Bachelor of Technology (Computer Science and Engineering)Credit Based Scheme of Studies/Examination

Semester IV (w.e.f Session 2021-2022)

				Hours/		Examination	on Schedu	le (Marks)		Duration of Exam (Hrs)
S. No.	Course No.	Subject	L:T:P	Week	Credits	Major Test	Minor Test	Practical	Total	
1	PC-CS-202	Discrete Mathematics	3:0:0	3	3	75	25	0	100	3
2	PC-CS-204	Internet Technology and Management	3:0:0	3	3	75	25	0	100	3
3	PC-CS-206	Operating Systems	3:0:0	3	3	75	25	0	100	3
4	PC-CS-208	Design and Analysis of Algorithms	3:0:0	3	3	75	25	0	100	3
5	HTM-901	Universal Human Values II : Understanding Harmony	3:0:0	3	3	75	25	0	100	3
6	PC-CS- 210L	Internet Technology and Management Lab	0:0:4	4	2	0	40	60	100	3
7	PC-CS- 212L	Operating Systems Lab	0:0:4	4	2	0	40	60	100	3
8	PC-CS- 214L	Design and Analysis of Algorithms Lab	0:0:4	4	2	0	40	60	100	3
		Total		27	21	375	245	180	800	
9	MC-901 *	Environmental Sciences	3:0:0	3	0	75	25	0	100	3

^{*}MC-901 is a mandatory credit-less course and student has to get passing marks in order to qualify for theaward of B.Tech. Degree.

H 1 M1-901		Universal H	uman varues	II. Understan	unig marmon	y							
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time						
3	0	0	3.0	75	25	100	3 Hours						
Purpose	Purpose and motivation for the course, recapitulation from Universal Human Values-I												
Course Ou	tcomes (CO)												
CO 1	Development of a holistic perspective based on self-exploration about themselves (human being), family, society and nature/existence.												
CO 2	Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence.												
CO 3	Strengthening of self-reflection.												
CO 4	Developm	ent of comm	itment and	courage to a	act.								

Universal Human Values II: Understanding Harmony

Module 1: Course Introduction - Need, Basic Guidelines, Content and Process for Value Education

- 1. Purpose and motivation for the course, recapitulation from Universal Human Values-I
- 2. Self-Exploration—what is it? Its content and process; 'Natural Acceptance' and Experiential Validation as the process for self-exploration
- 3. Continuous Happiness and Prosperity- A look at basic Human Aspirations
- 4. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority
- 5. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario
- 6. Method to fulfil the above human aspirations: understanding and living in harmony at variouslevels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrarinessin choice based on liking-disliking

Module 2: Understanding Harmony in the Human Being - Harmony in Myself!

- 7. Understanding human being as a co-existence of the sentient 'I' and the material 'Body'
- 8. Understanding the needs of Self ('I') and 'Body' happiness and physical facility
- 9. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)
- 10. Understanding the characteristics and activities of 'I' and harmony in 'I'
- 11. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail
- 12. Programs to ensure Sanyam and Health.

HTM-901

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

Module 3: Understanding Harmony in the Family and Society- Harmony in Human-HumanRelationship

- 13. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship
- 14. Understanding the meaning of Trust; Difference between intention and competence
- 15. Understanding the meaning of Respect, Difference between respect and differentiation; the othersalient values in relationship
- 16. Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
- 17. Visualizing a universal harmonious order in society- Undivided Society, Universal Order- fromfamily to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value inrelationships. Discuss with scenarios. Elicit examples from students' lives

Module 4: Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

- 18. Understanding the harmony in the Nature
- 19. Interconnectedness and mutual fulfilment among the four orders of naturerecyclability and self-regulation in nature
- 20. Understanding Existence as Co-existence of mutually interacting units in all-pervasive space
- 21. Holistic perception of harmony at all levels of existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" canbe used), pollution, depletion of resources and role of technology etc.

Module 5: Implications of the above Holistic Understanding of Harmony on ProfessionalEthics

- 22. Natural acceptance of human values
- 23. Definitiveness of Ethical Human Conduct
- 24. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
- 25. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and

- characteristics of people- friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- 26. Case studies of typical holistic technologies, management models and production systems
- 27. Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and organizations
- 28. Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. todiscuss the conduct as an engineer or scientist etc.

READINGS:

Text Book

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Reference Books

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J CKumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

MODE OF CONDUCT

Lecture hours are to be used for lecture/practice sessions.

Lectures hours are to be used for interactive discussion, placing the proposals about the topics at handand motivating students to reflect, explore and verify them.

Practice hours are to be used for practice sessions.

While analysing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions, the mentor encourages the student to connect with one's own self and do self-observation, self-reflection and self-

exploration. Scenarios may be used to initiate discussion. The student is encouraged to take up" ordinary" situations rather than" extra-ordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Practice experiments are important for the course. The difference is that the laboratory is everyday life, and practical are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignment and/or activity are included. The practice sessions would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based onbasic human values.

It is recommended that this content be placed before the student as it is, in the form of a basic foundation course, without including anything else or excluding any part of this content. Additional content may be offered in separate, higher courses.

This course is to be taught by faculty from every teaching department, including HSS faculty. Teacher preparation with a minimum exposure to at least one 8-day FDP on Universal Human Values is deemedessential.

ASSESSMENT:

This is a compulsory credit course. The assessment is to provide a fair state of development of the student, so participation in classroom discussions, self-assessment, peer assessment etc. will be used in evaluation.

Example:

Assessment by

faculty mentor: 5 marks
Self-assessment: 5 marks
Assessment by peers: 5 marks

Socially relevant project/Group Activities/Assignments: 10 marks

Semester End Examination: 75 marks

The overall pass percentage is 40%. In case the student fails, he/she must repeat the course.

	Bachelor of Technology (Computer Science & Engineering)												
		Credit-B	ased So	cheme of	f Studies	/Exami	ination						
	Semester V (w.e.f. session 2020-2021)												
S. No.	Course Code	Subject	L:T:P	Hours/ Week	Credits	Exa		on Schedi arks)	ule	Duration of Exam (Hrs)			
						Major Test	Minor Test	Practica I	Tota I				
1	ES-301	Microprocessor & Interfacing	3:0:0	3	3	75	25	0	100	3			
2	PC-CS- 301	Database Management Systems	3:0:0	3	3	75	25	0	100	3			
	PC-CS- 303	Formal Language & Automata Theory	3:0:0	3	3	75	25	0	100	3			
4	PC-CS- 305	Essential of Information Technology	3:0:0	3	3	75	25	0	100	3			
5	PC-CS- 307	Computer Organization & Architecture	2:0:0	2	2	75	25	0	100	3			
6	PEC	Elective-I	3:0:0	3	3	75	25	0	100	3			
7	PC-CS- 309L	Database Management Systems Lab	0:0:4	4	2	0	40	60	100	3			
8	PC-CS- 311L	Essential of Information Technology Lab	0:0:4	4	2	0	40	60	100	3			
Total			-	25	21	450	230	120	800				
9	MC-904	Energy Resources & Management	3:0:0	3	0	75	25	0	100	3			
10	SIM-301*	Seminar on Summer Internship	2:0:0	2	0	0	50	0	50				

PEC Elective-I
Digital Data Communication: PE-CS-T301
Parallel and Distributed Computing: PE-CS-T303
Information Theory and Coding: PE-CS-T305
Advanced Algorithms: PE-CS-T307

Note: SIM-301 is a mandatory credit-less course in which the students will be evaluated for the Summer Internship undergone after 4th semester and students will be required to get passing marks to qualify.

MC-904		ENE	RGY RESC	OURCES & M	IANAGEME	NT					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	-	-	0	75	25	100	3				
Purpose	To make the students conversant with the basics concepts and conversion of various form of Energy										
	COURSE OUTCOMES										
CO1	An overv sources	iew about	Energy Re	sources, Conv	ventional and	Non-cor	nventional				
CO2	Understan	d the Layo	ıt and worki	ng of Convent	tional Power P	lants					
CO3	Understan	d the Layor	ut and worki	ng of Non-Co	nventional Pov	wer Plant	S				
CO4				igement, Audi gy Scenario in	t and tariffs, India	Role of	Energy in				

UNIT-I

Introduction: Types of energy, Conversion of various forms of energy, Conventional and Non-conventional sources, Need for Non-Conventional Energy based power generation.

UNIT-II

Conventional Energy sources: Types of Conventional Energy sources, Selection of site, working of Thermal, Hydro, Nuclear and Diesel power plants and their schematic diagrams & their comparative advantages/ disadvantages.

UNIT-III

Non-Conventional Energy sources: Types of Non-Conventional Energy sources , Basic principle, site selection of Solar energy power plant, photovoltaic technologies, PV Systems and their components, Wind energy power plant , Bio energy plants ,Geothermal energy plants and Tidal energy plants.

UNIT-IV

Energy Management: General Principles of Energy Management, Energy Management Strategy, Modern trends and developments towards Computerizations of Power System.

Energy Audit: Need, Types, Methodology and Approach.

Energy Scenario: Lay out of power system, Role of Energy in Economic development, energy demand, availability and consumption, Indian energy scenario, long term energy scenario, energy sector reforms in India, energy strategy for the future.

References:

- 1. Energy Studies-Wiley Dream Tech India.
- 2. Non-conventional energy resources- Shobhnath Singh, Pearson.
- 3. Electrical Power Systems : Soni, Gupta, Bhatnagar Dhanpat Rai & Sons
- 4. NEDCAP: Non Conventional Energy Guide Lines
- 5. Non conventional energy sources : G.D. Roy
- 6. Non Conventional energy resources: B H Khan McGraw Hill
- 7. Applied Solar Energy: Meinel A B Addison Wesley Publications
- 8. Direct Energy Conversion George: Sutton -McGraw

Bachelor of Technology (Computer Science & Engineering)													
Credit-Based Scheme of Studies/Examination													
Semester VII (w.e.f. session 2021-2022)													
S. No.	Course Code	Subject	L:T:P	Hours/Week	Credits	Exa	ıle	Duration of Exam (Hrs)					
						Major Test							
1	PE	Elective-IV	3:0:0	3	3	75	25	0	100	3			
2	PE	Elective-V	3:0:0	3	3	75	25	0	100	3			
3	OE	Open Elective-II	3:0:0	3	3	75	25	0	100	3			
4	PROJ-CS-401	Project-II	0:0:12	12	6	0	40	60	100	3			
5	PE-L	Elective-IV Lab	0:0:2	2	1	0	40	60	100	3			
6	PE-L	Elective-V Lab	0:0:2	2	1	0 40 60 100		3					
	To	tal	21	17	225	115	60	400					
7	SIM-401*	Seminar on Summer Internship	2:0:0	2	0	0	50	0	50				

PE Elective-IV	PE Elective-V
Data Mining: PE-CS-D401	Soft Computing: PE-CS-D407
Software Verification and Validation and	Neural Networks and Deep Learning:
Testing:: PE-CS-D403	PE-CS-D409
Information Retrieval: PE-CS-D405	Object Oriented Software Engineering: PE-CS-
	D411
	Expert Systems: PE-CS-D413
OE Elective-II	
Cyber Law and Ethics: OE-CS-401	
Bioinformatics: OE-CS-403	
Fiber Optic Communications: OE-CS-405	
Industrial Electrical Systems: OE-CS-407	

The course of both PE & OE will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

Note: SIM-401 is a mandatory credit-less course in which the students will be evaluated for Summer Internship undergone after 6th semester and students will be required to get passing marks to qualify.

PE-CS-D401		Data Mining										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	3 0 0 3 75 25 100 3											
Purpose	Data min	Data mining techniques discover the knowledge intelligently by extracting the										
	desired patterns from data warehouses or web repositories data streams.											
			Course Oi	itcomes (CO)								
CO1	Learn abo	out various	Data Mini	ng concepts								
CO2	Apply Fr	equent Item	sets Assoc	ciations Rules	to discover the	knowledge	e					
CO3	Analyze the desired information using Classification Methods											
CO4	Evaluatin	g knowledg	ge from sp	ecific data sou	rces using data	mining tre	ends					

Unit I: Basics of Data Mining

Need for data mining, Data Mining as the Evolution of Information Technology, Data mining as a step in the process of knowledge discovery, Transactional Database, Major issues in data mining, Data Preprocessing, Data cleaning, Data integration, Data reduction, Data transformation, Data Warehousing and Online Analytical Processing (OLAP).

Unit II: Mining Frequent Itemsets with Associations and Correlations

Data cube technology, Multidimensional data mining, Multidimensional data analysis, Mining Frequent Patterns, Associations, and Correlations: Basic Concepts and Methods, Market Basket Analysis Example with rule of Support and Confidence, Frequent Itemsets, Closed Itemsets, and association Rules, Frequent Itemset Mining Methods – Apriori Algorithm.

Unit III: Classification Methods and Cluster Analysis

Advanced pattern mining, Mining multilevel patterns, multidimensional patterns, Classification: Basic Concepts, Decision Tree Induction, Naïve Bayesian Classification Methods, Rule-Based Classification, Cluster Analysis: Basic Concepts and Methods, Partitioning Methods, Hierarchical Methods, Density-Based Methods, Grid-Based Methods.

Unit IV: Data Mining Trends

Mining Spatial Data, Mining Spatiotemporal Data, Mining Multimedia Data, Mining Text Data, Mining Web Data, Statistical Data Mining, Data Mining Applications – Data Mining for Financial Data Analysis, Intrusion Detection and Prevention, Retail and Telecommunication Industries, Science and Engineering, Privacy, Security and Social Impacts of Data Mining, Data Mining Trends.

Text Books:

- 1. "Data Mining" Concepts and Techniques by Jiawei Han, Micheline Kamber and Jian Pei, 3rd.
 - Edition Elsevier Morgan Kaufmann Series USA 2012, ISBN 978-0-12-381479-1
- 2. "Datawarehousing: Concepts, Techniques, Products and Applications", by C.S.R. Prabhu PHI
- 3. "Data Mining with Microsoft SQL Server", by Seidman, Prentice Hall of India.

PE-CS-D403		Softwa	re Verific	cation and Va	lidation and T	esting					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	3	75	25	100	3				
Program	The obj	ective of 1	this cour	se is to pro	vide the in-	depth cov	erage of				
Objective	software	oftware quality models and software testing strategies. It focuses on test									
(PO)	case gen	ase generation techniques and testing levels. It also focuses on testing									
different kinds of software.											
Course Outcomes (CO)											
CO1	To develo	op test cases	s for any p	oroblem							
CO2	To pursu	e testing or	n any lev	el of software	design by usi	ing differe	ent testing				
	strategies										
CO3	To learn	the test ma	nagement	and testing a	ctivities by us	ing differe	ent testing				
	methods.										
CO4	To apply	testing an	d quality	model of so	ftware testing	in achiev	ing high-				
	quality so	ftware.									

UNIT - I

Introduction: Overview of software evolution, SDLC, Testing Process, Terminologies in Testing: Error, Fault, Failure, Verification, Validation, Definition of software testing, Test Cases, Test Oracles, Testing Process, Limitations of Testing.

UNIT - II

Functional Testing: Boundary Value Analysis, Equivalence Class Testing, Decision Table Based Testing, Cause Effect Graphing Technique.

Structural Testing: Path testing, DD-Paths, Cyclomatic Complexity, Graph Metrics, Data Flow Testing, Mutation testing.

UNIT - III

Reducing the number of test cases: Prioritization guidelines, Priority category, Scheme, Risk Analysis, Regression Testing, and Slice based testing

Testing Activities: Unit Testing, Levels of Testing, Integration Testing, System Testing, Debugging, Domain Testing.

UNIT - IV

Overview of SQM: Concepts of Software Quality, Quality Attributes, Software Quality Models: McCall, Boehm, ISO-9000, CMM.

Miscellaneous topics: Stress Testing, Ad hoc testing: Buddy testing, Exploratory testing, Agile and extreme testing.

- 1. Naresh Chauhan "Software Testing Principles and Practices" Oxford Publications, 2012
- 2. Louise Tamres, "Software Testing", Pearson Education Asia, 2002
- 3. Robert V. Binder, "Testing Object-Oriented Systems-Models, Patterns and Tools", Addison Wesley.
- 4. William Perry, "Effective Methods for Software Testing", John Wiley & Sons, New York.
- 5. Cem Kaner, Jack Falk, Nguyen Quoc, "Testing Computer Software", Second Edition, Van Nostrand Reinhold, New York.
- 6. K.K. Aggarwal & Yogesh Singh, "Software Engineering", 2nd Ed., New Age International Publishers, New Delhi, 2005
- 7. Boris Beizer, "Software Testing Techniques", Second Volume, Second Edition, Van Nostrand Reinhold, New York.

PE-CS-D405		Information Retrieval										
Lecture	Tutorial	utorial Practical Credit Major Test Minor Test Total Time										
3	0	0	3	75	25	100	3 Hour					
Purpose	To provide an overview of Information Retrieval and implementation insight											
about various evaluation methods.												
			Cours	se Outcomes								
CO 1	To make	understandi	ng about	different Inform	nation retrieval	model.						
CO 2	To unders	stand the ex	perimenta	al evaluation of	performance n	netrics.						
CO 3	CO 3 To gain knowledge about various web search engines.											
CO 4	To unders	stand the ap	plication	of appropriate	text classification	on and c	lustering.					

Unit I

Introduction: Goals and history of IR. The impact of the web on IR. The role of artificial intelligence (AI) in IR. Basic IR Models: Boolean and vector-space retrieval models; ranked retrieval; text-similarity metrics; TF-IDF (term frequency/inverse document frequency) weighting; cosine similarity.

Basic Tokenizing Indexing, and Implementation of Vector-Space Retrieval: Simple tokenizing, stop-word removal, and stemming; inverted indices; efficient processing with sparse vectors; python implementation.

UNIT-II

Experimental Evaluation of IR: Performance metrics: recall, precision, and F-measure; Evaluations on benchmark text collections.

Query Operations and Languages: Relevance feedback; Query expansion; Query languages.

UNIT-III

Text Representation: Word statistics; Zipf's law; Porter stemmer; morphology; index term selection; using thesauri. Metadata and markup languages (SGML, HTML, XML).

Web Search: Search engines; spidering; metacrawlers; directed spidering; link analysis (e.g. hubs and authorities, Google PageRank); shopping agents.

UNIT-IV

Text Categorization and Clustering: Categorization algorithms: naive Bayes; decision trees; and nearest neighbor. Clustering algorithms: agglomerative clustering; k-means; expectation maximization (EM). Applications to information filtering; organization; and relevance feedback.

Recommender Systems: Collaborative filtering and content-based recommendation of documents and products

- 1. Introduction to Information Retrieval Manning, Raghavan and Schutze, Cambridge University Press, 2008.
- 2. R. Baeza-Yates and B. Ribeiro Neto, "Modern Information Retrieval: The Concepts and Technology behind Search", Second Edition, Addison Wesley, 2011.
- 3. David A. Grossman and Ophir Frieder "Information Retrieval: Algorithms and Heuristics", Second Edition, Springer 2004.
- 4. Mining the Web, Soumen Charabarti, Morgan-Kaufmann, 2002.
- 5. Ricci, F, Rokach, L. Shapira, B.Kantor, Recommender Systems Handbook, First Edition, 2011.

PE-CS-D407				Soft Comput	ting							
Lecture	Tutori	Practical	Credit	Major Test	Minor Test	Total	Time					
	al											
3	0	0	3	75	25	100	3					
Purpose	Soft Computing deals with imprecision, uncertainty, partial truth,											
	approxi	approximation to achieve practicability, robustness, and low cost solution for										
	complex	complex problems in real world using neural networks, fuzzy systems,										
	evolutio	evolutionary computation with optimization approaches to design intelligent										
	systems	systems.										
		(Course O	itcomes (CO)								
CO1	Learn al	out various	supervise	d and unsuper	vised Artificial	Neural Ne	etworks.					
CO2	Apply tl	ne concepts	of Fuzzy l	Logic for decis	ion making in	Fuzzy base	ed					
	Systems	•										
CO3	Analyze	Nature-Ins	pired Algo	orithms like Ge	enetic, Differen	tial Evolut	ion,					
	PSO, Al	BC.										
CO4	Evaluate	e the values	of new ide	eas by creating	a new solution	using						
	Optimiz	ation.										

Unit I: Artificial Neural Networks

Fundamentals of Biological Neural Network and Artificial Neural Network, Evolution of Neural Networks, Learning – supervised, unsupervised and reinforcement, Terminologies – weights, bias, threshold, learning rate, Hebb Network, Perceptron Networks, Backpropagation Network, Associative Memory Network, Hopfield Networks, Counter propagation Networks, Adaptive Resonance Theory Network, Optical Neural Networks, Applications of Neural Networks.

Unit II: Fuzzy Systems

Introduction to Fuzzy Logic, Classical Sets and Fuzzy Sets, Operations on Crisp Sets and Fuzzy Sets, Classical Relation and Fuzzy Relations, Membership Functions, Methods of Membership Value Assignments, Fuzzy Arithmetic and Fuzzy Measures, Fuzzy Rule Base and Approximate Reasoning, Fuzzy Decision Making, Fuzzy Logic Control Systems, Applications of Fuzzy Logic based systems.

Unit III: Nature-Inspired Algorithms

Introduction to Nature-Inspired algorithms, Swarm Intelligence, Genetic Algorithm (GA), Operators in Genetic Algorithm – Encoding, Selection, Crossover, Mutation, Stopping Condition for GA, Differential Evolution (DE) Algorithm, Particle Swarm Optimization (PSO) Algorithm, Ant Bee Colony (ABC) Algorithm, Flower Pollination Algorithm, Solution of Real World Problems using Nature-Inspired Algorithms.

Unit IV: Optimization

Objective of Optimization, Single-objective Optimization, Multi-objective Optimization, Pareto-optimal solutions, Travelling Salesman Problem solution using any optimization technique, Engineering problems solution using any Soft Computing approach, Architecture of Neuro-Fuzzy Systems and Genetic Neuro-Fuzzy Hybrid Systems, Applications of Soft Computing.

Text Books:

4. "Principle of Soft Computing" by Dr. S.N. Sivanandam and Dr. S.N Deepa, 2nd. Edition

- Wiley India 2012, ISBN: 978-81-265-2741-0
- 5. "Soft Computing" Fundamentals, Techniques and Applications by Dr. Saroj Kaushik and Dr. Sunita Tiwari, McGraw Hill Education 2018, ISBN: 10:93-5316-066-9
- 6. "Neuro-Fuzzy and Soft Computing" A Computational Approach to Learning and Machine Intelligence by Jyh-Shing Roger Jang, Chuen-Tsai Sun and Eiji Mizutani Pearson 2018, ISBN: 978-93-325-4988-3
- 7. "Neural Networks, Fuzzy Logic and Genetic Algorithms" Synthesis and Applications by S. Rajasekaran and G.A Vijayalakshmi Pai PHI 2012, ISBN: 978-81-203-2186-1
- 8. "Nature-Inspired Optimization Algorithms" Xin-She Yang Elsevier USA 2014, ISBN: 978-0-12-416743-8

PE-CS-D409		N	leural Ne	tworks and D	eep Learning						
Lecture	Tutorial	Practical	Minor Test	Total	Time						
3	0	0	3	75	25	100	3				
Purpose	Neural network solves complex problems that require analytical calculations										
	similar to those of the human brain. Deep learning is an artificial intelligence (AI)										
	function that imitates human brain in processing data and creating patterns for										
	decision m	aking.									
		(Course O	itcomes (CO)							
CO1	Learn abou	ut various co	oncepts rel	lated to Neural	Networks and	Deep Lear	ning.				
CO2	Understand about various supervised and unsupervised neural networks.										
CO3	Explore th	e knowledge	e about ad	vanced types of	of Neural Netwo	orks.					
CO4	Apply biol	ogically-ins	pired deep	learning for e	expert systems i	in AI.					

Unit I: Artificial Neural Networks

Human Brain, Model of an artificial Neuron, Basic concepts of Neural Networks, Fundamentals of Biological Neural Network and Artificial Neural Network, Evolution of Neural Networks, Characteristics of Neural Networks, Learning Methods – supervised, unsupervised and reinforcement, Taxonomy of Neural Network Architectures, Terminologies – weights, bias, threshold, learning rate, Applications of Neural Networks.

Unit II: Supervised and Unsupervised Neural Networks

Hebb Network theory and training algorithm, Perceptron Networks architecture and training algorithm, Backpropagation Network architecture and training algorithm, Associative Memory Network architecture and training algorithm, Hopfield Networks architecture and training algorithm, Counterpropagation Networks architecture and training algorithm, Adaptive Resonance Theory Network architecture and training algorithm.

Unit III: Advanced Neural Networks

Kohonen Self-Organising Feature Maps architecture and training algorithm, Learning Vector Quantization architecture and training algorithm, Boltzmann Machine, Cognitron Network, Neocognitron Network, Optical Neural Networks Electro-optical Multipliers and Holographic Correlators.

Unit IV: Deep Learning

Machine learning basics, Simple Machine Learning Algorithm -- Linear Regression, underfitting and overfitting challenges in Machine Learning, Supervised Learning approach for Support Vector Machine, Deep Feedforward Networks, Convolutional Networks, Deep Recurrent Networks, Deep Boltzmann Machine, Applications in Speech Recognition and Natural Language Processing.

- 1. "Neural Networks and Deep Learning" by Michaeil Nielsen, Online Book
- 2. "Principle of Soft Computing" by Dr. S.N. Sivanandam and Dr. S.N Deepa, 2nd. Edition
 - Wiley India 2012, ISBN: 978-81-265-2741-0
- 3. "Soft Computing" Fundamentals, Techniques and Applications by Dr. Saroj Kaushik and Dr. Sunita Tiwari, McGraw Hill Education 2018, ISBN: 10:93-5316-066-9
- 4. "Neuro-Fuzzy and Soft Computing" A Computational Approach to Learning and Machine Intelligence by Jyh-Shing Roger Jang, Chuen-Tsai Sun and Eiji Mizutani Pearson 2018, ISBN: 978-93-325-4988-3

5. "Deep Learning" by Yoshua Bengio and Aaron Courville, Online Book

PE-CS-D411		O	bject Or	iented Softwa	are Engineering					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
3	0	0	3	75	25	100	3 Hrs.			
Purpose	attribute	o provide the thorough knowledge to use the concepts and their design tributes for Object Oriented Software Engineering approaches and atforms to solve real time problems.								
	Course (ourse Outcomes (CO)								
CO1		o learn the basic concepts of object oriented systems and software agineering.								
CO2	_			· ·	odeling methodostems using UMI	_	tools for			
CO3	_	nalyzing and designing software based systems using UML. o explore problems using Use Cases, analyzing relations, responsibilities and collaborations among classes and their behavior in problem domain.								
CO4		3		U 1	es using models, hanisms for perfo	U 1	,			

Unit - I

An Overview of Object-Oriented system Development, Objects Basis, Class Hierarchy, Inheritance, Polymorphism, Object Relationships and Associations, Aggregations and Object Containment, Object Persistence, Meta-Classes, Object Oriented Systems Development Life Cycle: Software Development Process, Object Oriented Systems Development: A Use-Case Driven Approach.

Unit - II

Object Oriented Methodologies: Rumbaugh Methodology, Jacobson Methodology, Booch Methodology, Patterns, Frameworks, The Unified approach, Unified Modeling Language (UML)

Unit - III

Object Oriented Analysis Process, Use Case Driven Object Oriented Analysis, Use Case Model, Object Analysis: Classification, Classification Theory, Approaches for identifying classes, Responsibilities and Collaborators, Identifying Object Relationships, Attributes and Methods: Associations, Super-Sub Class relationships, A-Part-of-Relationships-Aggregation, Class Responsibilities, Object Responsibilities.

Unit - IV

Object Oriented Design process and Design Axioms, Corollaries, Design Patterns, Designing Classes: Object Oriented Design Philosophy, UML Object Constraint Language, Designing Classes: The Process, Class Visibility, Refining Attributes, Designing Methods and Protocols, Packages and Managing classes, View Layer: Designing Interface objects, Designing View layer Classes, Macro and Micro Level Interface Design Process.

- 1. Ali Bahrami, Object Oriented Systems Development, McGraw HillPublishing Company Limited, New Delhi, 2013.
- 2. Rumbaugh *et al.*, Object Oriented Modeling and Design, PHI, 2006.
- 3. Robert Laganière and Timothy C. Lethbridge, Object-Oriented Software Engineering: Practical Software Development, McGraw-Hill Publishing Company Limited, New Delhi, Sixth Print 2008.
- 4. Ivar Jacobson, MagnosChristerson, Patrick Jonsson, Gunnar Overgaard, Objectoriented Software Engineering: A Use Case Driven Approach, Pearson Education, New Delhi, Seventh Edition Reprint, 2009.

5. Bernd Bruegge, Allen H. Dutoit, Object-Oriented Software Engineering Using UML, Patterns, and Java: Pearson New International, Third Edition, 2013.

PE-CS-D413				Expert System	ms					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
3	0	0	3	75	25	100	3 Hrs.			
Purpose	knowledg	In this course the student will learn the methodologies used to transfer the knowledge of a human expert into an intelligent program that can be used to solve real-time problems.								
	Course C	Course Outcomes(CO)								
CO1	Examinin	Examining the fundamentals and terminologies of expert system.								
CO2				mplement var d validate vari						
CO3	Signifying problems.	0	ques to so	olve social, ind	ustrial and env	vironme	ntal			
CO4	Design ar	nd impleme	nt expert	systems for rea	al life problem	1				

UNIT I

Introduction to Expert System Features of expert system, Representation and organization of knowledge, Basic characteristics, Types of problems handled by expert systems, Case study of PROSPECTOR.

UNIT II

Expert System Tools Techniques of knowledge representation in expert systems, knowledge engineering, System-building aids, support facilities, stages in the development of expert systems.

UNIT III

Building an Expert System Expert system development, Selection of tool, Acquiring knowledge, Building process

UNIT IV

Problems with Expert Systems Difficulties, common pitfalls in planning, Dealing with domain expert, Difficulties during development.

- 1. Waterman D.A.: A Guide to Expert Systems, Addison Wesley Longman
- 2. Hayes-Roth, Lenat and Waterman: Building Expert Systems, Addison Wesley
- 3. Weiss S.M. and Kulikowski C.A.: A Practical Guide to Designing Expert Systems, Rowman & Allanheld, New Jersey

OE-CS-401	Cyber Law and Ethics										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	-	-	3	75	25	100	3 Hrs.				
Purpose	To gain a	Γο gain a broad understanding in order to get cyber law and ethics.									
	•		Co	urse Outcome	es						
CO1	To facilita	ate the basic	knowled	ge of cyber La	ıw.						
CO2				n the Confiden	tiality, Integrit	ty and Av	vailability of				
	informati	on technolo	gy act.								
CO3	To get en	able to fix t	he various	s Cyber Law a	nd Related Leg	gislation.					
CO4	To deal w	ith the Cyb	er Ethics.			·					

Unit-1: Introduction to Cyber Law

Evolution of computer technology, emergence of cyber space. Cyber Jurisprudence, Jurisprudence and law, Doctrinal approach, Consensual approach, Real Approach, Cyber Ethics, Cyber Jurisdiction, Hierarchy of courts, Civil and criminal jurisdictions, Cyberspace-Web space, Web hosting and web Development agreement, Legal and Technological Significance of domain Names, Internet as a tool for global access.

Unit-2: Information Technology Act

Overview of IT Act, 2000, Amendments and Limitations of IT Act, Digital Signatures, Cryptographic Algorithm, Public Cryptography, Private Cryptography, Electronic Governance, Legal Recognition of Electronic Records, Legal Recognition of Digital Signature, Certifying Authorities, Cyber Crime and Offences, Network Service Providers Liability, Cyber Regulations Appellate Tribunal, Penalties and Adjudication.

Unit-3: Cyber Law and Related Legislation

Patent Law, Trademark Law, Copyright, Software – Copyright or Patented, Domain Names and Copyright disputes, Electronic Data Base and its Protection, IT Act and Civil Procedure Code, IT Act and Criminal Procedural Code, Relevant Sections of Indian Evidence Act, Relevant Sections of Bankers Book Evidence Act, Relevant Sections of Indian Penal Code, Relevant Sections of Reserve Bank of India Act, Law Relating To Employees And Internet, Alternative Dispute Resolution, Online Dispute Resolution (ODR).

Unit-4: Cyber Ethics

The Importance of Cyber Law, Significance of cyber Ethics, Need for Cyber regulations and Ethics. Ethics in Information society, Introduction to Artificial Intelligence Ethics: Ethical Issues in AI and core Principles, Introduction to Block chain Ethics.

- $1.\ Cyber\ Security: Understanding\ Cyber\ Crimes\ ,\ Computer\ Forensics\ and\ Legal\ Perspectives\ By\ Nina\ Godbole,\ Sunit\ Belapur\ ,\ Wiley$
- 2. Understanding cybercrime: phenomena, and legal challenges response, ITU 2012.

OE-CS-403				Bioinformatio	es							
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0	3	75	25	100	3 Hrs.					
Purpose	To famil	familiarize the students with the basics of Bioinformatics										
	Course Outcomes											
CO1	Students	will learn b	asic principl	les of various t	ypes of datab	ases						
CO2			o know abou	ut various tools	s related to se	quence al	ignment					
	This unit will enable the students to learn various software tools for sequence analysis and primer designing											
CO4		will be able analysis	to learn pre	edictive method	ds for nucleot	ides and p	orotein					

UNIT I : Databases

Sequence Databases: introduction of Databases, primary and secondary databases, nucleotide and protein sequence databases: Genbank, EMBL, DDBJ, Swissprot, pfam, Block, PRI Structure Databases: Introduction to structures. PDB (Protein Data bank) Molecular Modeling database at NCBI., visualizing structural information, database structure viewers. Sequence and Structure File Formats; **The Entrez system**: Integrated information axis, Information retrieval from biological database, sequence database beyond NCBI. Medical databases.

UNIT II: Sequence Alignment AND Database Searches

Introduction, the evolutionary basis of sequence alignment, Type of Alignments, Pair-wise Alignment, Multiple Alignment, The modular nature of proteins, Optimal alignment methods, substitution scores and gap penalties, statistical significance of alignment. FASTA, BLAST, low-complexity regions, repetitive elements, Tool of multiple sequence alignment: CLUSTAL W/X, progressive alignment method.

Phylogenetic Analysis: Elements of phylogenetic models, phylogenetic data analysis: alignment, substitution model building, tree building and tree evaluation, building the data model (alignment), determining the substitution model, tree- building methods, searching for trees, rooting trees, evaluation trees and data, phylogenic software (PHYLIP). phylogenetics online tool.

UNIT III: Sequence Analysis Using Software Resources:

Introduction. The Wisconsin package, the Seq Lab environment, analyzing sequences with operations and Wisconsin package programmes, viewing output, monitoring programme progress and troubleshooting problems, annotating sequences and graphically displaying annotations in the Seqlab Editor, saving sequences in the Seq Lab Editor, Example of analysis that can be undertaken in Seqlab, extending Seqlab by including programmes that are not part of the Wiscosin package.

Unit-IV: Plasmid Mapping And Primer Design

Restriction mapping, Mac Vector and OMIGA. Gene construction kit. Vector NTI, primer design for PCR Sequencing, primer design programs and software.

- 1. Bioinformatics by Andreas D.Boxevanis. Wiley Interscience, 4th edition 2020.
- 2. Bioinformatics: Sequence and genome analysis by David W.Mount, Cold Spring Harbor, 2004.
- 3. Biocomputing Informatics And The Genome Projects by Smith D.W., Academic Press, 2014.
- 4. Bioinformatics: A Biologists Guide to Computing and the Internet. by Stuart M.

OE-CS-405			Fiber (Optic Commu	nications					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
3	0	0	3	75	25	100	3			
Purpose		To familiarize the students with the concepts of Optical communication covering the contents of optical fibers, losses in fibers, optical sources								
	Course Outcomes (CO)									
CO1		will be able avelling in		stand the struc	ture of fiber ar	nd the me	echanism			
CO2	Students	will be able	to analyz	ze various losse	es associated w	ith fibers	S.			
CO3	Students	Students will learn about the optical sources and optical detecters.								
CO4		will be abl n making o		derstand the value works	arious compor	nents and	devices			

UNIT - I

INTRODUCTION: Optical Fibers: Structure, Propagation within the fiber, Numerical aperture of fiber, acceptance angle, step index and graded index fiber, Modes of propagation in the fiber, Single mode and multi mode fibers. Splices and connectors. Optical Power Launching and Coupling. Fiber-to-fiber joints.

UNIT -II

LOSSES IN OPTICAL FIBER: Attenuation, Absorption Losses, Scattering Losses, Leaky modes, Mode coupling losses, Bending Losses, Combined Losses in the fiber.

DISPERSION EFFECT: Effect of dispersion on the pulse transmission Intermodal dispersion, Material dispersion, Wave guide dispersion, Polarization Mode Dispersion, Total dispersion, Transmission rate. Dispersion Shifted Fibers, Dispersion Compensating Fibers.

UNIT - III

LIGHT SOURCES: LEDS, Laser Action in semiconductor Lasers, Semiconductor Lasers for optical communication — Laser modes, Spectral Characteristics, Power Voltage Characteristics, Frequency response.

DETECTORS: P-I-N Photodiode, APD, Noise Analysis in detectors, Coherent and non-coherent detection, Infrared sensors. Bit error rate.

UNIT - IV

The fiber-optic Communication System: Design considerations of fiber optic systems: Analog and digital modulation. Optical Devices: Optical coupler, space switches, linear divider-combiners, WDM: strategy, wavelength division multiplexer and demultiplexer, optical amplifier

OPTICAL NETWORKS: Elements and Architecture of Fiber-Optic Network, Optical link network-single hop, multihop, hybrid and photonic networks.

- 1. John Power, An Introduction to Fiber optic systems, McGraw Hill International.
- 2. John Gowar, Optical communication Systems.
- 3. R. Ramaswamy, Optical Networks, Narosa Publication
- 4. John M. Senior, Optical Fiber Communication
- 5. Gerd Keiser, Optical Fiber Communication

OE-CS-407		Industrial Electrical Systems										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0		75	25	100	3					
Purpose	To provide th	provide the conceptual knowledge of various Industrial Electrical										
	Systems.	tems.										
			Course	Outcomes								
CO 1	To study vario	ous fundame	ental cond	cepts of Electr	rical Compone	ents.						
CO 2	To study and	understand t	he Resid	ential and Cor	mmercial Elec	ctrical Sys	stems					
CO 3	To study the f	unctions and	d selection	on of Industria	al Electrical C	Componen	ts					
CO 4	To study the b	pasics and ro	ole of PLO	C & SCADA	in automation	1						

UNIT-1

Electrical System Components

LT system wiring components, selection of cables, wires, switches, distribution box, metering system, Tariff structure, protection components- Fuse, MCB, MCCB, ELCB, inverse current characteristics, Relays, MPCB, Electric shock and Electrical safety Practices.

UNIT-11

Residential and Commercial Electrical Systems

Types of residential and commercial wiring systems, general rules and guidelines for installation, load calculation and sizing of wire, rating of main switch, protection devices, requirements of commercial installation, earthing of commercial installation, selection and sizing of components.

UNIT-I11

Industrial Electrical Systems

HT connection, industrial substation, Transformer selection, Power factor correction–kVAR calculations, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Breakers

DG Systems, UPS System, Battery banks, Sizing the DG, UPS and Battery Banks, Selection of UPS and Battery Banks.

UNIT-1V

Industrial Electrical System Automation

Study of basic PLC, Role of automation, advantages of process automation, PLC based control system design, Panel Metering and Introduction to SCADA system for distribution automation

- 1. S. L. Uppal and G. C. Garg, "Electrical Wiring, Estimating & Costing", Khanna publishers, 2008.
- 2. K. B. Raina, "Electrical Design, Estimating & Costing", New age International, 2007.
- 3. S. Singh and R. D. Singh, "Electrical estimating and costing", Dhanpat Rai and Co., 1997. Web site for IS Standards.
- 4. H. Joshi, "Residential Commercial and Industrial Systems", McGraw Hill Education, 2008

PE-CS-D401L		Data Mining Lab										
Lecture	Tutorial	Practical	Credit	Minor Test	Practical	Total	Time					
0	0	2	1	40	60	100	3hrs					
Purpose	mining tech	Learning of data mining tools and extracting knowledge by applying various data mining techniques. Also explore the different validation techniques on the given training data set to get output metrics.										
			Course Ou	tcomes(CO))							
CO1	Learning o	f Data Minin	g tools.									
CO2	Understand	ling of vario	ıs Data Miı	ning Algorithr	ms.							
CO3	Developing	g the applicat	ion for asso	ociation minin	ng, classificati	on and clust	ering.					
CO4	Providing s	solutions for	real world	problems usin	g various data	n mining tecl	hniques.					

- 1. Study of WEKA data mining tool.
- 2. Study of ORANGE and KNIME open source data mining tools.
- 3. Develop an application to identify underlying relations between different items by extracting association rule mining.
- 4. Develop an application for distinguishing the data classes using classification technique.
- 5. Develop an application for partitioning a set of data objects using clustering technique.
- 6. Develop an application by implementing Naive Bayes Classifier.
- 7. Develop an application by implementing Association Mining Rule based Apriori Algorithm.
- 8. Develop an application for Decision Tree from class-labeled training tuples.
- 9. Develop a Decision Tree from a given training data set.
- 10. Develop a Decision Tree with cross validation training data set.
- 11. Develop a Decision Tree by using prune method and reduced error pruning. Also show the accuracy for cross validation trained data set.

PE-CS-D403L		Software Verification and Validation and Testing Lab											
Lecture	Tutorial	Practical	Credit	Minor Test	Practical	Total	Time						
0	0	2	1	100	3hrs								
Purpose	_	Γο gain a broad understanding of the discipline of software engineering mplementation.											
		(Course Ou	tcomes(CO)								
CO1	To unders	tand the bas	sic concept	s of Softwar	e Engineerin	g.							
CO2	To unders	Γο understand the different design techniques.											
CO3	To unders	Γο understand different software development models.											
CO4	To unders	tand differe	nt types of	Testing.									

- 1. To identify the role of the software in today's world across a few significant domains related to day to day life.
- 2. To identify any scenario and identify suitable software development model for the given scenario.
- 3. To classify the requirement into functional and non-functional requirements and list four functional and non functional requirements for any scenario.
- 4. Do comparative study of various software development models.
- 5. Preparation of requirement document for standard application problems in standard format.(e.g Library Management System, Railway Reservation system, Hospital management System, University Admission system)
- 6. To identify the usage of Regression Testing.
- 7. To identify the usage of Agile Testing.
- 8. To understand the importance of SDLC and STLC process.

PE-CS-D405L		Information Retrieval Lab										
Lecture	Tutorial	Practical	Credit	Minor Test	Practical	Total	Time					
0	0	2	1	40	60	100	3hrs					
Purpose	To provid	Γο provide an overview of Information Retrieval and implementation insight										
	about vari	ous evaluat	ion metho	ds.								
		Co	urse Out	comes(CO)								
CO1	Understan	ding about	Information	on Retrieval	models.							
CO2	Learn exp	erimental e	valuation	of performai	nce matrices	•						
CO3	Learn imp	lementation	of web s	earch engine	es.							
CO4	Learn the	implementa	tion of te	xt clustering	and classific	cation algoi	rithms.					

- 1. Implementation of Simple tokenization and Stop-word removal on a document.
- 2. Write a program to compute similarity between two text documents.
- 3. Write a map reduce program to count the number of occurrence of each alphabetic character in a document. The count for each letter should be case-insensitive.
- 4. Write a program to parse XML text, generate web graph and compute topic specific page rank.
- 5. Write a program to implement Simple web crawler.
- 6. Implementation of Naïve Bayes algorithm.
- 7. Implementation of Decision tree algorithm.
- 8. Implementation of K-nearest neighbour algorithm.
- 9. Implementation of K- means algorithm.
- 10. Evaluate the performance matrix using any algorithm.

PE-CS-D407L		Soft Computing Lab									
Lecture	Tutorial	utorial Practical Credit Minor Practical Total Time									
		Test									
0	0	2	1	40	60	100	3hrs				
Purpose	Soft Comp	outing achie	ves practi	cability, robu	stness, and le	ow cost solu	ition for				
	complex p	complex problems in real world using neural network, fuzzy systems									
	,optimizat	optimization approaches.									
		C	ourse Ou	tcomes(CO)							
CO1	Understan	d Fuzzy Co	ncepts.								
CO2	Learn Neu	ıral Networ	k with bac	k propagatio	n and withou	t back propa	agation.				
CO3	Learn the	operators of	Genetic a	algorithms.							
CO4	Learn the	implementa	tion of Op	timization al	gorithms.						

- 1. Write a program to implement artificial neural network with back propagation.
- 2. Write a program to implement artificial neural network without back propagation.
- 3. Implementation of operations on Fuzzy Sets.
- 3. Implement Travelling Sales man problem with genetic algorithm..
- 4. Implement Crisp partitions for real life iris dataset.
- 5. Write a program to implement Logic gates.
- 6. Implement SVM classification of Fuzzy Concepts.
- 7. Implement ABC (Artificial Bee Colony) optimization Technique.
- 8. Implement DE (Differential Evolution) algorithm.

PE-CS-D409L		Neural Networks and Deep Learning Lab										
Lecture	Tutorial	utorial Practical Credit Minor Test Practical Total Time										
0	0	2	1	40	60	100	3hrs					
Purpose	manage proknowledg	Demonstrate knowledge and apply engineering and management principles to manage projects and in multi-disciplinary environment and use research-based knowledge and research methods including design of experiments, analysis and interpretation of data for valid conclusions.										
		Co	ourse Outcor	nes (CO)								
CO1	Apply lea Neural Ne	0 0	ms on perce	eptron and apply	y back prop	agation le	arning on					
CO2	Apply Fee various ap		nd plot a Bol	tzmann machin	e and assoc	ciative me	mory on					
CO3		Apply different types of auto encoders with dimensionality reduction and regularization.										
CO4	Design Co Neural Ne		Neural Netw	ork and classifi	cation usin	g Convolu	ıtional					

- 1. To Write a program to implement Perceptron.
- 2. To write a program to implement AND OR gates using Perceptron.
- 3. To implement Crab Classification using pattern net Objective.
- 4. To write a program to implement Wine Classification using Back propagation.
- 5. Write a MatLab Script containing four functions Addition, Subtraction, Multiply and Divide functions.
- 6. Write a program to implement classification of linearly separable Data with a perceptron.
- 7. To study ImageNet, GoogleNet, ResNet convolutional Neural Networks.
- **8.** To study Convolutional Neural Network and Recurrent Neural Network.

PE-CS-D411L		Object Orie	ented Softwa	re Engineering	Lab							
Lecture	Tutorial	utorial Practical Credit Minor Test Practical Total Time										
0	0	0 2 1 40 60 100 3hrs										
Purpose	software meet the is to learn	Object-Oriented Software Development is an approach/paradigm of developing software by identifying and implementing a set of objects and their interactions to meet the desired objectives. The first step towards this kind of software development is to learn and master the various concepts, tools and techniques that are to be used design and implementation of such systems.										
		Co	urse Outcor	nes (CO)								
CO1	To learn ar	nd understand v	various O-O	concepts along v	vith their app	olicability c	ontexts.					
CO2		arious modelin esign (UML)	g techniques	to model differe	nt perspectiv	es of objec	ct-oriented					
CO3	To learn so Problems.	o learn software development life cycle for Object-Oriented solutions for Real-World										
CO4	Learn how	to test and doo	cument softw	are.								

- 1. Choose any one project and Write the complete problem statement.
- 2. Write the software requirement specification document
- 3. Draw the entity relationship diagram
- 4. Draw the data flow diagrams at level 0 and level 1
- 5. Draw use case diagram
- 6. Draw activity diagram of all use cases.
- 7. Draw state chart diagram of all use cases
- 8. Draw sequence diagram of all use cases
- 9. Draw collaboration diagram of all use cases
- 10. Assign objects in sequence diagram to classes and make class diagram.

PE-CS-D413L			Ex	pert System	ı Lab				
Lecture	Tutorial	Tutorial Practical Credit Minor Practical Total							
				Test					
0	0	2	1	40	60	100	3hrs		
Purpose		rse the stud at can be use			nt technique problems.	s of AI and	l Expert		
Course Outcomes(CO)									
CO1	Examining	g the fundar	nentals ar	nd terminolo	ogies of expe	ert system.			
CO2	Study of v	arious trend	ds and issi	ues related t	o AI and exp	pert systen	1.		
CO3	Implement general problems using AI and expert system techniques.								
CO4	Student w system.	ill capable	to handle	real time p	oroblems rela	ated to AI	and expert		

- 1. Study of Prolog.
- 2. Write simple fact for the statements using PROLOG.
- 3. Write predicates One converts centigrade temperatures to
- 4. Write predicates One converts centigrade temperatures to Fahrenheit, the other checks if a temperature is below freezing.
- 5. Write a program to solve the Monkey Banana problem.
- 6. WAP to implement factorial, Fibonacci of a given number.
- 7. Write a program to solve 4-Queen problem.
- 8. Write a program to solve traveling salesman problem.
- 9. Write a program to solve water jug problem using LISP
- 10. Solve any problem using depth first search and best first search.

	Bachelor of Technology (Computer Science & Engineering)												
	Credit-Based Scheme of Studies/Examination												
	Semester VIII (w.e.f. session 2021-2022)												
S. No.	Course Code	Subject	L:T:P	Hours/ Week	Credits	Exami	Duration of Exam (Hrs)						
						Major Test	Minor Test	Practical	Total				
1	PE	Elective-VI	3:0:0	3	3	75	25	0	100	3			
2	OE	Open Elective-III	2:0:0	2	2	75	25	0	100	3			
3	OE	Open Elective-IV	2:0:0	2	2	75	25	0	100	3			
	PROJ- CS-402	Project-III	0:0:12	12	6	0	40	60	100	3			
5	PE-L	Elective-VI Lab	0:0:4	4	2	0	40	60	100	3			
		Total		23	15	225	155	120	500				

The course of both PE & OE will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

PE Elective-VI	
Cloud Computing: PE-CS-A402	
Computer Graphics: PE-CS-A404	
Software Reliability: PE-CS-A406	
Mobile Apps Development: PE-CS-A408	
OE Elective-III	OE Elective-IV
Cyber Security: OE-CS-402	Web and Internet Technology: OE-CS-410
Satellite Communication: OE-CS-404	Automation in Manufacturing: OE-CS-412
Social Networks Analysis & Mining: OE-CS-406	IPR, Bioethics and Biosafety: OE-CS-414
Agile Software Engineering: OE-CS-408	Signal & Systems: OE-CS-416

PE-CS-A402		Cloud computing									
Lecture	Tutorial	utorial Practical Credit Major Test Minor Test Total Time									
3	0	0 0 3 75 25 100 3 hrs									
Purpose		To introduce the concepts of Cloud Computing									
		(Course O	itcomes (CO)							
Co1	Introduct	ion & Over	view of C	omputing Para	digm						
Co2	To Cloud	Computing	g Architec	ture							
Co3	To study the concepts of Service Management in Cloud Computing										
Co-4	To study	the concept	s of Cloud	d Security							

Unit-I

Overview of Computing Paradigm: Recent trends in Computing, Grid Computing, Cluster Computing, Distributed Computing, Utility Computing, Cloud Computing, evolution of cloud computing, Business driver for adopting cloud computing

Introduction to Cloud Computing: Cloud Computing (NIST Model), introduction to Cloud Computing, History of Cloud Computing, Cloud service providers, Properties, Characteristics & Disadvantages, Pros and Cons of Cloud Computing, Benefits of Cloud Computing, Cloud computing vs. Cluster computing vs. Grid computing, Role of Open Standards

Unit-II

Cloud Computing Architecture: Cloud computing stack, Comparison with traditional computing architecture (client/server), Services provided at various levels, How Cloud Computing Works, Role of Networks in Cloud computing, protocols used, Role of Web services,

Service Models (XaaS) - Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Deployment Models- Public cloud, Private cloud, Hybrid cloud, Community cloud. Data Security, Network Security

Unit-III

Service Management in Cloud Computing: Service Level Agreements (SLAs), Billing & Accounting, comparing Scaling Hardware: Traditional vs. Cloud, Economics of scaling: Benefitting enormously, Managing Data- Looking at Data, Scalability & Cloud Services, Database & Data Stores in Cloud, Large Scale Data Processing.

Cloud Applications: Scientific Applications – Health care, Geoscience and Biology. Business and Consumer Applications- CRM and ERP, Social Networking, Media Applications and Multiplayer Online Gaming.

Case study: Eucalyptus, Microsoft Azure, Amazon EC2.

Unit-IV

Cloud Security: Infrastructure Security, Network level security, Host level security, Application level security, Data security and Storage, Data privacy and security Issues, Jurisdictional issues raised by Data location, Identity & Access Management, Access Control, Trust, Reputation, Risk, Authentication in cloud computing, Client access in cloud, Cloud contracting Model, Commercial and business considerations

- 1. Cloud Computing Bible, Barrie Sosinsky, Wiley-India, 2010
- 2. Cloud Computing: Principles and Paradigms, Editors: Rajkumar Buyya, James Broberg, Andrzej M. Goscinski, Wile, 2011
- 3. Cloud Computing: Principles, Systems and Applications, Editors: Nikos Antonopoulos, Lee Gillam, Springer, 2012
- 4. Cloud Security: A Comprehensive Guide to Secure Cloud Computing, Ronald L. Krutz, Russell Dean Vines, Wiley-India, 2010

PE-CS-A404		Computer Graphics								
Lecture	Tutorial	Tutorial Practical Credit Major Minor Total Time								
				Test	Test					
3	0	0	3	75	25	100	3			
Purpose	Introduc	Introduces Computer Graphics that help in designing different kinds of								
	static and	static and movable objects.								
		C	ourse Out	tcomes(CO)						
CO1	Explore the	he backgrou	and and st	andard line a	nd circle dr	awing algor	ithms.			
CO2	Exposure	of various	transform	ation approac	ches and its	comparative	e analysis.			
CO3	Illustrate	Illustrate Projection and clipping with different techniques.								
CO4	Apply de	Apply design principles to create different curves and explore hidden lines								
	and surfa	ce techniqu	es.							

UNIT – I: Introduction

Computer Graphics applications, Classification, Components, Display Devices, Scan conversion-Point & Line, Line drawing algorithms: DDA, Bresenham's, Circle drawing algorithms: Bresenham's, Mid point Algorithm .

UNIT – II: Advanced Design Techniques

Window to view port transformation, Window to view port mapping, Two Dimensional transformation: translation, scaling, rotation, reflection and Shear, Homogeneous Coordinate system.

3-D transformation: Rotation, Shear, translation, Numerical Problems of transformation viewing pipeline.

UNIT – III: Graph Algorithms

Clipping: Point & Line clipping algorithm, 4-bit code algorithm, Cohen-Sutherland Line clipping algorithms, Polygon clipping: Sutherland-Hodgeman Polygon clipping algorithm. Curve clipping, Text clipping.

Projection: Parallel, Perspective, Vanishing Points.

UNIT – IV: String Matching Algorithms

Representation of 3-D Curves and Surfaces: interpolation and approximation alpines, parametric conditions, Geometric continuity conditions, Bezier curves and surfaces: properties of bezier curves, bezier surfaces.

Hidden Surfaces removal: Hidden surface elimination, depth buffer algorithm, scan line coherence and area coherence algorithm, Painter's algorithm.

Text Books:

- 1. Donald Hearn & M.Pauline Baker, Computer Graphics, 2nd Edition, Pearson Education.
- 2. William M. Newmann & Robert F. Sproull, Principles of Interactive Computer Graphics, Tata McGraw-Hill Second Edition, New Delhi, India.
- 3. Zhigang Xiang & Roy A Plastock, Computer Graphics, Second Edition, Schaum's Outline, Tata McGraw Hill Education Private Limited, New Delhi, India.

PE-CS-A406		Software Reliability									
Lecture	Tutorial	utorial Practical Credit Major Test Minor Test Total Time									
3	0	0	3	75	25	100	3 Hrs.				
	In this co	ourse the st	udent w	ill understand	the working o	of softwar	e reliability				
Purpose	models a	nd reliabil	ity pred	iction models,	, and able to	design a	nd develop				
	reliability	models.									
			Coı	ırse Outcome	s(CO)						
CO1	Develop	reliable sof	tware sy	stems.							
CO2	Understa	nd the faul	handlin	g and failure fo	orecasting tech	niques in	software				
CO2	systems.										
CO3	To learn	To learn different time dependent and time independent software reliability									
	models a	nd design r	eliability	models for so	ftware systems	S.					
CO4	Design re	eliability m	odels for	software syste	ems.						

UNIT I

Basic Ideas of Software Reliability, Hardware reliability vs. Software reliability, Reliability metrics, Failure and Faults – Prevention, Removal, Tolerance, Forecast, Dependability Concept – Failure Behaviour, Characteristics, Maintenance Policy, Reliability and Availability Modeling, Reliability Evaluation Testing methods, Limits, Starvation, Coverage, Filtering, Microscopic Model of Software Risk.

UNIT II

Computation of software reliability, Functional and Operational Profile, Operational Profiles – Difficulties, Customer Type, User Type, System Mode, Test Selection - Selecting Operations, Regression Test.

UNIT III

Classes of software reliability Models, Time Dependent Software Reliability Models: Time between failure reliability Models, Fault Counting Reliability Models. Time Independent Software Reliability Models: Fault injection model of Software Reliability, Input Domain Reliability Model, Orthogonal defect classification, Software availability Models. Software Reliability Modeling: A general procedure for reliability modeling.

UNIT IV

Short and Long Term Prediction, Model Accuracy, Analysing Predictive Accuracy – Outcomes, PLR, U and Y Plot, Errors and Inaccuracy, Recalibration – Detecting Bias, Different Techniques, Power of Recalibration, Limitations in Present Techniques, Improvements.

- 1. J.D. Musa, Software Reliability Engineering, McGraw Hill, New York, 2004
- 2. H. Pham, Software Reliability, Springer Verlag, New York, 2000
- 3. Patric D. T.O Connor, *Practical Reliability Engineering, 4th Edition*, John Wesley & Sons , 2003
- 4. D. Reled, Software Reliability Methods, Springer Verlag, New York, 2001

PE-CS-A408		Mobile Apps Development									
Lecture	Tutorial	Tutorial Practical Credit Major Minor Test Total									
				Test							
3	0	0	3	75	25	100	3				
Purpose	To introd	To introduce the concepts of developing the mobile applications.									
	Course Outcomes (CO)										
CO1	Be expose	ed to techno	ology and	Mobile apps	s development a	spects.					
CO2	Be compe	etent with th	ne charact	terization and	d architecture of	mobile					
	application	ons.									
CO3	Appreciation of nuances such as native hardware play, location awareness,										
	graphics,	graphics, and multimedia.									
CO4	Perform t	esting, sign	ing, pack	aging and dis	stribution of mo	bile apps.					

Unit 1: Introduction to Mobility

Mobility landscape, Mobile platforms, Mobile apps development, Overview of Android platform, challenges of Android app development, versions of Android, why develop apps for android, Setting up the Mobile App Development environment along with an Emulator.

Mobile Platforms: URIs for mobile apps, Compare and contrast native mobile platforms such as tightly controlled (IPhone), open (Android), and licensed (Windows Mobile), web as a mobile application platform.

Unit II: Building blocks of Mobile

Activities, Activity life cycle and interaction between activities, App User Interface Designing – User Interaction, user input controls, Mobile UI resources (Layout, UI elements, Drawable, Menu)screen navigation, Recycle view. App functionality beyond user interface – Threads, Async task, Services – States and Life Cycle, Notifications, Broadcast receivers, Content provider.

Unit III: Sprucing up Mobile Apps

Triggering, scheduling and optimizing background tasks: Notifications, Scheduling Alarms, transferring data efficiently. Graphics and animation – Custom views, Canvas, Animation APIs, Multimedia – Audio/Video playback and record, Location awareness.

Native data handling –file I/O, Shared preferences, shared data through content provider, Mobile databases such as SQLite, and Enterprise data access (via Internet/Intranet).

Unit IV: Testing and Launching Mobile Apps

Debugging mobile apps, White box testing, Black box testing, and test automation of Mobile apps, JUnit for Android. Loading data using loaders, Permissions, Performance and Security, Firebase and AdMob and publish.

- 1. Barry Burd, *Android Application Development All in one for Dummies*, Wiley publications, 2nd Edition 2015.
- 2. Android Developer Fundamentals Course— Concepts (Learn to develop Android applications) Concepts Reference *Developed by Google Developer Training Team*, 2016
- 3. Valentino Lee, Heather Schneider, and Robbie Schell, Mobile Applications: Architecture, Design, and Development, Prentice Hall, 2004.
- 4. Rick Boyer, Kyle Mew, Android Application Development Cookbook Second Edition. 2016.
- 5. <u>Carmen Delessio</u>, Lauren Darcey, Teach Yourself Android Application Development In 24 Hours, SAMS, 2013.
- 6. Brian Fling, Mobile Design and Development, O'Reilly Media, 2009.
- 7. Maximiliano Firtman, Programming the Mobile Web, O'Reilly Media, 2010.

OE-CS-402		Cyber Security								
Lecture	Tutorial	Total	Time							
2	-	-	2	75	25	100	3 Hrs.			
Purpose		To gain a broad understanding in order to get predictive ways out related to cyber security.								
			Co	urse Outcom	es					
CO1	To facilit	ate the basi	c knowled	lge of cyber se	curity.					
CO2	To learn of a data.	To learn about how to maintain the Confidentiality, Integrity and Availability								
CO3	To get en	To get enable to fix the various cyber-attacks.								
CO4	To deal v	vith the digi	tal forens	ics and related	scenarios of o	ybercrin	nes.			

Unit I

Introduction: Fundamentals of Cyber Crime, Types of Cyber Crime: crime against individual, Crime against property, Cyber extortion, Drug trafficking, cyber terrorism. Cybercrime issues. Cryptanalysis – steganography - stream and block ciphers - Modern Block Ciphers: Block ciphers principals - Shannon's theory of confusion and diffusion - fiestal structure - data encryption standard (DES) - strength of DES - differential and linear crypt analysis of DES - block cipher modes of operations - triple DES – AES.

Unit 2

Integrity checks and Authentication algorithms MD5 message digest algorithm - Secure hash algorithm (SHA) Digital Signatures: Digital Signatures - authentication protocols - digital signature standards (DSS) - proof of digital signature algorithm - Authentication Applications: Kerberos and X.509 - directory authentication service - electronic mail security-pretty good privacy (PGP) - S/MIME.

Unit 3

Introduction to cyber-attacks: passive attacks, active attacks.

Cyber-crime prevention methods, Application security (Database, E-mail and Internet), Data Security Considerations-Backups, Archival Storage and Disposal of Data, Security Technology Firewall and VPNs, Intrusion Detection, Access Control, OS Security.

Web Security: Secure socket layer and transport layer security - secure electronic transaction (SET) - System Security: Intruders - Viruses and related threads - firewall design principals – trusted systems.

Unit 4

Digital Forensics: Introduction to Digital Forensics, historical background of digital forensics, Forensic Software and Hardware, need for computer forensics science, special tools and techniques digital forensic life cycle, challenges in digital forensic.

Law Perspective: Introduction to the Legal Perspectives of Cybercrimes and Cyber security, Cybercrime and the Legal Landscape around the World, Why Do We Need Cyber laws, The Indian IT Act, Cybercrime Scenario in India, Cybercrime and Punishment.

IP Security: Architecture - Authentication header - Encapsulating security payloads - combining security associations - key management.

- 1. Nelson Phillips and EnfingerSteuart, "Computer Forensics and Investigations", Cengage Learning, New Delhi, 2009.
- 2. William Stallings, "Crpyptography and Network security Principles and Practices", Pearson/PHI.
- 3. Robert M Slade," Software Forensics", Tata McGraw Hill, New Delhi, 2005.
- 4. SunitBelapure and Nina Godbole, "Cyber Security: Understanding Cyber Crimes, Computer Forensics And Legal Perspectives", Wiley India Pvt. Ltd.

OE-CS-404		Satellite Communication:									
Lecture	Tutorial	torial Practical Credit Major Test Minor Test Total Time									
2	0	0	2	75	25	100	3				
Purpose	To familiar	ize the stude	ents with	the concepts	of Satellite cor	nmunica	tion				
	and various	s terms, laws	and mu	ıltiple access s	schemes used in	ı its wor	king.				
	Course Outcomes										
CO1	To understa	To understand the concept of basics of satellite communication and various									
	basic laws a	nd terms of s	atellite c	ommunication	1.						
CO2	To understa	nd the conce	pt and pr	ocesses of var	ious communica	ation sate	ellites				
	used in sate	llite commun	ication.								
CO3	To familiari	ze with the c	oncept a	nd design issu	es of satellite lin	ık design	and				
	satellite acc	ess.									
CO4	To familiari	To familiarize with the concepts of Multiple access schemes used in satellite									
	communicat	tion.									

Unit -I

SATELLITE ORBITS: Orbital Mechanics- Kepler's laws ,locating the satellite in the Orbit, locating the satellite with respect to the earth, Orbital elements, look angle determination, Sub satellite point, Azimuth and elevation angle calculation, Orbital perturbations, Longitudinal and Inclination changes; Launches and launch vehicles-ELV's, Placing the satellite into geostationary orbit, Doppler shift, range variations, solar eclipse, sun transit outage.

Unit-II

COMMUNICATION SATELLITES: Satellite Subsystems, Attitude and Orbit Control system(AOCS), Telemetry, Tracking, Command and Monitoring (TTC&M), Power System, Communication Subsystems-description, Transponders, satellite antennas-basic antenna types, basic antennas in practice.

Unit -III

Satellite link design and Satellite access: Basic transmission theory, system noise temperature and G/T ratio; Downlink design-link budget; Uplink design; design for specified C/N, uplink and downlink attenuation in rain, communication link design procedure; system design examples.

Unit -IV

Multiple access schemes: FDMA, TDMA, CDMA, DAMA; VSAT systems-basic techniques, VSAT earth station engineering, system design; DBS systems-C-band and Ku band home TV, digital DBS; satellite mobile systems; GPS

- 1. Timothy Pratt, Satellite Communications, Wiley India edition
- 2. Anil K Maini, Satellite Communication, Wiley India edition

OE-CS-406		Social Networks Analysis & Mining									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
2	0	0	2	75	25	100	3 Hrs.				
Program	This em	nerging and	d innova	tive field wil	I provide the	insight	into latest				
Objective	commun	ication tech	niques u	sed in the on	nline social ne	tworks fo	ridentifying				
(PO)	and rep	resenting t	he relati	onships and	link prediction	on via th	e effective				
	combinat	tion of gra _l	oh theory	, matrix, clu	stering, and e	equivalend	ce between				
	users.										
				outcomes (CC							
CO1					etworks by lea	•	•				
		9.	•		ural relationshi	ips amonę	the nodes				
	to determ	nine their re	lative imp	ortance.							
CO2				•	of homophily,						
					ion in an efficie						
CO3	,				tweenness, ce	•	•				
					ent and struct						
		•		•	rate visualizat	ions and	to perform				
		l investigatio									
CO4		•			ith respect to	_	•				
		•	_		the basic of		•				
			concepts	for interpreting	ng complex da	ata to exe	ecute better				
	recomme	endation.									

Unit-I

Introduction to Social Networks, Google Page Rank, Link Prediction, Importance of Acquaintances, Web Graph, Introduction: Emergence of Connectedness, Granovetter's Strength of weak ties, Triads, clustering coefficient and neighborhood overlap, Structure of weak ties, bridges, and local bridges, Emeddedness, Betweenness Measures and Graph Partitioning, Finding Communities in a graph (Brute Force Method), Community Detection Using Girvan Newman Algorithm, Strong and Weak Relationship

Unit-II

Introduction to Homophily, Selection and Social Influence, Foci Closure and Membership Closure, Introduction to Fatman Evolutionary model, Triadic Closure, Spatial Segregation: An Introduction, Schelling Model Implementation, Positive and Negative Relationships – Introduction, Structural Balance, Creating graph, displaying it and counting unstable triangles, Equal Coin Distribution, Random Walk Coin Distribution.

Unit-III

Metrics in social network analysis (Betweenness, Centrality, Equivalence relation, Centralization, Clustering coefficient and Structural cohesion), Diffusion in Networks, Impact of Communities on Diffusion, Cascade and Clusters, Introduction to Hubs and Authorities, Hubs and Authorities, PageRank as a Matrix Operation, Introduction to Power Law, Rich Get Richer Phenomenon, Implementing a Random Graph (Erdos-Renyi Model)

Unit-IV

Rich Get Richer - The Long Tail, Epidemics- An Introduction, Simple Branching Process for Modeling Epidemics, Basic reproductive number, SIR and SIS spreading models, Percolation model, Milgram's Experiment, The Generative Model, Decentralized Search, Basic of Equivalence concepts in Social Networks.

- 1. David Easley and Jon Kleinberg, "Networks, Crowds and Markets", Cambridge University Press.
- 2. Matthew O. Jackson, "Social and Economic Networks", Princeton University Press.
- 3. Matthew A. Russell, "Mining the Social Web", O'Reilly and SPD, Second edition New Delhi.

- 4. Hanneman, R. A., & Riddle, M., "Introduction to social network methods, Riverside, California: University of California, Riverside. Retrieved from http://faculty.ucr.edu/~hanneman/nettext/.
- 5. "Social network analysis: Theory and applications". A free, Wiki Book available at: http://train.ed.psu.edu/WFED-543/SocNet_TheoryApp.pdf.
- 6. John Scott, Peter J. Carrington, "Social Network Analysis", SAGE Publishing Ltd.

OE-CS-408	Agile Software Engineering											
Lecture	Tutori	Tutori Practical Credit Major Test Minor Test Total Tim										
	al											
2	0	0	2	75	25	100	3					
Purpose	Introdu	Introduces the business value of adopting Agile approaches and provide										
	(complete understanding of the Agile development practices										
		(Course O	utcomes (CO)								
CO1	Understa	nd the back	ground an	d driving force	es for taking an	Agile appr	oach to					
	software	developmen	nt									
CO2	Understa	nd the busir	ess value	of adopting Ag	gile approaches							
CO3	Drive de	velopment v	vith unit te	ests using Test	Driven Develo	pment						
CO4	Apply de	sign princip	les and re	factoring to ac	hieve Agility							

Unit I: Fundamentals of Agile

The Genesis of Agile, Introduction and background, Agile Manifesto and Principles, Overview of Scrum, Extreme Programming, Feature Driven development, Lean Software Development, Agile project management, Design and development practices in Agile projects, Test Driven Development, Continuous Integration, Refactoring, Pair Programming, Simple Design, User Stories, Agile Testing, Agile Tools

Unit II: Agile Scrum Framework

Introduction to Scrum, Project phases, Agile Estimation, Planning game, Product backlog, Sprint backlog, Iteration planning, User story definition, Characteristics and content of user stories, Acceptance tests and Verifying stories, Project velocity, Burn down chart, Sprint planning and retrospective, Daily scrum, Scrum roles – Product Owner, Scrum Master, Scrum Team, Scrum case study, Tools for Agile project management.

Unit III: Agile Testing

Agile Testing Planning and Managing Testing Cycle, Agile Lifecycle and its impact on testing, Principles of Agile Testing, Agile Testing Techniques, Test-Driven Development, User Acceptance Tests, Test Automation.

Agile Project Management Scheduling in an agile project, scheduling challenges, estimating costs, monitoring project progress, burning down the product backlog, reporting, controlling the project

Unit IV: Agile Software Design and Development

Agile design practices, Role of design Principles including Single Responsibility Principle, Open Closed Principle, Liskov Substitution Principle, Interface Segregation Principles, Dependency Inversion Principle in Agile Design, Need and significance of Refactoring, Refactoring Techniques, Continuous Integration, Automated build tools, Version control.

Suggested Books:

- Ken Schawber, Mike Beedle, Agile Software Development with Scrum, Pearson publications
- Robert C. Martin, *Agile Software Development, Principles, Patterns and Practices*, Prentice Hall
- Lisa Crispin, Janet Gregory, *Agile Testing: A Practical Guide for Testers and Agile Teams*, Addison Wesley
- Alistair Cockburn, Agile Software Development: The Cooperative Game, Addison Wesley

- Mike Cohn, *User Stories Applied: For Agile Software*, Addison Wesley
- Enterprise-Scale Agile Software Development James Schiel Latest edition, CRC Press
- Succeeding with Agile: Software Development Using Scrum Mike Cohn Latest edition, Addison-Wesley

OE-CS-410	Web and Internet Technology										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
2	0	0	2	75	25	100	3 Hour				
Purpose	To learn	the architec	ture and p	rogramming o	f Internet and	d study of	scripting				
	language	language:Python									
Course Outcomes											
CO 1	To Learn the basic concepts of internet and its connectivity										
CO 2	To Learn	n about the s	ervices of	internet, design	gning and its	architectu	ıre				
CO 3	To Lear	n the basic	concepts of	of Python and	its applicati	ons in in	formation				
	industry										
CO 4	To Acq	uaint the l	knowledge	of latest p	rogramming	language	for the				
	impleme	entation of	object bas	sed and proce	edure based	application	ons using				
	Python.										

Unit-I: Introduction to Internet

Internet, Growth of Internet, Owners of the Internet, Anatomy of Internet, ARPANET and Internet history of the World Wide Web, basic Internet Terminology, Internet Applications – Commerce on the Internet, Governance on the Internet, Impact of Internet on Society – Crime on/through the Internet, The role of Information Architect, Collaboration and communication, Organizing information, Organizing web sites and Intranets, Creating cohesive organization systems, designing navigation systems, types of navigation systems, Integrated navigation elements, Searching systems, Searching your web site, designing the search interface.

Unit-II: Internet Services and Web Publishing

Setting up a connection: Hardware requirement, Selection of a Modem, Software Requirement, Modem Configuration, Common terminologies: Node, Host, Workstation, bandwidth, Interoperability, Network administrator, network security, Network Components: Severs, Clients, Communication Media, Service options – E-mail, News Firewall, etc. Introduction to XHTML and HTML5: Basic Text Markup, Images, Hypertext Links, Lists, Tables, Forms in HTML, Syntactic Differences between HTML5 and XHTML, Cascading Style Sheets: Introduction, Levels of Style Sheets, Style Specification Formats, Selector Forms, Property Value Forms, Font Properties, List Properties, Color, Alignment of Text, Box Model, Background Images.

Unit -III: Introduction of Scripting Language: Python

Introduction to Python: Applications of Python in information industry, Introduction to Python, Data Types, Branching Programs, Control Structures, Array and Input, Iteration. Functions and Scoping: Functions and scoping, Recursion and Global variables. Creation, insertion and deletion of items: Strings, Tuples, Lists and Dictionaries.

Unit –IV: Advanced Python

Classes and Object-Oriented Programming: Abstract Data Types and Classes, Inheritance, Encapsulation and Information Hiding. File Handling, Exceptions Handling, Data base (MySQLdb) operation: file check, table creation, insertion and deletion of data, Regular Expressions – REs in Python and Plotting.

Suggested Books

- 1. "Information Architecture on the World Wide Web", By Peter Morville, Louis Rosenfeld, O'Reilly Media, 2006.
- 2. "Programming The World Wide Web", By Robert W. Sebesta, 8th Edition, Pearson India, 2015.

- 3. "The Fundamentals of Python: First Programs", By Kenneth A. Lambert, 2011, Cengage Learning.
- 4. "Python: The Complete Reference", By Martin C. Brown, Paperback March 2018 5. "Core Python Programming", by R. Nageswara Rao, Dreamtech Publication, 2018

OE-CS-412	Automation in Manufacturing										
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time				
				Test	Test						
2	0	0	2	75	25	100	3				
Purpose	The purpo	se of this c	ourse is to	impart knov	wledge of p	roduction au	utomation,				
	robotics,	flexible ma	nufacturing	g, CNC prog	gramming, 1	naterial har	dling and				
	automated	automated storage systems.									
Course Outcomes											
CO1	Students v	vill be able	to explain	the role autor	mation in m	anufacturing	g and				
	robotics in	n industry.									
CO2				escribe the							
	manufactu	iring technic	ques in the	automated p	roduction li	ne and man	ufacturing				
	system.										
CO3				computer aid	led process p	olanning and	d shop				
	floor man	ufacturing a	ctivities.								
CO4	Students v	will be able	to develop	CNC progra	ms and unde	erstand the o	concept				
	automated	l guided veh	icle and au	utomated stor	rage system	in material	handling.				

UNIT I

Introduction: Production system, automation in production system, manual labour in production system, automation principle and strategies, manufacturing industries and products, manufacturing operations, product facilities, product/ production relationship, basic elements of an automation system, advance automation function, level of automation.

Industrial robotics: Robot anatomy and related attributes, joint and links, common robot configuration, joint drive system, sensors in robotics, robot control system, end effectors, grippers and tools, applications of industrial robots, material handling, processing operation, assembly and inspection, robot programming.

UNIT II

Group technology and cellular manufacturing: Part families, parts classifications and coding, production flow analysis, cellular Manufacturing- composite part concept, machine cell design, applications of group technology, grouping parts and machines by rank order clustering technique, arranging machines in a G.T. cell.

Flexible manufacturing: Introduction, FMS components, flexibility in manufacturing – machine, product, routing, operation, types of FMS, FMS layouts, FMS planning and control issues, deadlock in FMS, FMS benefits and applications.

UNIT III

Process planning: Introduction, manual process planning, computer aided process planning – variant, generative, decision logic decision tables, decision trees, Introduction to artificial intelligence.

Shop floor control: Introduction, shop floor control features, major displays, major reports, phases of SFC, order release, order scheduling, order progress, manufacturing control, methodology, applications, shop floor data collections, Types of data collection system, data input techniques, automatic data, collection system.

UNIT IV

CNC basics and part programming: Introduction, historical, background, basic components of an NC, steps in NC, verifications of numerical control machine tool programs, classification of NC Machine tool, basics of motion control and feedback for NC M/C, NC part programming, part programming methods, modern machining system, automatically programmed tools, DNC, adaptive control.

Automated Guided Vehicle and Storage System: Functions of AGV, types of AGV, safety consideration for AGV, design of AGV; Introduction to storage system, storage system

performance, storage location strategies, conventional storage method and equipment, automated storage system, fixed aisle automated storage/ retrieval system, carousel storage systems, analysis of storage system, fixed aisle automated storage/ retrieval systems, carousel storage systems.

Reference Books:

- 1. Automation, production system and computer integrated manufacturing- Mikell P. Groover, Pearson fourth edition.
- 2. CAD/CAM: Computer Aided Design and ManufacturingGroover-M.P. and Zimmers E. W., Prentice Hall International, New Delhi, 1992.
- 3. CAD/CAM/CIM-P. Radhakrishnan, S. Subramanayan and V.Raju, New Age International (P) Ltd., New Delhi.
- 4. Computer Integrated Manufacturing- Alavudeen and Venkateshwaran, Prentice- Hall of India Pvt. Ltd., New Delhi.

OE-CS-414		IPR, Bioethics, and Biosafety									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
2	0	0	2	75	25	100	3hrs				
Program	Students v	will able to	acquire	knowledge of	regulatory b	odies ,	acts and				
Objective	organizatio	on indulge	in creatin	ng a balancing	g force bety	ween ac	dvent in				
(PO)		technology with monitoring their impacts on human and ecology alongwith									
	biosafety measures with ethical conduct to society.										
	Course Outcomes										
CO1	Students w	ill be able to	o describe t	he basic terms a	and procedure	e for IPR	, patent				
	filing and i	implications	on society	of commerciali	zed products.						
CO2	Students w	ill be able to	o learn and	describe variou	s act, policies	s, differe	nt				
	organizatio	ons and guid	lelines for b	iosafety.							
CO3	Students w	ill develop	knowledge	of outbreak and	l risk assessm	ent and					
	manageme	nt at laborat	ory level al	ong with health	impacts.						
CO4	Students w	ill develop	awareness o	of ecological im	pact of releas	se of gen	etically				
	modified o	organisms ar	d monitorii	ng methods.							

UNIT -1

Introduction- Intellectual Property Rights, Copyrights, Trademarks, Trade secrets, Geographical indications, Patents, Patent Filing, Indian Patent act and amendments, Implications of intellectual property rights on the commercialization of Biotechnology products, Patented products in Market and Success story.

UNIT-II

Policies, Agreements and Organization -National biosafety policies and law, The Cartagena protocol on biosafety, Convention on biological diversity, Cross border movement of germplasm and agreements, World Trade Organization and agreements, Updated Regulatory frameworks.

UNIT-III

Biological Containment- Risk assessment, Risk management, General principal for biological containment at laboratory level, Health impact of containment issues-Allergenicity, Antibiotic resistance and Toxicology. Case studies.

UNIT -IV

Ecological Impacts-Genetically Modified organism and impact on biodiversity, gene flow, gene escape and creation of superweeds/ superviruses, Monitoring strategies and method of detecting transgenics(Radioactive /Non radioactive methods). Case studies.

Suggested Books:

- 1. Padma Nambisan, An introduction to ethical safety and intellectual property rights issues in biotechnology, Academic Press, ISBN-978-0-12-809231-6, 2017.
- 2. Deepa Goel and Shomini Parashar, IPR, Biosafety and Bioethics, Pearson Education, India, ISBN-978933251429, 2013.
- 3. V. Sree Krishna, Bioethics and Biosafety in Biotechnology, New age international private ltd., 2007.
- 4. Gerald A. Urban, BioMEMS, Springer, 2010.

OE-CS-416		Signals and Systems										
Lecture	Tutorial Practical Credit Major Test		Minor Test	Total	Time							
2	-	-	2	75	25	100	3 Hrs.					
	Course Outcomes (CO)											
At t	At the end of this course, students will demonstrate the ability to											
CO1	Analyze	Analyze different types of signals.										
	_	nt continuo transform		discrete systems i	in time and frequ	ency dom	ain using					
CO3	Understa	ınd sampli	ng theo	rem and its implic	cations.							
CO4	Apply tra		chnique	es to analyze cont	inuous-time and	discrete-ti	ime signal					

UNIT-I

Introduction to Signals: Continuous and discrete time signals, deterministic and stochastic signals, periodic and a periodic signal, even and odd signals, energy and power signals, exponential and sinusoidal signals and singular functions.

Introduction to Systems: Linear and non-linear systems, time invariant and time varying systems, lumped and distributed systems, deterministic and stochastic systems, casual and non-causal systems, analog and discrete/digital memory and memory less systems.

UNIT-II

Random Variables: Introduction to Random Variables, pdf, cdf, moments, distributions, correlation functions.

Linear Time Invariant Systems: Introduction to linear time invariant (LTI) systems, properties of LTI systems, convolution integral, convolution sum, causal LTI systems described by differential and difference equations, Concept of impulse response.

UNIT-III

Discretisation of Analog Signals: Introduction to sampling, sampling theorem and its proof, effect of undersampling, reconstruction of a signal from sampled signal.

Fourier Series: Continuous time fourier series (CTFS), Properties of CTFS, Convergence of fourier series, Discrete time Fourier Series (DTFS), Properties of DTFS, Fourier series and LTI system.

UNIT-IV

Fourier Transform: Continuous Time Fourier Transform (CTFT), Properties of CTFT, Systems characterized by linear constant- coefficient differential equations, Discrete time fourier transform (DTFT), Properties of DTFT.

Laplace Transform: Introduction to Laplace transform, Region of convergence for laplace transform, Inverse laplace transform, Properties of laplace transform, Analysis and characterization of LTI systems using laplace transform,

Suggested Books:

- Alan V. Oppenheim, Alan S. Willsky, S. Hamid Nawab, Signals and Systems, Prentice Hall India, 2nd Edition, 2009
- Simon Haykins "Signal & Systems", Wiley Eastern
- Tarun Kumar Rawat, Signals and Systems, Oxford University Press.
- H. P. Hsu, "Signals and systems", Schaum's series, McGraw Hill Education, 2010.
- M. J. Robert "Fundamentals of Signals and Systems", McGraw Hill Education, 2007.
- B. P. Lathi, "Linear Systems and Signals", Oxford University Press, 2009.

PE-CS-A402L		Cloud Computing Lab									
Lecture	Tutorial	Practical	Credit	Minor Test	Practical	Total	Time				
-	-	4	2	40	60	100	3hrs				
Purpose		Design and Implement various mobile applications using emulators and learn how to Deploy applications to hand-held devices.									
Course Outcomes(CO)											
CO1		e compone		structure of nobiles.	mobile ap	plication d	evelopment				
CO2	Understar framework		ork with va	arious mobile	application	developme	nt				
CO3		basic and in plications.	mportant c	lesign conce	pts and issue	es of develo	opment of				
CO4	Understar	nd the capal	oilities of n	nobile device	s.						

- 1. Write a program to use the API's of Hadoop to interact with it.
- 2. Install a C compiler in the virtual machine created using virtual box and execute Simple Programs
- 3. Install Google App Engine. Create hello world app and other simple web applications using python/java.
- 4. Use GAE launcher to launch the web applications.
- 5. Show the virtual machine migration based on the certain condition from one node to the other.
- 6. Write a word count program to demonstrate the use of Map and Reduce tasks.
- 7. Find procedure to set up the one node Hadoop cluster and run simple applications like word count.

PE-CS-A404L		Computer Graphics Lab										
Lecture	Tutorial Practical Credit		Credit			Total	Time					
				Test								
-	-	4	2	40	60	100	3hrs					
Purpose	To Design	To Design and implement various Line and Circle Drawing Algorithms.										
		C	ourse Ou	tcomes(CO)								
CO1	To Impler	nent basic a	lgorithms	related to Lin	ne & Circle I	Orawing.						
CO2	Implemen	t various Li	ne & Circ	le Drawing A	Algorithms.							
CO3	Hands on	experiments	s on 2-D ti	ransformation	ns.							
CO4	Conceptua	al implemen	tation of C	Clipping and	other drawin	g algorithn	ns.					

- 1. Write a program to implement DDA line drawing algorithm.
- 2. Write a program to implement Bresenham's line drawing algorithm.
- 3. Implement the Bresenham's circle drawing algorithm.
- 4. Write a program to draw a decagon whose all vertices are connected with every other vertex using lines.
- 5. Write a program to move an object using the concepts of 2-D transformations.
- 6. Write a program to implement the midpoint circle drawing algorithm any Object Oriented Programming Language like Python, C++, Java.
- 7. Implement the line clipping algorithm using any Object Oriented Programming Language like Python, C++, Java.
- 8. Implement boundary fill algorithm using any Object Oriented Programming Language like Python, C++, Java.
- 9. Implement the depth buffer algorithm using any Object oriented language like Python, C++, Iava
- 10. Perform the Polygon Clipping Algorithm using any Object oriented language like Python, C++, Java.
- 11. Draw a Rectangle using Bresenham's and DDA Algorithm using any Object oriented language like Python, C++, Java.

PE-CS-A406L	Software Reliability Lab									
Lecture	Tutorial	Practical	Credit	Minor Test	Practical	Total	Time			
-	-	4	2	40	60	100	3hrs			
Purpose		In this course the student will understand the working of software reliability models and reliability prediction models, and able to design reliability models.								
	Course Outcomes(CO)									
CO1	To study	the computa	tion meth	od for evaluation	on of software re	eliability				
CO2	Understar	nd the mech	anisms fo	r Evaluation Te	sting methods in	n Software	Reliability			
CO3	Understar	nd the worki	ng of Sof	tware Reliabilit	y Models					
CO4	To Study	and underst	and proce	edure of softwar	e Reliability Pro	ediction				

- 1. To study the Computation of software reliability
- 2. To implement software Reliability Evaluation Testing methods
- 3. To understand the working of Functional and Operational Profiles
- 4. To understand the concept of Time Dependent Software Reliability Models
- 5. To understand the concept of Time Independent Software Reliability Models.
- 6. To study Software Reliability Modeling
- 7. To identify the role of various phases included in software Reliability Prediction
- 8. To study software Reliability Analyzing Predictive
- 9. To study software Reliability Recalibration

PE—CS-A408L		Mobile Apps Development Lab									
Lecture	Tutorial	Practical	Credit	Minor Test	Practical	Total	Time				
-	-	4	2	40	60	100	3hrs				
	To unde	rstand the	compo	onents and s	structure of	mobile	application				
Purpose	developn	nent frame	works fo	or Android ba	sed mobiles						
	Course Outcomes(CO)										
CO1	To unde	rstand the	e comp	onents and	structure of	mobile	application				
	Develop	nent frame	works f	or Android ba	sed mobiles.						
CO2	To under	stand how	to work	with various	s mobile appl	ication d	levelopment				
CO2	frameworks.										
CO3	To learn	the bas	ic and	important of	design conce	pts and	issues of				
	developn	nent of mo	bile appl	lications.							
CO4	To under	stand the c	apabiliti	es and limitat	ions of mobil	e device	s.				

- 1. Develop an application that uses GUI components, Font and Colors
- 2. Develop an application that uses Layout Managers and event listeners.
- 3. Develop a native calculator application.
- 4. Write an application that draws basic graphical primitives on the screen.
- 5. Implement an application that implements Multi threading
- 6. Develop a native application that uses GPS location information.
- 7. Implement an application that writes data to the SD card.
- 8. Implement an application that creates an alert upon receiving a message.
- 9. Write a mobile application that creates alarm clock.
- 10. Develop a sign-in page with appropriate validation.
- 11. Develop a real life application that makes use of database.