and development of data acquisition system for smart sensor system					
6. Detail study and	applications of Microelectro-mechanica	al systems				

## Program Name: M. Tech.-Electrical and Instrumentation Engineering

 $P_{BBe}9534$ 



Course	Outcomes: On completion of the course, student would be able to:
CO1	Ability to understand the concept of intelligent instrumentation system
CO2	Able to learn characteristic function of Smart Sensors
CO3	Acquire the knowledge of Standards for smart sensors and their Industrial applications.
<b>CO4</b>	Able to learn and analyze the various principles & concepts of data acquisition system for
	smart sensor system.
CO5	To implement new and emerging technologies to analyze, design, maintain reliable, safe, and
	cost effective solution Smart sensors development including Microelectro-mechanical systems

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Definition of intelligence and of an intelligent instrumentation system; features characterizing intelligence and features of intelligent instrumentation; components of intelligent instrumentation; Block diagram of an intelligent instrumentation system.	8	CO1 CO2
2	Smart Sensors: Primary sensors; Excitation; Amplification; Filters; Converters; Compensation (Nonlinearty: look up table method, polygon interpolation, polynomial interpolation, cubic spline interpolation, Approximation & regression; Noise & interference; Response time; Drift; Cross-sensitivity); Information Coding/ Processing; Data Communication; Standards for smart sensor interface; The automation.	10	CO2 CO3
3	<b>Interfacing Instruments &amp; Computers:</b> Basic issues of interfacing; Address decoding; Data transfer control; A/D converter; D/A converter; Other interface considerations.	10	CO4
4	<ul> <li>Software Filters(Digital Filters) : Description of Spike Filter, Low pass filter, High pass filter etc. Recent Trends in Sensor</li> <li>Technologies: Introduction; Film sensors (Thick film sensors, Thin film sensors); Semiconductor IC technology –standard methods; Microelectro-mechanical systems (Micro-machining, some application examples); Nano-sensors.</li> </ul>	9	CO4 CO5

#### TEXT BOOKS: REFERENCE BOOKS:

- 1. Alan S. Morris, 'Principles of measurement & Instrumentation', PHI.
- 2. Wai-Kai Chen, 'Passive and Active Filters: Theory and Implementations', John Willey & Sons (Asia) Ptr. Ltd., New Delhi.
- 3. D. Patranabis, 'Sensors & Transducers', PHI, 2003.
- 4. Roman Kuc, 'Introduction to Digital Signal Processing', Mc Graw Hill Introduction Edition N.York.

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.



**3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

### Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- 2. Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

_____

#### **Program Name: M. Tech.-Electrical and Instrumentation Engineering**

<b>Course Code:</b>		Course Name: Program Elective-III,		L	Τ	P	С		
EI-PE-203		INDUSTRIAL POWER ELECTRONICS(vii) 3		-	-	3			
Year and		2 nd Yr.	Contact hours per week: (3Hrs)						
Semester		3 rd Semester	Exam: (3 Hrs)						
Pre-requisite		Power Electronics	Evaluation						
of course			<b>CIE: 40</b>	SEE: 60					
Course	J								
		basic working theory of different powe							
		control of DC drive with the help of po							
		erent industrial application of power ele							
	2	control of AC electric drive with the he	* *	levices.					
		es: On completion of the course, studen							
CO1	To apprise with the basic working theory of different power electrons devices.								
CO2		Γο understand the control of DC drive v	1 1			5.			
CO3		Γο understand different industrial applie	1						
CO4	r	To understand the control of AC electric	÷	power elec	trons	de	vices.		
Modul	COURSE SYLLABUS			Hr		COs			
e No		CONTENTS OF M			111	•	COS		
	INTRODUCTION: Review of semiconductor power devices (Power diodes,						CO1, CO2		
	Power Transistors, MOSFETS, IGBT, SCR, GTO, MCT, DIAC, TRAIC, PUT,								
	SUS, SCS), Review of choppers, converters, inverters, cyclo-converters.								
1	CLOSED LOOP CONTROL OF DC DRIVES: Single Quadrant variable speed								
1	drives; Four Quadrant variable speed drives, Armature voltage control at								
		constant field, field weakening, details of various blocks of closed loop drives;							
	drive employing armature reversal by a contractor, drive employing a dual								
	converter with non- simultaneous and simultaneous control.								
2	INDUSTRIAL APPLICATION OF POWER ELECTRONIC DEVICES:								
	Control of electric drives used in manufacturing and process industries,						CO2, CO3		
	protection of electric drives using solid state devices and controllers, analysis								
	of drive systems. Testing for drive controllers: Design and testing if								
	microprocessor based drive controllers, analysis of solid state control of								
	industrial drives, design and testing of thyristor based controllers for electric drives.								
		TREQUENCY CONTROLLED INDUCTION MOTOR DRIVES: Control of							
3					8		<b>CO4</b>		
	IIVI DŸ	VSI-3 phase VSI, six step inverter	voltage control, PWN	i inverter,					

 $\mathsf{Page}9536$ 



	breaking and multi-quadrant control, VSI variable frequency drives; control of IM by CSI- 3 phase CSI, current sources, Braking, PWM in a thyristor CSI, PWM GTO CSI, CSI variable frequency drives.		
4	SELF -CONTROLLED SYNCHRONOUS MOTOR DRIVES: Self-control, brushless &commutator less, DC & AC motors synchronous motor control- operation of a wound field and permanent magnet synchronous motor from a variable frequency current source; source, permanent magnet, operation of a permanent magnet motor at the maximum torque to armature current ratio and at the maximum torque to flux ratio; operation of self-controlled synchronous motor drives- CSI drives, VSI drives, cyclo-converters drives, brush-less and commutator-less AC & DC motor drives and their applications.	8	CO4

#### TEXT BOOKS: REFERENCE BOOKS:

- 1. Industrial Electronics by Frank D. Petruzella (Mc Graw-Hill)
- 2. Industrial Electronics by Morris (McGraw-Hill)
- 3. Power semiconductor drives by G.K.Dubey, Prentice Hall Inc, New Jersey

Note for Examiner(s): Question paper will comprise three sections,

- 1. Section-A will be compulsory and comprise 4-short answer type questions uniformly spread to the entire syllabus.
- 2. Section-B will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on concepts, definitions, derivations, principles, construction and working etc.
- **3.** Section-C will comprise 4-questions uniformly spread to the entire syllabus and questions will be based on derivations, numerical and applications of the various topics covered therein.

### Note for Students:

- **1.** Section A is compulsory and attempt/answer all the four questions carrying 12 marks in total.
- **2.** Attempt/answer two questions each out of the Section B and Section C. All questions will carry 12 marks.

Page9537